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 Introduction 

 The mammalian immune system is comprised of both 
innate and adaptive arms. The innate arm constitutes a 
host’s first line of defense against pathogens, and consists 
of cells that express germ-line encoded receptors that rec-
ognize conserved pathogen-associated molecular pat-
terns  [1, 2] . The innate immune response was not thought 
to be substantially altered by repeated exposure to the 
same challenge. In contrast, the adaptive immune system 
provides long-lasting immunity against pathogens via 
antigen-specific receptors and adaptive immune memory 
 [3, 4] . During their initial activation, T and B cells clon-
ally expand in response to their cognate antigen. Nearly 
90% of these responding cells undergo activation-in-
duced apoptosis. The persisting pool of long-lived cells 
responds more robustly upon subsequent exposure to 
their cognate antigen, thus exhibiting a memory response 
 [5] . For example, memory T cells exhibit increased pro-
liferation, cytokine production, and cytotoxicity during 
recall responses, thereby more rapidly eliminating subse-
quent infections by the same pathogen. Thus, with re-
peated exposure to a specific pathogen, adaptive immune 
responses are boosted and can provide the host with life-
long antigen-specific immunity  [6] .

  Natural killer (NK) cells are innate lymphoid cells crit-
ical for host defense against viruses and malignant cells 
 [7–11] . This host protection relies on several important 
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 Abstract 

 Natural killer (NK) cells are innate lymphoid cells that are im-
portant for host defense against infection and mediate anti-
tumor responses. Recent reports from several laboratories 
have identified that NK cells can remember a prior activation 
event and consequently respond more robustly when re-
stimulated, a property termed innate NK cell memory. NK 
cell memory has now been identified following hapten ex-
posure, viral infection, and combined cytokine preactivation 
with IL-12, IL-15, and IL-18. Many questions in the field re-
main regarding the cellular and molecular mechanisms reg-
ulating memory NK cells and their responses, as well as their 
formation and function in mice and humans. Here we review 
our current understanding of cytokine-induced memory-
like (CIML) NK cells that are generated by combined preacti-
vation with IL-12, IL-15, and IL-18. These cells exhibit en-
hanced NK cell effector functions weeks after the initial cyto-
kine preactivation. Further, we highlight the preclinical 
rationale and ongoing therapeutic application of CIML NK 
cells for adoptive immunotherapy in patients with hemato-
logic malignancies.  © 2015 S. Karger AG, Basel 
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NK cell functions. First, NK cells secrete cytokines and 
chemokines that activate, direct, and modify the host im-
mune response. The prototypical cytokine released by 
NK cells is interferon-γ (IFN-γ). IFN-γ shapes T-cell im-
mune responses, stimulates macrophages, upregulates 
MHC class I expression on antigen presenting cells, and 
decreases the proliferation of virally infected and malig-
nant cells  [7] . Second, NK cells are cytotoxic, with their 
ability to kill target cells mediated primarily by perforin 
and granzyme B, which are stored in cytotoxic granules 
 [7] . These granules are exocytosed upon recognition of a 
target cell, a process that is tightly regulated to prevent 
indiscriminate killing  [12] .

  Human NK cells originate in the bone marrow, differ-
entiate in peripheral lymphoid tissue  [13, 14] , and are dis-
tinguished from other lymphoid cells by the absence of 
the T- and B-cell-specific markers (e.g. CD3 and CD19), 
and the presence of CD56  [7] . NK cells express a reper-
toire of germ-line encoded activating and inhibitory re-
ceptors that control their responses  [15] . There are a va-
riety of activating receptors (e.g. NKG2D and NKp46) 
that recognize ligands expressed on stressed, infected, or 
transformed cells, or antibody-opsonized targets (CD16/
FcγRIIIa). Inhibitory signals arise from two main recep-
tor families, killer cell immunoglobulin-like (KIR) and 
C-type lectin receptors (i.e. CD94-NKG2A), which rec-
ognize MHC class I or class I-like molecules  [16] . There 
are two distinct human NK cell subsets identified pheno-
typically based on their surface density of CD56:  CD56 bright  
and CD56 dim . CD56 dim  NK cells represent the majority of 
the NK cell population in the peripheral blood (80–95%) 
and are specialized to respond to NK cell receptor-based 
stimulation that results in potent killing and cytokine se-
cretion  [7, 17–19] . In contrast,  CD56 bright  NK cells, which 
are the major subset of NK cells in secondary lymphoid 
tissues, respond primarily to cytokine receptor-based 
stimulation to produce abundant cytokines and chemo-
kines, but are poorly cytotoxic at rest. The distinct biol-
ogy of CD56 bright  and CD56 dim  NK cells is also reflected 
in differing complements of cell surface cytokine, chemo-
kine, homing, integrin, and NK receptors  [19, 20] . For 
example, CD56 dim  NK cells express both KIR and CD94-
NKG2A inhibitory receptors, whereas CD56 bright  NK 
cells primarily express CD94-NKG2A. Additionally, 
CD16 (FcγRIIIa) is expressed on most CD56 dim  NK cells 
and a subset of  CD56 bright  NK cells, allowing for antibody-
dependent cellular cytotoxicity  [19] . Within CD56 dim  NK 
cells, distinct functional subsets may be defined by matu-
ration stage with less mature cells expressing CD94 and 
CD62L, but lacking CD57  [21–23] . The current view of 

human NK cell maturation is that CD56 bright  (stage IV) 
NK cells differentiate into CD56 dim  (stage V) NK cells 
 [24] . However, the developmental relationship between 
the two remains controversial and it is possible that these 
subsets have distinct precursors  [25] . Regardless, CD-
56 bright  and CD56 dim  represent distinct human NK cell 
subsets with differing physiological roles.

  Traditionally, NK cells have been classified as innate 
effectors since they do not rearrange their DNA to ex-
press a specific, dominant activating receptor. More re-
cently, however, evidence has emerged that challenges 
this paradigm, demonstrating that NK cells display prop-
erties of immunologic memory. This review summarizes 
mouse and human studies that have defined the concept 
of innate NK cell memory, with particular focus on hu-
man cytokine-induced memory-like (CIML) NK cells. 
Furthermore, we describe ongoing translational studies 
utilizing CIML NK cells for the treatment of hematologic 
malignancies.

  NK Cell Memory 

 Several reports have described that innate NK cell-me-
diated memory can be generated in response to certain 
haptens and viruses, as well as following combined cyto-
kine activation ( fig. 1 )  [26] . NK cell memory was first de-
scribed in response to two haptens, 2,4-dinitrofluoroben-
zene and oxazolone  [27] . Mice lacking T and B cells, but 
not NK cells, exhibited specific contact hypersensitivity re-
sponses to these haptens that persisted for at least 4 weeks. 
Furthermore, adoptive transfer of NK cells from sensitized 
donors resulted in contact hypersensitivity responses in 
the recipients upon reexposure to that same hapten  [27] . 
These NK cell memory responses to haptens are dependent 
on expression of CXCR6, a chemokine receptor critical for 
intrahepatic survival and homeostasis  [28] . The molecular 
mechanism that explains the varying, yet specific hapten 
recall responses remains poorly understood.

  A subsequent study demonstrated that murine NK 
cells exhibit a memory-like adaptive response following 
murine cytomegalovirus (MCMV) infection  [29] . Specif-
ically, NK cells bearing the activating receptor Ly49H, 
which recognizes the MCMV-expressed ligand m157, 
proliferate in response to MCMV infection. After a con-
traction phase, Ly49H +  NK cells persist for months. Upon 
isolation and ex vivo restimulation with plate-bound ago-
nistic antibodies against NK1.1 or Ly49H, these cells rap-
idly degranulated and produced cytokines more robustly 
than MCMV-inexperienced NK cells  [29] . Additionally, 
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adoptive transfer of these memory NK cells, compared to 
naïve, provided protective immunity to newborn mice, 
which lack mature NK cells and are thus highly suscep-
tible to MCMV infection  [29] . Subsequent studies dem-
onstrated that virus-induced NK cell memory is depen-
dent on the proinflammatory cytokine IL-12  [30] .

  Human studies have demonstrated that infection with 
cytomegalovirus (CMV)  [31–33] , hantavirus  [34] , or 
 chikungunya virus  [35]  results in an imprinted NK cell 
receptor repertoire with an increased frequency of 
 NKG2C +  NK cells. In the case of CMV, NKG2C +  NK cells 
expanded during acute infection and persisted for up to a 
year  [36] . Additionally, these NKG2C +  NK cells produced 
significantly more IFN-γ in response to target cells than 
NKG2C –  NK cells  [31] . Furthermore, adoptively trans-
ferred NKG2C +  NK cells from CMV-seropositive per-
sons displayed enhanced effector function against a sec-
ondary CMV challenge in the recipient compared to 
 NKG2C +  NK cells from CMV-seronegative individuals 
 [36] . Recent work has demonstrated that the combina-
tion of CMV-infected fibroblasts plus IL-12-producing 
monocytes results in the expansion of NKG2C +  NK cells 

in vitro  [37] . In addition, the induction of CD25 and the 
high-affinity IL-2Rαβγ contribute to the expansion in this 
in vitro model, which also depends on NKG2C and HLA-
E interactions. The precise parallels between MCMV- 
induced memory NK cells and NKG2C +  human NK cells 
in people with latent CMV are incompletely understood.

  Mouse CIML NK Cells 

 At the same time virus-induced NK cell memory was 
reported, Cooper et al.  [38]  discovered that murine NK 
cells preactivated with cytokines exhibit memory-like 
properties. In this report, NK cells were preactivated over-
night with IL-12, IL-15, and IL-18, or IL-15 alone as a con-
trol, and then adoptively transferred into syngeneic Rag-
1 –/–  recipients. Although a majority of the preactivated 
NK cells produced IFN-γ at the time of adoptive transfer, 
after weeks of rest in the recipients, IFN-γ production re-
turned to baseline, undetectable levels. Furthermore, pre-
activated NK cells proliferated extensively in vivo, where-
as control NK cells did not  [38, 39] . After resting in vivo, 

  Fig. 1.  Overview of murine memory NK cells. Three types of stimuli 
induce NK cell memory in mice: viral infection, hapten sensitization, 
and cytokines. Weeks after initial activation, memory-like NK cells 

exhibit enhanced recall responses during subsequent reactivation. 
The resulting NK cells are long-lived and display enhanced respon-
siveness, which is maintained despite multiple rounds of division. 

Secondary
stimulus

Enhanced
recall

responses

Enhanced degranulation
and IFN-  production

Enhanced
cytotoxicity

Enhanced IFN-
production

Initiating
stimulus

Resting
period
(weeks)

Virally induced Hapten induced Cytokine induced

Viral antigen
(e.g. m157)

Initial sensitizing
antigen

Cytokines and
activating receptors

m157

MCMV-infected cell
IL-12 IL-12

IL-15
IL-18

IL-12R IL-12R IL-15R
IL-18RLy49H

Ly49H

IFN-
IFN-

CXCR6

CXCL16
Receptor-ligand
interaction unknown

Perforin and
granzymes

Perforin and
granzymes

Perforin and
granzymes

NKG2D
IL-2R



 Berrien-Elliott/Wagner/Fehniger    J Innate Immun 2015;7:563–571 
DOI: 10.1159/000382019

566

the CIML (IL-12-, IL-15-, and IL-18-preactivated) NK 
cells were phenotypically similar to control NK cells as 
they expressed similar levels of CD69, CD11b, CD27, and 
B220, as well as the cytokine receptors CD122, IL12Rβ1, 
IL-15Rα, and CD127  [38] . Likewise, murine CIML NK 
cell cytotoxicity was similar to that of control NK cells, as 
they expressed comparable levels of granzyme B and lysed 
target cells comparably to controls in vitro  [38, 39] . How-
ever, CIML NK cells displayed enhanced IFN-γ produc-
tion upon activating receptor ligation or cytokine restim-
ulation compared to controls  [38] . This enhanced ability 
to produce IFN-γ was cell-intrinsic and persisted follow-
ing cell division, including homeostatic proliferation in 
NK cell-deficient recipients  [38, 39] . 

  The underlying mechanisms that result in more abun-
dant IFN-γ expression by CIML NK cells upon restimula-
tion has not yet been elucidated. Notably, it has been 
demonstrated that both control and CIML NK cells ex-
press similar levels of IFN-γ transcript mRNA, indicating 
that the enhanced functionality of CIML NK cells is not 
due to a simple alteration in IFN-γ transcription or 
mRNA stability  [38, 39] . Further studies into these mech-
anisms are warranted.

  Following this initial report, Ni et al.  [40]  demonstrat-
ed that adoptively transferred murine IL-12-, IL-15-, and 
IL-18-preactivated NK cells display enhanced effector 
function against established tumors in vivo. Syngeneic 
NK cells were preactivated with IL-12, IL-15, and IL-18 
or IL-15 alone for 16 h and adoptively transferred into 
recipient mice bearing MHC class I-deficient RMA-S 
lymphoma or B16-Rae1ε melanoma cell lines. Following 
transfer, the preactivated NK cells proliferated rapidly in 
an IL-2-dependent manner. Furthermore, significantly 
reduced tumor growth and prolonged survival was ob-
served in recipient mice treated with IL-12-, IL-15-, and 
IL-18-preactivated NK cells compared to mice treated 
with control NK cells  [40] . Irradiation of the mice was 
also necessary for the IL-12-, IL-15-, and IL-18-preacti-
vated NK cells’ persistence and antitumor efficacy  [40] . 
Thus, mouse NK cells preactivated with IL-12, IL-15, and 
IL-18 exhibited enhanced functionality months following 
adoptive transfer and were able to mediate more effective 
in vivo antitumor responses.

  Human CIML NK Cells 

 Human NK cells also exhibit CIML activity ( fig.  2 ) 
 [41] . Purified human NK cells from normal donors were 
stimulated with various combinations of IL-12, IL-15, and 

IL-18 for 16 h. Following removal of these cytokines, the 
cells were rested in vitro with a low dose of IL-15 as a sur-
vival factor. After 1–3 weeks of rest, NK cells preactivated 
with IL-12, IL-15, and IL-18 or double combinations of 
IL-12, IL-18, and IL-15 exhibited increased IFN-γ pro-
duction after restimulation with cytokines or tumor tar-
get cells compared to control cells incubated with IL-12, 
IL-15, or IL-18 alone  [41] . Because IL-2 and IL-15 both 
signal through the IL15Rβγc, it is likely that preactivation 
with intermediate  levels IL-2 combined with IL-12 and 
IL-18 would  result in memory-like NK cells; however, this 
has not been experimentally determined. Although gating 
on CD56 bright  versus CD56 dim  cell populations, particu-
larly after >2 weeks in vitro, can be challenging, we ob-
served enhanced IFN-γ production following cytokine 
preactivation by both CD56 bright  and CD56 dim  NK cell 
subsets, with a particularly robust effect on the CD56 bright  
CIML NK cell subset  [41] . Human CIML NK cells prolif-
erated extensively, but maintained their capacity for en-
hanced recall responses even after multiple rounds of cell 
division tracked by CFSE dilution. Similar to mice, IFN-γ 
mRNA transcript levels did not differ between CIML and 
control NK cells, suggesting that a simple difference in the 
IFN-γ mRNA pool was not the mechanism responsible 
for enhanced IFN-γ  [41] . However, in contrast to murine 
CIML NK cells, phenotypic differences were identified 
between preactivated NK cells and controls. Specifically, 
CIML NK cells had increased CD94, NKG2A, NKp46, 
and CD69 surface expression. Further, CIML NK cells 
were associated with reduced KIR and CD57 expression 
 [41] . As a population, enhanced IFN-γ production by 
CIML NK cells was associated with expression of CD94, 
 NKG2A, NKG2C, and CD69, and with the lack of KIR 
and CD57. These findings may assist in identifying CIML 
NK cells populations in vivo.

  Additionally, human CIML NK cells were also shown 
to be responsive to low concentrations of IL-2, which is 
critical for promoting their function and proliferation in 
vivo  [42] . The IL-2 receptor is composed of either inter-
mediate-affinity (IL-2Rβγ) or high-affinity (IL-2Rαβγ) 
forms that are ligated by nanomolar and picomolar con-
centrations of IL-2, respectively  [43, 44] . CD25 (IL-2Rα) 
is a critical component required to form the high-affinity 
receptor. CD25 is constitutively expressed at low levels 
by CD56 bright , but not CD56 dim  NK cells, making 
 CD56 bright  NK cells more responsive to low-dose IL-2  [7, 
45] . Recently, it has been demonstrated that CD56 bright  
and CD56 dim  CIML NK cells markedly upregulated 
CD25 in response to combined cytokine preactivation, 
resulting in the formation of a functional high-affinity 
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IL-2 receptor (IL-2Rαβγ) that is ligated by picomolar 
concentrations of IL-2  [42] . In this study, provision of 
picomolar concentrations of IL-2 resulted in the prolif-
eration of IL-12-, IL-15-, and IL-18-preactivated NK 
cells both in vitro and in vivo. Further, CIML NK cell 
IFN-γ production and cytotoxic capacity were enhanced 
by provision of picomolar concentrations of IL-2. These 
data suggest that combined cytokine preactivation re-
sults in CIML NK cells that are well adapted to utilize T 
cell-derived IL-2, or low-dose exogenous rhIL-2, to sup-
port their survival and functionality.

  Recently, preclinical studies have shown that human 
CIML NK cells also have substantial potential as antileu-
kemia cellular therapy  [46] . Human CIML NK cells have 
exhibited enhanced IFN-γ production when restimulated 
(triggered) with leukemia cell lines or acute myeloid leu-
kemia (AML) blasts in vitro. Additionally, granzyme B 
protein abundance and cytotoxicity were increased in hu-

man CIML, compared to control NK cells from the same 
donors  [46] . However, enhanced degranulation in re-
sponse to tumor targets was not observed in human CIML 
NK cells compared to controls  [41] , paralleling what has 
been observed in mice  [38] . Thus, the enhanced antileu-
kemic function of human CIML NK cells likely relies on 
a combination of increased cytotoxicity as well as en-
hanced IFN-γ production, but the precise effector mech-
anism important for antileukemia responses have not 
been experimentally defined. CIML NK cells may also be 
engrafted into immunodeficient NOD-SCID-γc –/–  mice 
(NSG) mice and supported by low-dose rhIL-2. In this 
NSG xenograft model, CIML NK cells exhibited superior 
in vivo persistence, compared to control NK cells, follow-
ing adoptive transfer  [42] . Ex vivo analysis of CIML NK 
cells after transfer and rest in NSG mice revealed the 
memory-like phenotype with increased IFN-γ produc-
tion following restimulation. Finally, CIML NK cells 

  Fig. 2.  Schema of human CIML NK cell generation. Purified NK 
cells are preactivated with IL-15 (control) or IL-12, IL-15, and IL-
18 (CIML) for 16 h, washed, and rested for >7 days with low-dose 
IL-15 to support survival. After the initial activation, CIML NK 

cells express IFN-γ, which returns to baseline levels by 24 h. CIML 
NK cells display increased IFN-γ production and enhanced cyto-
toxicity after restimulation, compared to control NK cells. p M   = 
Picomolar. 
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 exhibited a superior ability to control AML cells when 
transferred into leukemia-bearing NSG mice. These re-
sults, taken together with murine CIML NK cell cancer 
immunotherapy studies, provide the scientific rationale 
that cytokine preactivation with IL-12, IL-15, and IL-18 
and administration of low-dose IL-2 will enhance the an-
tileukemic effector function of adoptively transferred NK 
cells in humans.

  CIML NK Cells: From Bench to Bedside 

 NK cells can recognize and respond to malignant tu-
mor cells and are an important immunotherapeutic effec-
tor for cancer, particularly hematologic cancers  [47–51] . 
The biology of NK cells makes them an outstanding can-
didate for anticancer therapy. First, unlike allogeneic T 
cells, NK cells do not induce graft-versus-host disease, 
and in fact may mediate graft-versus-host-disease protec-
tion  [52, 53] . Second, some cancer cells can be recognized 
by allogeneic NK cells, and based on progress in NK cell 
receptor biology, haploidentical donors may be chosen to 
maximize the NK cell versus leukemia response. In par-
ticular, Ruggeri et al.  [53]  first showed that KIR-ligand 
mismatch, resulting in donor NK cell alloreactivity against 
recipient leukemia, markedly reduced AML relapse in pa-
tients receiving HLA-haploidentical hematopoietic stem 
cell transplants. Consistent with these findings, donor 
KIR haplotype is predictive of AML relapse risk in the set-
ting of allogeneic transplantation  [54, 55] . The antileuke-
mic effector function of enriched NK cells using adoptive 

transfer has also been demonstrated in humans  [56, 57] . 
For example, Miller et al.  [56]  transferred enriched NK 
cells (CD3- and CD19-depleted peripheral blood mono-
nuclear cells) from haploidentical donors into patients 
with poor prognosis AML. The provision of enriched NK 
cells in this fashion resulted in complete remissions in 
about 30% of patients, but of relatively short duration. 
Rubnitz et al.  [57]  administered allogeneic NK cells to pe-
diatric AML patients already in complete remission, and 
demonstrated safety and NK cell detection after the infu-
sion. These and other studies have demonstrated that al-
logeneic NK cells may be safely administered to leukemia 
patients, but a limited complete remission rate and dura-
tion of response remain a barrier in the field. Therefore, 
approaches that enhance the functionality, expansion, 
and survival of adoptively transferred NK cells are needed.

  Based on the basic and preclinical reports described 
above, we hypothesized that combined cytokine preacti-
vation with IL-12, IL-15, and IL-18 resulting in CIML NK 
cell generation would be a safe and potentially effective 
strategy to translate NK cell memory into improved anti-
AML NK cell responses. This hypothesis is currently be-
ing explored in a clinical trial of adoptively transferred 
allogeneic CIML NK cells in patients with relapsed or re-
fractory AML ( fig. 3 , NCT01898793). For this first-in-hu-
man NK cell study, rel/ref AML patients are lymphode-
pleted using fludarabine and cyclophosphamide  [56] , fol-
lowed by a single CIML NK cell infusion. After CIML NK 
cell transfer, low-dose rhIL-2 is administered for 14 days 
to support CIMK NK cell survival, expansion, and func-
tion based on the expression of the induced CD25 and 

  Fig. 3.  CIML NK cell adoptive immunotherapy for cancer. CIML NK cell adoptive immunotherapy clinical strategy schema.   
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thus the high-affinity IL-2Rαβγ  [58] . The clinical grade 
CIML NK cell product is generated from a single haploi-
dentical donor leukapheresis, followed by CD3 depletion 
and CD56 enrichment using magnetic selection. This ap-
proach typically results in  ≥ 90% CD56 + CD3 –  NK cells, 
which are activated for 12–16 h in rhIL-12, rhIL-15, and 
rhIL-18 in a GMP-compliant biological therapy facility. 
Prior to infusion, all cytokines are washed from the NK 
cell product to prevent transfer of proinflammatory 
agents to the patient. Correlative laboratory analyses are 
tracking donor CIML NK cell persistence, expansion, 
proliferation, and memory-like functionality at various 
time points following infusion. If this CIML NK cell 
adoptive therapy appears safe, clinical testing will be ex-
panded to a larger number of AML patients to evaluate 
efficacy. Since CIML NK cell express CD16/FcγRIIIa, 
provision of therapeutic antibodies or newer bispecific 
NK cell reagents could potentially be included to enhance 
specificity and triggering against other types of cancer.

  Conclusions and Open Questions 

 Cellular-based therapies are gaining traction in the 
cancer immunotherapy field, including the use of NK 
cells for the treatment of hematologic malignancies. Hu-
man CIML NK cells have a number of properties that may 
be beneficial for antitumor responses, including en-
hanced function against leukemia, expansion in vivo, and 
responsiveness to low-dose IL-2  [41, 42, 46] . A clinical 
trial is now underway to test the safety of IL-12, IL-15, and 
IL-18 cytokine preactivated NK cells, which may be a safe 
and effective means of improving NK cell anticancer 
functionality in the context of adoptive therapy. It is re-
markable that discovery of CIML NK cells has moved 
from murine models to a first-in-human trial in 5 years. 
However, despite these translational advances, we have a 
limited understanding of the molecular mechanisms gov-
erning CIML NK cell differentiation and functionality. 
These are important questions in the memory NK cell 
field since understanding memory at the molecular and 
cellular level may lead to new strategies to further en-
hance antitumor functionality. 

  There are also many other questions that remain to be 
answered. How are CIML NK cells generated during a 
physiologic immune response to infection or cancer? 
How do enhanced CIML NK cell effector functions con-
tribute to antitumor immunity? Do accessory cells such 
as dendritic cells or macrophages that produce proin-
flammatory cytokines induce CIML NK cell function? Do 

CIML NK cells follow the rules of NK cell licensing, which 
prevents autoreactivity under homeostatic conditions 
 [59] ? Can CIML NK cells out-compete regulatory T cells 
for limiting amounts of IL-2, impeding a known brake on 
NK cell responses? What is the relationship of CIML NK 
cells to the NKG2C +  imprinted memory-like NK cells 
that differentiate following CMV infection  [31–33] ? 

  The finding that virus-induced NK cell memory re-
quires proinflammatory cytokines such as IL-12  [30, 37]  
suggests that cytokine receptor signaling may be a com-
mon pathway central to the generation of innate NK cell 
memory. Furthermore, the preservation of enhanced 
CIML NK cell functionality following multiple rounds of 
cell division  [38, 41]  suggests that epigenetic alterations 
may contribute to CIML NK cell differentiation and func-
tion. Indeed, epigenetic changes have been observed in 
cytokine-preactivated and NKG2C + -imprinted human 
NK cells, reinforcing a potential role for epigenetic im-
printing in NK cell memory  [60–62] . An improved un-
derstanding of human CIML NK cell biology will be im-
portant to expand the clinical potential and spectrum of 
NK cell memory. We are hopeful that as our understand-
ing of CIML NK cell biology expands, we will translate 
these findings to better outcomes for cancer patients.
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