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Anthropogenic salinization of rivers is an emerging issue of global concern, with

significant adverse effects on biodiversity and ecosystem functioning. Impacts of

freshwater salinization on biota are strongly mediated by evolutionary history,

as this is a major factor determining species physiological salinity tolerance.

Freshwater insects dominate most flowing waters, and the common lotic

insect orders Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera

(caddisflies) are particularly salt-sensitive. Tolerances of existing taxa, rapid

adaption, colonization by novel taxa (from naturally saline environments) and

interactions between species will be key drivers of assemblages in saline lotic sys-

tems. Here we outline a conceptual framework predicting how communities

may change in salinizing rivers. We envision that a relatively small number of

taxa will be saline-tolerant and able to colonize salinized rivers (e.g. most natu-

rally saline habitats are lentic; thus potential colonizers would need to adapt to

lotic environments), leading to depauperate communities in these environments.
1. Introduction
Salinization of rivers is occurring in every inhabited continent as a result of var-

ious human activities, and is expected to worsen owing to climate change and

increased water demand [1]. Anthropogenic increases in riverine salinization

usually result in modest salinities (1–10 mS cm21 range [1,2]) compared with

natural saline lakes, but rivers occasionally increase to the levels of highly

saline lakes (. 100 mS cm21 [3]). Short-term responses to increased salinization

are clear: reduced biodiversity [4,5], altered ecosystem processes [6], changed

composition [7,8] and altered trait composition of communities [9,10].

Anthropogenic salinization of rivers is creating novel environments by

introducing a strong selective force (salinity) to systems dominated by another

strong selective force (unidirectional flow). While natural inland saline lakes are

quite common, especially in Mediterranean and (semi-)arid climates [11], natu-

ral saline rivers are much rarer and seldom reach the high salinities of lakes

(.100 mS cm21) [12,13]. Long-term evaporation can concentrate salts in term-

inal lakes even with low salt inputs, but naturally saline rivers require a

continued and large input of salt. For example, in wadeable streams in the

eastern USA, 73% of ecoregions had a median electrical conductivity, EC ,

0.2 mS cm21 [13]. Salinity was higher in the western USA but only 3% of ecor-

egions had a median EC . 1 mS cm21 [13]. Furthermore, naturally saline rivers

usually have low discharge and mostly do not flow permanently [12], so we

would expect saline rivers with high discharges to be rare in nature (figure 1a).
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Figure 1. Conceptual diagrams of the relationships between salinity and
(a) discharge (m3 s21)—with red indicating the salinity – flow combination
is relatively rare, and blue that it is relatively common; (b) species richness (S)
(i) for total invertebrates, (ii) Ephemeroptera, Plecoptera and Trichoptera
(EPT) and (iii) Diptera, Coleoptera, Odonata and Hemiptera (DCOH).
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The long-term consequences of anthropogenic river salini-

zation are unclear. Here we explore the potential for organisms

to adapt to or exploit these novel ecosystems, and develop a

conceptual model for predicting the ecological attributes of sal-

inized rivers. We consider future species composition of

salinized rivers as a function of (i) the ability of the original

fauna to survive and complete their life cycles at elevated sal-

inity; (ii) the potential for salt-tolerant fauna from elsewhere

to colonize the new saline environment; (iii) the potential for

species initially unable to tolerate the salinity rise to rapidly

adapt to increased salinity; and (iv) the outcome of changing

interactions among species (figure 2).
2. Surviving salinity increase
Modest salinity increases (to ca 0.3–0.5 mS cm21) [4] may actu-

ally slightly increase invertebrate species richness (figure 1b).

Nevertheless, the richness of three orders of insects, Ephemer-

optera (mayflies), Plecoptera (stoneflies) and Trichoptera

(caddisflies) (EPT), declines with increasing salinity [4], as

does the abundance of Ephemeroptera [5] (figure 1b), although

a few trichopteran species can inhabit saline environments

[14,15]. Turbellaria (flatworms), Oligochaeta (segmented fresh-

water worms) and Hirudinea (leeches) also contain some

salt-sensitive species [16] as well as salt-tolerant species.

Riverine Diptera (true flies), Coleoptera (beetles), Odonata

(dragon- and damselflies) and Hemiptera (true bugs; DCOH)

can vary from sensitive to very tolerant of salinity [1,3,16], and

some DCOH species have independently evolved to inhabit

highly saline lakes and marine environments [15]. Nevertheless,

increases in salinity above about 1.5 mS cm21 can lead to a

decline in insect species richness in streams, with the ratio of

EPT to DCOH species declining with increasing salinity [4],

matching the results from laboratory experiments [17].

Taxa that are sensitive to salinity tend to decline in

abundance in salinized streams. Nevertheless, the taxa that

dominate salinized streams can vary widely. In naturally

saline Spanish streams, Diptera, Coleoptera and Heteroptera
are the most diverse macroinvertebrate taxa, with Ephemer-

optera, Trichoptera, Odonata, Crustacea, Hydrachnidia

(water mites) and gastropods scarce and mostly restricted

to less than 30 mS cm21 [12]. In Australian agriculturally

salinized streams, the dominant groups are generally Diptera,

Coleoptera and crustaceans [3,18], whereas in a French

stream salinized by industry, introduced crustaceans and

bivalves dominate [19].

The flow environment and water permanency may affect

salinity tolerance. Species of two genera of Coleoptera inhab-

iting temporary saline standing waters tolerated higher

salinity than congeneric species inhabiting permanent saline-

flowing waters [20]. This may be because species inhabiting

temporary water bodies experience a wider range of salinities.

The evolutionary distance between freshwater taxa and

their marine/estuarine ancestors could explain differences in

salinity tolerance and the potential for taxa to evolve tolerance,

where NaCl is the dominant salt. Many freshwater crustaceans,

molluscs and fishes are closely related to marine or estuarine

species and can be salinity-tolerant [16]. At least 33 extant

lineages of gastropods have colonized freshwater from

marine environments [21], and freshwater fish most likely

evolved from marine ancestors, although some lineages have

been long confined to freshwater [22]. Only 2% of amphibian

species have been documented inhabiting saline environments

[23]. Freshwater insects, which dominate streams and rivers in

terms of biomass, abundance and richness, evolved on mul-

tiple occasions from terrestrial insects, and saline-tolerant

insects evolved from freshwater ancestors in multiple lineages

[24]. Insects, along with rotifers [25], are among the few invert-

ebrate taxa with much higher species richness in freshwater

than marine environments [15,26]. While multiple lineages of

some insect orders are tolerant of highly saline waters, there

are far fewer insect species in saline environments compared

with freshwater environments. A lack of evolutionary exposure

to saline conditions may mean that most, but not all, insects are

poorly equipped to cope with salinization.

Organisms in (semi-)arid regions may have higher sal-

inity tolerance than those in other regions owing to past

aridity-driven salinization [3,27,28]. However, the salinity

sensitivity of macroinvertebrates is better explained by taxo-

nomic identity than the aridity of the region they were

collected from [16,29], with the possible exception of

southwest Australia [3].
3. Exposure duration
Salinity dose–response relationships depend on exposure

period, and invertebrate species are typically found at salinity

levels lower than acute lethal levels [30,31]. While organisms

may survive short salinity change, they may not complete

their life cycle. The eggs and early-life stages of freshwater

invertebrates [32,33] and fish [34] are often more salt-sensitive

than older-life stages. Non-lethal elevated salinity levels can

also slow development, growth and/or fecundity of freshwater

invertebrates [2,35,36] and fish [37]. However, relationships

between sublethal effects and salinity are often non-monotonic,

with some freshwater species performing optimally at inter-

mediate salinity [37–39]. In contrast, an increase in growth or

development was not observed with slightly elevated salinity

in three ephemeropteran species [2,35].
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Figure 2. Conceptual diagram of environmental filters determining the presence and absence of species in salinized rivers. The fauna that inhabit salinized rivers will be
influenced by the ability of regional riverine fauna to survive and complete their life cycles in the new salinity, perhaps following adaption. The ability of species from
existing saline environments to disperse to and tolerate riverine environments ( perhaps following adaption) will also be important. Red straight arrows indicate species
movement through filters, the reduced size of arrows indicates that some species did not pass the filters (shown by circles). Blue curved arrows indicate species that
indirectly pass through a filter after rapid adaptation. The word ‘interactions’ refers to ecological interactions between organisms, e.g. competition and predation. The
shapes in the blue squares indicate different species, with their sizes in the final square indicating relative population size.
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4. Osmoregulation
The effect of salinity on freshwater organisms depends on their

ability to osmoregulate. In most marine invertebrates, the

extracellular osmotic pressure equals that in their external

environment [24], but in freshwater this would result in

internal fluids being too dilute for normal metabolic processes.

Freshwater animals therefore must expend energy to maintain

a higher internal osmotic pressure than their external environ-

ment [40]. As salinity increases the difference in osmotic

pressure between the internal and external environment

decreases, which would be expected to lower osmoregulation

energy needs, possibly explaining why some freshwater

species achieve maximum growth at elevated salinity [37,41].

However, salt-sensitive EPT species studied do not perform

optimally at slightly elevated salinity and their osmoregulation

may differ in important respects [2,35,42]. If external osmotic

pressure continues to rise, organisms must either tolerate the

increase in osmotic pressure or hyporegulate [43]. However,

many EPT species die at salinities well below that of their

extracellular fluids.

Osmoregulation is relatively well understood in freshwater

crustaceans, molluscs and fish [24], but not in freshwater

insects, especially the salt-sensitive EPT orders. Ephemeroptera

and Plecoptera appear to have never evolved salinity tolerance

despite being among the oldest insects. There are impor-

tant differences in osmoregulation between freshwater insects

and other groups. In terrestrial insects, osmoregulation is

fundamentally internal: midgut uptake and sequestration,

Malpighian tubule primary urine formation, hindgut/rectum

ion resorption [44,45]. Freshwater insects have two additional

complexities. (i) They have evolved the capacity to apically

uptake ions from the surrounding water, via ionocytes (chlor-

ide cells), chloride epithelia or anal papillae, depending on

lineage [46]. The organism’s surface area to volume ratio is

important, as smaller taxa within a given lineage tend to

have faster mass-specific ion uptake [47]. (ii) Some aqua-

tic insects, including lineages of Diptera, Hemiptera and

Coleoptera, obtain atmospheric air through open tracheae,

maintaining a relatively impermeable cuticle, like their
terrestrial ancestors [48]. Others, including the EPT, have

evolved water-breathing gills and other modified surfaces,

which, as a consequence of being gas permeable, are poten-

tially more prone to ion loss and water influx [48]. Thus, in

addition to body size, respiratory strategy strongly affects

osmotic permeability [47,48] and likely the response of species

to salinization.

Most obligate freshwater insects maintain haemolymph

osmolarity at ca 300–420 mOsm [10,49], whereas freshwater

is less than 25 mOsm [24]. Few studies have examined the

effects of increased salinity on haemolymph homeostasis in

aquatic insects, although some data suggest extreme salinities

are required to increase haemolymph osmolarity [50].

The cycling of ions—uptake from dilute water to the more

osmotically rich internal environment, and back to dilute

water—requires energy. Nevertheless, the energy demands

of osmotic changes do not appear to affect oxygen consump-

tion in aquatic insects [42]. Rather, developmental delays are

observed in response to increasing salinity [2].
5. Rapid adaptation
Some populations faced with new abiotic stressors, including

pesticides and thermal shocks, have rapidly adapted to these

stressors [51]; what is the potential for a similar response with

salinization? The potential for rapid evolutionary adaptation

to salinity stress will depend on the generation time of the

species, plasticity and heritability of the relevant physio-

logical traits, as well as genetic constraints arising from

interactions among traits. Most of the data on adaptation

associated with salinity come from fish moving from high

to low salinity, e.g. sticklebacks [52,53], Atlantic killifish

[54] and alewives [55]. The mechanisms behind these

adaptive shifts are likely to be complex and involve genes

relating to membrane structure and regulation, ATPase

activity and other components of osmoregulation [52,56].

There are fewer cased documented in invertebrates, e.g. the

invasive copepod Eurytemora affinis [57], adapting from

marine to low salinity lentic systems.
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In contrast, there is limited documentation of the evol-

utionary adaptation of freshwater taxa to saline conditions.

Variation in salinity tolerance has been observed between indi-

viduals or populations of amphibian species inhabiting saline

and freshwater, and in some cases, this variation is heritable

[23]. Lentic cladocerans (water fleas) differ in their ability to

adapt to salinity change, with Daphnia pulex adapting [58]

but apparently not Daphnia magna [59] and Simocephalus vetu-
lus [60]. The ability of freshwater invertebrates to rapidly adapt

to saline conditions may be quite limited, especially for insects,

given their evolutionary origin as terrestrial taxa [61], although

more evidence is required. This could be due to strong trade-

offs between salinity tolerance and other traits (e.g. respiration

mode, gill permeability, osmolality of extracellular fluids), but

estimates of genetic correlations and heritable variation across

traits are lacking.

Non-genetic adaptive shifts may also occur through plas-

tic changes involving acclimation within generations and

acclimatory responses across generations, including epigenetic

changes. Exposure to saline conditions failed to alter osmo-

regulatory responses in Daphnia exilis [62]. However, some

freshwater fish [34] and salt-tolerant amphibians [23] tolerate

higher salinity when increases are gradual. Transgenerational

effects increase the low salinity tolerance of the marine ascidian

Ciona intestinalis [63]. They may also occur in freshwater water

striders. Nevertheless, there appears to be a trade-off as flight

activity of offspring from adults exposed to brackish water is

lowered when these offspring encounter freshwater [64]. Over-

all, there is little evidence to suggest that freshwater lotic

species can adapt rapidly to increasing salinity, although the

topic has been poorly studied.
6. Dispersal from saline environments
Already salt-adapted species might disperse to and colonize

salinizing rivers from nearby oceans, estuaries and naturally

saline lakes and rivers (figure 2). There are examples

of marine/estuarine species colonizing salinized rivers in

southwest Australia [65], France [19] and Germany [66].

Nevertheless, disregarding salinity, riverine environments

differ from saline environments in many ways, so that colo-

nizing saline-adapted species will need to cope with other

aspects of river life, including unidirectional flow, greater

variability in dissolved oxygen, pH, ionic proportions and

water temperature [67], and differences in habitat structure.

The fact that so few organisms from marine/estuarine habi-

tats live in salinized rivers, even when salinities are similar

[18,28,65], suggests that barriers to dispersal and colonization

of rivers are formidable [20].

Naturally saline inland waters can have a wide range of

taxa (including Diptera, Coleoptera, Odonata and Hemiptera)

that could potentially colonize anthropogenic salinized

streams. However, colonization might be limited because natu-

rally saline inland aquatic habitats are only common in

Mediterranean and (semi-)arid climates. Most saline habitats

are lentic [11] and the colonization of more unstable lotic habi-

tats might be difficult [20]. Although there is limited

knowledge on the dispersal capacity of species in naturally

saline systems, one study showed that the coleopteran Ochthe-
bius glaber had high spatial genetic variation, suggesting

limited dispersal [68]. Finally, many naturally saline systems

have salt concentrations much higher than expected in
anthropogenic salinized streams (but see [3] for an exception),

and many organisms of naturally saline systems may not be

adapted to lower salinities [69]. The capacity of a species-

poor salt-tolerant fauna to colonize anthropogenic saline

rivers from natural saline systems needs further investigation.
7. Interactions between species
Within the osmoregulatory capacity [70] of species their dis-

tribution and abundance will be influenced by many other

factors, including biotic interactions (figure 2). Extreme sal-

inity can restrict species interactions, providing a refuge for

saline-tolerant species with limited competitive and predator

avoidance ability [70]. Salinities in most rivers, however, are

not expected to reach these levels, so interspecific interactions

will be important.

Interactions among species can mediate indirect effects of

salinity. Three types of indirect effects are relevant. (i) Individ-

uals stressed by competition, food scarcity or predator

avoidance can become more susceptible to stressors [71,72],

including possibly salinity. (ii) Increasing salinity can reduce

the impact of one species on another by reducing levels of pred-

ation or competition, and the death or loss of function of

salinity-sensitive species may free up resources for more toler-

ant species. Elevated salinity reduced the feeding ability and

interspecific aggression of the invasive mosquitofish Gambusia
holbrooki, favouring the native Aphanius fasciatus [73] (see also

[25]). Reduced predator efficiency caused by salinization

could trigger tropic cascades, although none was detected

in an experiment manipulating both salinity and predator

occurrence [74]. (iii) Rapidly evolved tolerance to stressful

environments can come at the cost of reduced competitive abil-

ity [75] or reduced tolerance of other stressors. Such trade-offs

may be common, but few have been documented [76].
8. Variation in ionic proportions
Salinity is the product of all dissolved inorganic ions, chiefly:

Cl2, HCO3
2, SO4

22, Naþ, Ca2þ, Mg2þ and Kþ [13]. NaCl is an

important cause of salinization but there are exceptions,

especially with effluents from resource extraction and industry

[2,77]. Saline toxicity in freshwater species depends on ionic

concentrations and ratios, not just total salinity [78–80] and

interactions between ions [81]. Furthermore, saline effluents

can cause non-salinity water quality issues [82]. Our concep-

tual framework (figure 2) provides a guide to understanding

the effects of salinization on rivers, regardless of ionic

proportions. However, the ecological effects of a particular sal-

inity will vary with ionic ratios because of different levels of

toxicity on organisms, and species tolerant of one set of ionic

proportions may be sensitive to another [80,83]. Organisms

from marine/estuarine environments may be less likely

to invade, and freshwater species recently evolved from

estuarine/marine species may be less able to tolerate, or

adapt to, non-NaCl-dominated saline waters. More studies

of non-NaCl-dominated saline waters are urgently needed.
9. Conclusion
Humans are increasing salinization in flowing freshwaters

and these systems will change as a result. The dominant
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taxa in rivers are insects, many of which have a limited ability

to adapt to salinization owing to their evolutionary history.

Likely consequences include loss of biodiversity and changes

in community composition. Loss of EPT with a relative

increase in DCOH in slightly salinizing rivers is expected,

and a decline in the species richness of all insects in more

salinized rivers.
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