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In the mammalian suprachiasmatic nucleus (SCN), noisy cellular
oscillators communicate within a neuronal network to generate
precise system-wide circadian rhythms. Although the intracellular
genetic oscillator and intercellular biochemical coupling mecha-
nisms have been examined previously, the network topology
driving synchronization of the SCN has not been elucidated. This
network has been particularly challenging to probe, due to its
oscillatory components and slow coupling timescale. In this work,
we investigated the SCN network at a single-cell resolution through a
chemically induced desynchronization. We then inferred functional
connections in the SCN by applying the maximal information co-
efficient statistic to bioluminescence reporter data from individual
neurons while they resynchronized their circadian cycling. Our results
demonstrate that the functional network of circadian cells associated
with resynchronization has small-world characteristics, with a node
degree distribution that is exponential. We show that hubs of this
small-world network are preferentially located in the central SCN,
with sparsely connected shells surrounding these cores. Finally, we
used two computational models of circadian neurons to validate our
predictions of network structure.
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Circadian rhythms are endogenous oscillations in behavior and
gene expression with near-24-h periodicity observed in most

living organisms. Circadian rhythms are known to regulate a wide
range of processes including cell cycles, body temperature, me-
tabolism, and behavior (1–5). The mammalian suprachiasmatic
nucleus (SCN), a network of ∼20,000 neurons located in the hy-
pothalamus of the brain, functions as the body’s master pacemaker
and mediates the entrainment of peripheral tissue oscillators to
light/dark cycles (6, 7). Although individual neurons within the SCN
act as autonomous circadian pacemakers, they display stochastic
variation in period length and must communicate to maintain stable
period lengths and phase relationships for system-wide control of
daily cycles (8–10). SCN network dynamics are contingent on
properties of the cell-autonomous oscillator (11, 12), communica-
tion via neurotransmitters (10, 13–16), and the underlying connec-
tivity of the network.
Neurons in the SCN generate circadian oscillations through a

transcription-translation feedback loop and are known to syn-
chronize by the timely release of vasoactive intestinal peptide
(VIP) and GABA neurotransmitters, which modulate the oscil-
lator through the transcription factor CREB (10, 16–19). Al-
though the single-cell oscillator and coupling pathways have
been extensively researched, relatively little is known about the
structure of the neuronal network driving synchronization in the
SCN. Prominent modeling studies of the past decade have as-
sumed a wide variety of network structures: nearest neighbor (15,
20), small-world (21), or mean-field (22, 23), or combinations of
these depending on coupling pathway (16), pointing to the high
degree of uncertainty regarding the general connectivity of the

SCN. There has been significant recent interest in attempting to
elucidate the network structure and mechanisms driving syn-
chrony the SCN, commonly through light-driven desynchroni-
zation assays (19, 24–26). These methods have the advantage of
reducing the SCN into large phase clusters of neurons, whose
behavior can be easily tracked and modeled with reduced ap-
proaches (26). This approach has had great successes in recon-
ciling the roles of GABA and VIP (17, 16, 19, 26). A significant
obstacle in developing a mechanistic understanding of synchro-
nization in the SCN is the lack of single-cell resolution in these
studies, preventing observation of the dynamics within these
clusters. Furthermore, light is received primarily by the core
SCN, and this asymmetry of input is entangled with observed
SCN behaviors (17). Thus far, only fast-scale (phasic) GABA con-
nections have been mapped at a single-cell resolution (27), and this
phasic GABA release is not thought to affect the core oscillator (16).
Here, we present a novel method for inferring the functional

network of the suprachiasmatic nucleus during resynchronization
at a single-cell resolution. Our strategy involved the application
of TTX to disperse single-cell phases through inhibition of in-
tercellular coupling while allowing continued cell-autonomous
oscillation (28, 29). TTX was then washed out, restoring coupling
and allowing reorganization of the SCN over the following 8 d.
We applied the maximal information coefficient (MIC) statistic
(30) to bioluminescence recordings during resynchronization to
identify “functional connections” within the SCN at a single-cell
resolution. Functional connections were defined between neu-
rons that share a high degree of mutual information during
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resynchronization, characterized by a high MIC score. Although
functional connections connote neither causation nor direct physi-
ological connection (31), communication is necessary for SCN
neurons to synchronize and maintain precise periodicity (32),
resulting in a high mutual information between connected neurons.
We used this method to infer networks within five mouse SCN
explants. Results showed that the suprachiasmatic nucleus has a
consistent resynchronization network with a small-world topology
and an exponential node degree distribution in each sample. The
most densely connected neurons, or “hubs,” of each network were
located in the central SCN. Unlike prior studies involving phase
clusters, a second cluster of connected shell neurons was not found.
Finally, we related our observed functional networks to the un-
derlying physical network via stochastic simulation using two models
of the coupled SCN (33–35).

Results
Design of Resynchronization Experiment. To infer the SCN network,
we observed five whole SCN mouse explants resynchronizing after
decoupling by TTX (Fig. 1). PERIOD2::Luciferase (PER2::LUC)
knock-in SCN explants were cultured while under a microscope,
allowing the capture of single-cell bioluminescence within the whole
SCN. Bioluminescence counts were recorded each hour, and indi-
vidual neurons were identified and tracked manually from the
resulting images. These single-cell traces are shown in Fig. 1A for
SCN1. TTX was applied to the whole tissue explants for 6 d to
inhibit intercellular coupling while leaving physical connections
within the tissue intact (28, 36, 37). After 6 d, the TTX was washed
out, and recordings continued for an additional 8 d as neurons in
the network regained synchrony. In the synchronized SCN there
was a strong correlation from cycle to cycle for single-cell relative
peak times (28). We demonstrate the loss of this hierarchy during
TTX application and its restoration after TTX washout in Fig. 1B.
Pearson’s r is shown for correlations between peak 0 pre-TTX, and
peaks 1–4 at different experimental stages. By day 5 of TTX

application (peak 2), all correlation with peak 0 was effectively re-
moved. Shortly after TTX washout, some correlation was restored,
and correlation was completely restored by peak 4 (day 7 post-
TTX). In Fig. 1C, correlation with peak 0 for each day is shown.
The restoration of correlation in peak times between pre- and
post-TTX regions indicated that the original pre-TTX hierarchy
was slowly restored over the course of several days post-TTX.
Pearson’s r returned to a maximum of ∼ 0.7 due to imperfect cell
tracking between pre-, during-, and post-TTX conditions. Ap-
proximately 40% of cells in each SCN explant lost observable
rhythmicity during TTX application, corresponding with ref. 36.
These cells were not included in this figure, although they were
included in the bioluminescence traces from the post-TTX
resynchronization period used to infer network connectivity. A
summary of rhythmcity, period distribution, and noise is included
as Fig. S1. This protocol resulted in ensembles of single-cell
resynchronization traces from five biologically distinct SCNs each
containing ∼400 cells. This dataset is publicly available online at
https://github.com/JohnAbel/scn-resynchronization-data-2016.

Inferring Connections Between SCN Neurons. Although fast-scale
and electrical connections between individual neurons have been
identified by methods such as mutual information, transfer en-
tropy, directed transfer functions, Granger causality, or between-
sample analysis of connectivity (BSAC) (27, 38–41), these methods
are not suitable here due to nonstationary gene expression and the
slow-scale nature of VIP and GABA feedback to the core oscilla-
tor, resulting in the damping of high-frequency signals (16, 41, 42).
High-frequency GABA signals affect the firing of SCN neurons
and have been mapped previously (27); however, fast scale GABA
is not thought to affect the core oscillator (16). Additionally, due to
the limitations of the PER2::LUC bioluminescent reporter used to
observe core clock gene expression, the most rapid sampling
provides 30-min sample intervals (19), insufficient for methods
such as Granger causality (41).
We inferred connections within these samples using the MIC as

our correlation metric (30). MIC is effectively a continuous metric
of mutual information, and is calculated by partitioning a scatter
plot of two variables (in this case, raw bioluminescence recordings
of two cells) in phase space into a grid that maximizes the mutual
information. We selected this statistic because it readily captures
relationships between noisy continuous random variables. MIC
scores are high between cells which have identical periods and
precise phase relationships, which is indicative of communication to
resist the stochastic phase drift that occurs in uncoupled neurons.
Strongly or directly connected cells will drift apart less in phase and
have more precise periodicity than cells which are unconnected.
This point, and the effects of sampling rate, cell amplitudes, and
noise on MIC scores are examined via stochastic simulation in Figs.
S2 and S3. Because MIC partitions each pair of variables onto a
grid and computes the density of grid regions, it effectively performs
a normalization of oscillation amplitude: scaling the amplitude of
one or both cells will not affect the pairwise MIC score. Notably,
MIC shows a bias toward oscillatory states with a small phase offset.
To account for this, we repeated the entirety of the following
analyses with a phase correction for each cell pair, and show that
our results are consistent (Fig. S4).
We applied this correlation metric to pairs of bioluminescence

traces from cells from all five SCNs. No detrending or other
preprocessing was performed on this data. MIC was calculated
using raw bioluminescence of each pair of cells. We then used a
receiver operating characteristic (ROC) curve to determine
whether the method can differentiate between biologically dis-
tinct SCNs and to establish a MIC connectivity threshold that
rejects known false positives (Fig. 2). SCN mean phases were
aligned before computing MIC for this negative control to pre-
vent biases due to misaligned phase. These five SCNs were
cultured separately and bear no common influences; thus, no
connections should be found between them. A “possible posi-
tive” was defined to be an inferred connection within the same
SCN (Fig. 2A), whereas a false positive was a biologically
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C

Fig. 1. Experimental protocol demonstrating TTX-mediated resynchroni-
zation for SCN1. (A) Bioluminescence traces from individual cells within
SCN1, showing pre-TTX, during-TTX, and post-TTX single-cell oscillations.
(B) In the functioning SCN, peak times are highly correlated from cycle to
cycle. We compare relative peak times 1 (pre-TTX), 2 (during-TTX), and 3–4 (post-
TTX), to the first peak (0) to show that a resynchronization is indeed taking place
and that the SCN network structure reverts to pre-TTX structure slowly after TTX
wash. (C) Plot of Pearson r for correlating each peak to peak 0, showing the
resynchronization. Pearson r does not completely return to pre-TTX levels due to
inability to track cells accurately across TTX conditions.
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impossible inferred connection between two different SCNs. As
it is only known a priori which connections cannot exist, we
calculated a possible positive rate (PPR, connections within the
same SCN) and false-positive rate (FPR, connections between
biologically distinct SCNs) to validate that MIC preferentially
detects physiologically valid connectivity.
To infer the network structure within the SCN, we selected a

critical MIC parameter, mcrit, from this control result. Pairs of
cells that have a MIC score above mcrit were determined to be
functionally connected. Our mcrit threshold was chosen to be
0.935, as this value has a 0.0032 FPR while still capturing the
strongest connections with PPR = 0.036. To account for slight
variations in rate of synchronization between SCNs, we adjusted
this threshold above mcrit for each SCN to normalize average
node degree (average number of connections per cell) between
networks. Because threshold values were raised, this results in a
more conservative estimate of connectivity. For SCNs 1–5,
threshold values were raised to 0.949, 0.935, 0.990, 0.968, and
0.969 to yield average node degrees of 4.44, 4.49, 3.94, 4.80, and
4.56, respectively.

SCN Functional Network Displays a Small-World Exponential Architecture.
Networks inferred from the five SCN explants exhibit small-world
characteristics as shown in Fig. 3. Small-world networks are com-
monly found in biological systems and are identified by the average
path length L and clustering coefficient CΔ, as defined in refs. 43
and 44. A network G is determined to be small world if the average
path length of G, LG, is similar to the average path length Lrand for
the equivalent random graph, and the clustering coefficient CΔ

G is an
order of magnitude greater than CΔ

rand. That is

LG ≈Lrandom   and CΔ
G � CΔ

random, [1]

where the equivalent random graph has the same number of
vertices and edges. As shown in Fig. 3, each SCN met the criteria
for small-world architecture. Confidence intervals shown for ran-
dom networks are determined by generation of 10,000 Erdos–
Renyi equivalent networks for each SCN. Fig. S5 demonstrates
that these network characteristics are consistent across SCNs and
locally insensitive to the choice of connectivity threshold.
A semilog plot of the node degree distribution for each SCN is

shown as Fig. 4. Similarly to ref. 27, our node degree distribution
was best fit with a discrete exponential (geometric) distribution
rather than a discrete power law (ζ or Zipf) distribution. The
discrete exponential distribution, as defined in ref. 45, is

PðkÞ=C  expð−λkÞ, [2]

where the normalization constant C is

C= ½1− expð−λÞ�expðλkminÞ. [3]

λ is the inverse scale parameter, and kmin is the lower limit on the
exponential scaling. For kmin = 1 (as in our case), the discrete expo-
nential distribution is equivalent to a geometric distribution where
the geometric “success probability” parameter p= 1− expð−λÞ. The
λ parameter was fit via a numerical optimization of maximum likeli-
hood, and the exponential distribution was found to perform better
than a discrete power law distribution (P< 0.0005 for each SCN,
likelihood-ratio test) (45, 46). There was strong agreement between
λ values for biologically distinct samples, indicative of common
synchronization patterns across SCNs. Fig. S5C and F demonstrates
that the exponential distribution of node degree is consistent
across thresholds, with changes in λ. Thus, we identified a consis-
tent small-world discrete exponential functional network arising
from SCN resynchronization.

Coupling Is Strongest in and Between Core SCN Regions. Commonly,
studies of the SCN have revealed two clusters of cells: a ventral
core region defined by excitatory (phase attractive) GABAergic
connections, VIP production, and light input from the reti-
nohypothalamic tract, and a dorsal shell region lacking these
properties (16–19). To examine how this core-shell paradigm
relates to the functional network, we examined the spatial hi-
erarchy of the network. Fig. 5A illustrates the spatial hierarchy
of node degree distribution across a representative SCN. A
lower node degree was observed in the shell region, relative to
the higher node degree generally seen in the SCN core,
obtained by our inference method. We note that in each SCN, a
number (average 45%) of cells in the SCN displayed no functional

A

B C

Fig. 2. MIC identifies the strongest connections within a whole SCN sam-
ple. (A) Here, we calculate and plot pairwise MIC between neurons from
all SCNs. We consider connections within the same SCN to be valid,
whether between halves or within a single half. Connections between
physiologically distinct SCNs are invalid, as they are biologically infeasible.
The block-diagonal regions outlined in black contain valid connections,
and connections outside of this region are invalid. (B) False-positive rate
(FPR, red, inter-SCN connections) and possible positive rate (PPR, blue,
same-SCN connections) are plotted for varying MIC threshold values. We
choose an initial threshold of 0.935, for which FPR = 0.0032. (C ) The con-
nections identified by applying the threshold from B are shown to occur
primarily in biologically valid areas (blue), with few invalid connections
found (red). Thus, the strongest functional connections within each SCN
are identified.
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Fig. 3. SCN functional networks display small-world structure. (A) Average
path length is on the same order of magnitude of an equivalent random
(Erdos-Renyi) network. (B) Clustering coefficient is a magnitude greater than
that of equivalent randomly generated networks. CIs are determined by
generation of 10,000 equivalent Erdos-Renyi networks for each SCN.
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connections. These cells are primarily located in the shell regions
(Fig. 5A). This lack of functional connections does not indicate that
there are no physiological connections, because shell neurons do
resynchronize with the rest of the SCN. More likely, connections in
this region are weaker and insufficient to rapidly resynchronize
these cells above our functional connection MIC threshold. This
structure is consistent even when accounting for phase lags between
individual cells within the fully synchronized SCN (Fig. S4). Strik-
ingly, this result of one cluster and the absence of a second cluster
differs from prior studies of the functional organization of the SCN,
which identified two phase clusters of neurons (19).
The distribution of functional path distances (d) is shown in

Fig. 5B. The functional path distance is defined as the physical
separation between two functionally connected cells. This distribu-
tion also appears exponential for each network, where the like-
lihood of a connection existing at distance d exponentially decays
with this d. These distributions are not strictly unimodal; rather,
SCNs 1, 2, 4, and 5 display a second peak (identifiable via contin-
uous wavelet transform peak detection) that corresponds to the
physical separation between core regions. SCN3 lacks this second
peak as the identified cores of each half lack spatial separation. The
presence of this second peak indicates that core-core functional
connections within a SCN are more prominent than average long-
range functional connections. Furthermore, it indicates that core-
core coupling is tighter than core-shell coupling.

Relationship Between Physical and Functional Networks via Network
Resimulation. Because the physical connections between cells
cannot be directly probed, we focused on obtaining the func-
tional network structure. Here, we simulated the TTX experi-
ment using stochastic circadian oscillator networks (using models
from refs. 33–35, detailed in Tables S1–S4) to determine how the
functional network we infer is related to the underlying physical
connectivity in the SCN. First, we tested the efficacy of this
method for inferring simulated physical networks of 400 cells
with either linear nearest neighbor, small world Watts–Strogatz
(43), or random network topology. Next, we simulated the net-
works we inferred from SCN slices and show that our method
can reinfer these physical networks with good accuracy. Details
regarding these simulations are included in SI Text.

In Fig. S7, we show representative traces from these simulations
and further demonstrate that our method is able to recapture the
underlying physical networks (random, Watts–Strogatz small-world,
nearest neighbor) with accuracy dependent on the density of con-
nections. Functional networks inferred via our resynchronization
and MIC method do not accurately recapture physical networks
with dense random structure, as secondary indirect connections
between nodes may be functionally identified as direct connec-
tions. To validate the consistency of specific network structures
inferred from TTX experiments, we simulated the SCN networks
discovered in the previous section and again inferred the network
from these simulations. The resynchronization-MIC method per-
formed well in recapturing simulated SCN networks, with an av-
erage area under the ROC curve (AUC) of 0.94 for the 3-state
model and 0.80 for the more complex 11-state model. The ROC
curves are plotted for each SCN in Fig. S8. We note that the false
positives are most often incurred in distinguishing between pri-
mary and secondary connections within dense regions, whereas
disconnected nodes are easily identified. Thus, this methodology
can distinguish well between regions with dense and sparse phys-
ical connections such as the core and shell, but is less apt at
identifying the individual physical connections in each region.

Discussion
In this work, we inferred the functional network of the supra-
chiasmatic nucleus during resynchronization through the use of a
TTX-mediated resynchronization and the MIC. The functional
networks we found were consistent across all samples, displaying
small-world characteristics, a discrete exponential node degree
distribution, and core-shell spatial hierarchy in which densely
functionally connected cores synchronize rapidly. Our results are
consistent with previous studies that show differences in function
and neurotransmitter activity between core and shell SCN neurons
(16–19, 25, 26, 47–49). However, in this work, for the first time to
our knowledge, we probe connectivity within these clusters. This
increased resolution leads to two surprising results: a lack of a
second functionally connected cluster in the shell region and dense
connections between SCN cores.
It is well established that exposure to artificial long day or

light:dark:light:dark frequency doubling conditions can split the
SCN into core and shell phase clusters, which oscillate with a large
phase lag and also result in behavioral splitting (19, 48, 49). Al-
though shell neurons form a phase cluster under these conditions,
we found few functional connections within this region even when
accounting for phase alignment, suggesting that the phase clustering
is driven by a common response to light reception and mediated by
the core SCN rather than driven by tight connectivity within the

Fig. 4. Node degree (k) distributions for SCNs 1–5 plotted on a semilog
scale. The resulting discrete exponential distributions PðkÞ=C expð−λkÞwere
fit via numerical optimization of the maximum likelihood, resulting in dis-
tribution parameters λ for each network. Each SCN is better fit by a discrete
exponential distribution than a discrete power law distribution (likelihood-
ratio test, P < 0.0005 for each SCN). The strong agreement between λ shows
a consistent network structure across SCNs. This agreement exists for a range
of node degrees (Fig. S5).

BA

Fig. 5. Hubs of the small-world network are located in the central SCN.
(A) Heatmap of node degree [color ∝ logðkÞ] distribution for a representa-
tive SCN shows that hubs of the small-world network are preferentially lo-
cated in SCN core regions. All SCNs are shown in Fig. S6. (B) Connection
length (d μm) distributions for SCNs 1–5 plotted on a semilog scale. Two
peaks (arrows) are identifiable for SCNs 1, 2, 4, and 5: a local peak corre-
sponding to connections between physically nearby neurons, and a second
peak corresponding to the distance for functional connections between
central SCN regions. For SCN3, these peaks are indistinguishable due to lack
of spatial separation between cores.
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shell itself. One particular advantage of the TTX assay we use is that
light-based approaches are unable to differentiate between cells
that have identical responses to a common stimulus and cells that
communicate to establish similar behavior. A previous study of SCN
reentrainment to shifted light exposure also showed that the ventral
SCN reentrained rapidly, whereas the dorsal region took several
days to reentrain (17). It was proposed that the core entrained
rapidly due to its receiving input from the retinohypothalamic tract
(RHT) and that synchronization of the shell was mediated by the
effect of excitatory GABA. As our resynchronization conditions are
chemically-induced and do not involve light input, it was un-
expected that a fast-resynchronizing core/slow-resynchronizing shell
is a conserved feature between these studies. This consistency in-
dicates that the underlying structure of the SCN, rather than simply
RHT connection, drives the dominant role of the core SCN.
We did not attempt to identify connection directionality or the

molecular mechanisms driving connectivity, and it is possible that
multiple pathways are involved. It has been shown that excitatory
GABA action drives reentrainment of the shell region in re-
sponse to light phase shifts (17). GABA action was examined in
depth in recent collaborative works (16, 26); these studies
demonstrated the encoding of day length through the GABA
pathway, by the Cl−-dependent excitatory (core, phase-attrac-
tive) or inhibitory (shell, phase-repulsive) effects of slow-scale
(tonic) GABA. Visually, the core regions identified in our net-
works overlap with the regions of excitatory GABA action (26).
In future studies, our TTX-based assay could be combined with
VIP/GABA/glutamate agonist or antagonist application and re-
peated to identify the molecular mechanisms responsible for the
identified connections. If GABA coupling affects differentiation
between core hub neurons and shell neurons, this would result in
significant seasonal plasticity of the functional network.
The functional networks we inferred contained a surprising

number of connections between core regions of each supra-
chiasmatic nucleus. The SCN is often thought to be most tightly
connected within each half, given the ability of the left and right SCN
to oscillate in antiphase in animals exposed to constant light (50, 51).
However, tight bilateral coupling is reflective of previous studies that
showed significant coupling between the halves and further impli-
cates the glutamate receptor in this communication (52). This pos-
sible involvement of the glutamate receptor is especially interesting,
because the glutamate receptor has also been implicated in com-
munication between the SCN and the RHT, which occurs in the core
SCN region (53). Thus, our results support the hypothesis that
antiphasic oscillation between SCN halves in constant light is made
possible by distinct signaling mechanisms in the SCN rather than a
weaker coupling strength between halves (52, 54).
Theoretical studies in network science, as well as modeling

studies specific to the circadian field, have pointed to possible ad-
vantages and causes of a small-world network structure. Small-
world exponential networks provide advantages in robustness
due to having hubs of high node degree and many less-important
nodes of low node degree. Networks with this topology are better
able to maintain short paths of communication when randomly
selected nodes are removed (55), due to the redundancy and
long-range connections provided by network hubs. Small-world
topology has also been shown to enhance synchronization and
amplitude properties of the SCN with a lower energy cost (fewer
connections) compared with random and nearest-neighbor net-
works (21, 56). Theoretical studies have predicted that spatially
embedded small-world networks, such as neuronal networks,
would display an exponential node degree distribution as seen in
our data (57, 58). This distribution would result from growth of a
small initial population of connected nodes. As more nodes are
added, the neuron population is forced to move spatially and
initial local connections ultimately become long range while new
short-range connections form. In this context, it is striking to
note that the fetal SCN forms as neurons are added to the core
first and then shell regions. The connections we measure,
therefore, may reflect the ontogeny of synapse formation in the
SCN. If, however, core-core long range connections are found to

be diffusive rather than synaptic, this hypothesis would not apply.
Future experiments could test whether the left and right SCN
must form synapses to synchronize, for example, in cocultures.
Our work presents both a perspective on connectivity within the

SCN and a new assay for observing communication between indi-
vidual circadian neurons at high spatial resolution. A major diffi-
culty in mapping the SCN and the brain as a whole lies partly in the
multiple time and physical scales at play. One method alone is in-
sufficient to map the whole SCN at all resolutions, necessitating
multiple perspectives to achieve spatial, directional, and mecha-
nistic specificity. In conjunction with light-driven desynchronization
assays, antagonist/agonist application, genetic knockdowns, and
mathematical modeling, this TTX assay with correlation metrics
can be used to further probe connections within the SCN at a
single-cell level and between the SCN and other brain regions.

Materials and Methods
Cell Culture and Bioluminescence Recording. SCNs were obtained from 7-d-old
homozygous PER2::LUC mice (founders generously provided by J. Takahashi,
University of Texas Southwestern, Dallas) housed under a 12-h:12-h light:dark
schedule. All procedures were approved by the Washington University Animal
Studies Committee and complied with National Institutes of Health guidelines.
Bilateral SCN from 300-μm coronal sections of hypothalamus were cultured on
Millicell-CM membranes (Millipore) in 400 mL air-buffered DMEM with two
full-volume exchanges every 7 d. After 14 d in vitro, the culture was trans-
ferred to the stage of an inverted microscope (Nikon TE2000 fitted with a 20×
objective and 0.5× coupler for a 10× magnification) inside a dark incubator (In
Vivo Scientific). We add 0.15 mM beetle luciferin (BioThema) to the medium
and imaged bioluminescence at 36 °C with an ultrasensitive CCD camera
(Andor Ixon; 1 × 1 binning, 1-h exposures). Cultures were then treated with
2.5 μM TTX (Sigma) as previously described (36). TTX remained in the medium
for 6 d while imaging continued. We then performed three full-volume ex-
changes of fresh medium and resumed recording for 8–12 d to monitor
resynchronization of PER2::LUC rhythms. Bright field images before and after
each recording were used to focus and align the culture with prior images.

Softwarewasdeveloped to locateand trackneuronbioluminescence intensities
in each image time series. In each frame, the software identifiedpotential neurons
using a standard difference of Gaussians blob detector. The algorithm took the set
of neuron locations in each image and attempted to find spatial correspondences
between them in the image time series. The correspondences were found by
taking each potential neuron location and looking at previous images to find
neurons in a nearby radius. Because neurons could be undetectable for multiple
frames (when bioluminescence is low), the search was extended back in time
multiple frameswith a slowly increasing search radius. If the algorithmwas able to
connect a series of potential neuron locations through enough images, then itwas
assumed the sequence of locations represented a real neuron and the time series
intensity was extracted from the images. If the algorithm could not form a suf-
ficiently long sequence of locations, the neuron was discarded as noise. Results
from automated neuron tracking were comparable to results obtained using
manual tracking of neurons with ImageJ software (National Institutes of Health).

Numerical Methods. The MIC is calculated by partitioning a scatter plot of two
variables (X and Y; here, these are bioluminescence recordings from two
cells) into an nx-by-ny grid g that maximizes mutual information IgðX;YÞ=
P

y∈Y
P

x∈Xpðx, yÞlog½pðx, yÞ=pðxÞpðyÞ� normalized by the maximal mutual
information, logminfnx ,nyg, in g. The optimal grid is selected as in ref. 30, by
computing the normalized mutual information for a subset of all possible
grids bounded in resolution by nx ×ny <B. Details regarding this partitioning
algorithm appear in the supplement to ref. 30. As suggested in ref. 30, we
used binning parameter B=N0.6, where N is the number of data points in a
time series. The MIC was calculated through the minepy package for Python
(with interfaces to C++, R, MATLAB, and Octave) (59). The threshold for
connectivity was selected based on receiver operating characteristic curves.
Data analysis and processing were performed using Python. Network
properties were calculated using the Networkx package (60). Statistical tests
for exponential and power law model fits were performed with the Python
module powerlaw (46), in a manner according to ref. 45. Briefly, numerical
optimization (rather than a continuous approximation) was used to fit dis-
crete exponential and power law (ζ) models, and a likelihood-ratio test was
applied to determine goodness-of-fit.

Stochastic Simulation. Stochastic simulation of circadian models was per-
formed in Python with the StochKit2 implementation of the Gillespie al-
gorithm in the GillesPy (https://github.com/gillespy) library (61).
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