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Animals need a well-functioning immune system to protect themselves against

pathogens. The immune system, however, is costly and resource trade-offs with

other demands exist. For migratory animals several (not mutually exclusive)

hypotheses exist. First, migrants reduce immune function to be able to allocate

resources to migration. Second, migrants boost immune function to cope with

more and/or novel pathogens encountered during migration. Third, migrants

reallocate resources within the immune system. We tested these hypotheses by

comparing baseline immune function in resident and migratory common

blackbirds (Turdus merula), both caught during the autumn migration season

on the island of Helgoland, Germany. Indices of baseline innate immune func-

tion (microbial killing capacity and haptoglobin-like activity) were lower in

migrants than in residents. There was no difference between the groups in

total immunoglobulins, a measure of baseline acquired immune function.

Our study on a short-distance avian migrant supports the hypothesis that

innate immune function is compromised during migration.
1. Introduction
An animal’s health is continuously challenged by potentially harmful viruses,

bacteria and other pathogens. The immune system is a major physiological

component of self-maintenance that promotes survival by reducing the prob-

ability of disease-related mortality [1]. However, the immune system is costly

in terms of its production, maintenance and activation [2,3]. For migratory

animals, it has therefore been hypothesized that they need to reduce immune

function during the physiologically demanding migration seasons [4,5]. A con-

trasting hypothesis proposes that migrants need to boost immune function

because they encounter more and/or different pathogens during migration

[6,7]. It is also possible that trade-offs are made within the immune system

itself in that available resources are reallocated within the immune system [8].

Only few studies have tested these hypotheses using indices of baseline

immune function (i.e. not those in response to an artificial immunological

challenge). Some studies suggest that baseline immune function can be compro-

mised during (avian) migration because several indices of immune function

were lower during migration than during breeding [9–11]. Also, flying in a

wind tunnel reduced migrants’ baseline immune function [12]. Others, how-

ever, support the hypothesis that migrants boost immune function during

migration. In captive red knots (Calidris canutus) baseline immune function

peaked during migratory periods [13], and in partial migratory skylarks

(Alauda arvensis), migratory individuals showed higher indices of immune func-

tion than resident individuals when measured during the breeding season [14].

The above studies, however, measured immune function in captivity, com-

pared different seasons, or sampled migrants and residents outside the
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Table 1. Model summaries examining three parameters of immune function of common blackbirds in relation to status (resident or migratory), date, sex, age
and fat score. Variable statistics are given as in the step prior to removal from the model. The final model is in italic. All d.f. ¼ 1. Reference categories were
resident for status, male for sex and first year for age.

model variable B+++++ s.e. T p-value

BKA (n ¼ 77) status 20.274+ 0.102 22.68 0.009

date 0.012+ 0.008 1.61 0.11

sex 20.146+ 0.098 21.48 0.14

age 0.086+ 0.104 0.83 0.41

fat score 20.034+ 0.047 20.74 0.47

haptoglobin-like activity (n ¼ 77) status 20.052+ 0.010 25.03 ,0.001

date 0.001+ 0.001 1.57 0.12

sex 20.011+ 0.010 21.07 0.29

age 0.014+ 0.010 1.35 0.18

fat score 20.004+ 0.005 20.85 0.40

405 nm 0.617+ 0.023 26.36 ,0.001

immunoglobulins (n ¼ 60) status 21.772+ 1.311 21.39 0.17

date 20.124+ 0.097 21.28 0.21

sex 20.099+ 1.30 20.08 0.94

age 3.161+ 1.296 2.44 0.018

fat score 0.114+ 0.629 0.18 0.86
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migration seasons. What is missing is a study that compares

migrants and residents during migration at a single location.

Such a study system is needed to ultimately test if migrants

and residents differ in immune function, because it eliminates

spatio-temporal variation in environmental factors, such as

food availability or parasite exposure, which are known to

affect immune function [15–17]. Here, we performed such a

study by comparing multiple indices of baseline immune

function between resident and migrating common blackbirds

(Turdus merula, blackbird hereafter) on the island of Helgo-

land during the autumn migration season. During

migration, birds from Scandinavian breeding populations

use the island as a stopover site and mix with the local seden-

tary birds [18]. Consequently, during these periods resident

and migrant blackbirds encounter similar environmental

conditions. We quantified three parameters of baseline

innate and acquired immune function and compared residents

with migrants.
2. Material and methods
(a) Field procedures
Blackbirds were caught on Helgoland (548110 N, 078550 E)

throughout October 2014. Immediately after capture birds were

blood sampled from the wing vein. The plasma was separated

within 4 h of capture and frozen at 2208C until assaying. Birds

were sexed and aged (1st year or adult) on plumage (after

[19]), ringed and fitted with a unique combination of four

colour rings for later identification in the field. Fat stores were

scored according to [20] on a scale from 0 to 8.

Migrants were separated from residents combining two

approaches. First, blackbirds ringed (only with a metal ring) on

Helgoland in the breeding seasons preceding our sampling

were assumed to be residents. This assumption appears valid

as all 12 individuals falling into this category were re-sighted
by us on Helgoland after we colour-ringed them in October

2014. Second, 14 newly caught individuals were considered

resident because they were re-sighted more than 9 days after

initial trapping. We chose 9 days as a cut-off point, because

95% of 1307 re-traps of supposedly migrant blackbirds on Hel-

goland occurred within 9 days from first trapping (O. Hüppop

2015, unpublished data). Newly caught birds that were not re-

sighted (n ¼ 45) or re-sighted only within 9 days of colour-ringing

(n ¼ 6) were considered migrants. Searches for colour-ringed

birds were made almost daily from the start of catching until

four weeks after the last bird was colour-ringed. Helgoland is

tiny (1 km2) and the 14 newly ringed residents were usually re-

sighted rapidly and multiple times after colour-ringing (median

number of days until first re-sighting was 3 (range: 0–21), and

the median number of re-sightings during the study period was

4.5 (range: 1–18). Therefore, we are confident that we re-sighted

practically all resident colour-ringed blackbirds. Furthermore,

immigration and emigration rates in the Helgoland blackbird

population are very low [21], increasing the likelihood of accurate

assignment of status.
(b) Immunoassays
We measured two parameters of baseline innate immune function,

an individual’s first line of defence. We quantified the microbial

killing capacity (against Escherichia coli) of plasma (hereafter

BKA) following the method described by [22] with a few modifi-

cations. We used 3 ml of frozen plasma and mixed it in 4 ml of

105 E. coli solution. We measured bacteria growth at 600 nm

using a microplate reader. We quantified haptoglobin-like activity

(mg ml21) in plasma samples using a commercially available col-

orimetric assay kit (TP801; Tri-Delta Diagnostics, Boonton, NJ,

USA), which quantifies the haeme-binding capacity of plasma.

We followed the ‘manual method’ instructions provided by the

kit manufacturer with a few minor modifications following [23].

Furthermore, we measured one parameter of baseline acquired

immune function. We quantified the total level of antibodies in
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Figure 1. Boxplots of three parameters of immune function in resident and
migratory common blackbirds sampled on Helgoland during autumn
migration. For haptoglobin-like activity, the unstandardized residuals of the
regression of a 405 nm pre-scan on haptoglobin are presented. Immunoglo-
bulin level is presented as milli optical density (mOD). Plotted are the
median (horizontal line in the box), 25th and 75th percentiles (horizontal
box boundaries), and 10th and 90th percentiles (whiskers). Black dots indicate
outliers. Numbers above boxes are sample sizes.
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plasma (total immunoglobulins) by means of an enzyme-linked

immunosorbent assay (ELISA) following [24].
(c) Data analysis
For each immune parameter, we ran general linear models, using

SPSS v. 23.0 (IBM, New York), containing the following vari-

ables: status (resident or migratory), date, sex, age and fat

score. For haptoglobin-like activity, a ‘405 nm pre-scan value’

was added as a covariate to correct for plasma redness (after

[23], who corrected at 450 nm). Model selection was done

using stepwise backward elimination of non-significant terms

( p . 0.05) in order of least significance. To normalize residuals,

BKA was log transformed prior to analyses. Two small negative

values of BKA were set to 1 to allow log transformation. Limited

plasma volumes resulted in a reduced sample size for the

immunoglobulin assay.
3. Results and discussion
Migrants had lower microbial killing capacity against E. coli
(BKA) and haptoglobin-like activity than residents (table 1,

figure 1). The two groups did not differ in total immunoglo-

bulins (table 1, figure 1). Adult birds had higher total

immunoglobulins than 1st year birds (table 1), which may

reflect that it needs initial exposures (and hence time) to

build up acquired immune function. No other age effects

were observed. Date, sex and fat stores did not explain a sig-

nificant amount of the variation in any of the immune indices

(table 1). Within migrants, total immunoglobulins were not

correlated with BKA (Pearson’s r ¼ 0.01, p ¼ 0.97, n ¼ 37),

or residual (corrected for plasma redness) haptoglobin-like

activity (Pearson’s r ¼ 0.13, p ¼ 0.43, n ¼ 37).

With our study we provide the first comparison of base-

line immune function in wild migrant and resident birds

sampled at the same location during the same time period.

Our results thereby provide answers to previously posted,

but untested hypotheses in eco-immunology. Our study

clearly indicates that migrating blackbirds did not boost

their innate immune defences. Instead, it lends support to

the idea that immune function is compromised during

migration as a consequence of physiological or energetic

trade-offs [4]. However, only innate immune function (BKA

and haptoglobin-like activity) was lower in migrants than

in residents; baseline acquired (antibody-mediated) immu-

nity, measured as total immunoglobulins, did not differ

between migrants and residents. This may suggest that

trade-offs are made within the immune system itself;

during physiologically demanding periods animals could

reallocate available resources from the ‘expensive’ (i.e.

innate) to the ‘cheaper’ (i.e. acquired) components of the

immune system as hypothesized by Lee [8]. However, the

absence in migrants of a negative relationship between

parameters of innate and acquired immune function does

not support this hypothesis. That migration appears to com-

promise baseline innate immune function in blackbirds may

seem surprising; migration by short-distance migrants is

usually slow and considered less demanding as compared

to long-distance migrants [25,26]. However, especially in par-

tial migrants such as blackbirds, resource competition at

stopover sites could be particularly high for migrating indi-

viduals if resident conspecifics dominate the best foraging

sites. There are at least two alternative explanations for the

difference in innate immune function between migrants and

residents. First, previous exposure to parasites on the breed-

ing grounds may have differed between the two groups

because the migrants in our sample breed at higher latitudes.

Even though differences in pathogen pressure are generally

hypothesized for more extreme habitat differences (e.g. tropi-

cal versus temperate, temperate versus arctic), blackbirds

breeding in Scandinavia might encounter fewer pathogens

than Helgoland blackbirds, which may lead to a lower invest-

ment into immune function [17,27]. Second, residents may

boost their immune function during migration seasons

because incoming migrants might expose them to new patho-

gens [28]. Determining the annual patterns of immune

function in Scandinavian and Helgoland blackbirds would

allow the testing of these ideas.
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