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We discuss the subjective probability interpretation of
the quantum-like approach to decision making and
more generally to cognition. Our aim is to adopt
the subjective probability interpretation of quantum
mechanics, quantum Bayesianism (QBism), to serve
quantum-like modelling and applications of quantum
probability outside of physics. We analyse the classical
and quantum probabilistic schemes of probability
update, learning and decision-making and emphasize
the role of Jeffrey conditioning and its quantum
generalizations. Classically, this type of conditioning
and corresponding probability update is based on the
formula of total probability—one the basic laws of
classical probability theory.

1. Introduction
The recent revolution in quantum information has not as
yet given birth to promised quantum computers which
would beat the present ‘classical computers’, but it has
made a number of important contributions to quantum
foundations. quantum Bayesianism (QBism), the subjective
interpretation of a quantum state [1–6] (wave function)
and the corresponding probabilities given by Born’s rule,
is probably one of the most important (and unexpected!)
outputs of this revolution. (At the same time, a few
authors criticized some principles of QBism, starting with
the author’s paper [7] against non-objective treatment
of quantum probability (QP) to the recent paper of
Marchildon [8].)

In 2001, when one of the first Växjö conferences [9]
on quantum information and foundations of quantum
mechanics (QM) took place, we (organizers and
participants) strongly believed that the revolution in
quantum information would soon lead to the great
foundational revolution. Unfortunately, these dreams did
not come true.

2016 The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2015.0245&domain=pdf&date_stamp=2016-04-18
mailto:andrei.khrennikov@lnu.se
http://orcid.org/0000-0002-9857-0938


2

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A374:20150245

.........................................................

Nevertheless, the atmosphere stimulated new views and led to a series of debates, in which
the basic problems of QM were not fully solved but still considerably clarified. This especially
concerns the problem of the interpretation of a quantum state. Here, besides QBism (which
won its recognition in Växjö), we can mention the Växjö interpretation of QM (statistical realist
and contextual) [7,10], the derivation of the QM-formalism from simple operational principles,
D’Ariano and co-workers [11–14], the statistical Copenhagen interpretation (statistical non-realist)
which final formulation was presented at the Växjö-15 conference by Plotnitsky—it is a result of
his long studies on Bohr’s views and the interpretation of probability [15–17]. Finally, we point
to derivation of the quantum formalism from general principles of logical inference by De Raedt
et al. [18].

All these interpretational contributions to the quantum foundations are of an informational
nature (even the realist Växjö interpretation—through the issue of contextuality). We remark
that information processing is not a characteristic of solely physical systems. (There is no doubt
that just biological (brain, cell) and technical systems (computers) should be on the top of the
list of information processing systems.) Therefore, one may try to apply the novel approaches
of Fuchs, Schack, Mermin, Caves, D’Ariano, Plotnitsky and the author of this paper to other
information processors, e.g. various biosystems, from cells to brains. In the framework of the
Växjö interpretation, such a possibility was investigated [19–22] by the author of this paper
with the emphasis on the role of contextuality where the latter is treated very generally, in the
spirit of Niels Bohr, as taking into account the whole experimental arrangement.1 There was
found one of the key non-classical elements of the quantum theory of probability update (PU),
namely the formula of total probability (FTP) with the interference term—an additive perturbation of
the classical FTP [10,23]. It became clear that this generalized FTP can be used to describe the
probabilistic information processing not only by quantum physical systems. Biosystems form
an important and very special class of information processors. They definitely exhibit some
features which are not covered by classical probability (CP) and information—in particular, their
behaviour is fundamentally contextual and adaptive. Therefore, one can try to apply QP and
information theory to model behaviour of these systems.2 This was done (keeping the Växjö
interpretation) in a series of works [19–23,25–29]; QP was used to describe statistical data collected
in cognitive psychology experiments on decision-making (DM), where the data were found to
violate classical FTP.

Another stream of applications of QP outside physics started from within the cognition and
psychology community as an attempt to describe known statistical data which, as was found
by Busemeyer et al. [30–33], violate classical FTP indicating violation of the savage sure thing
principle [34] and the disjunction effect [35–39]. While the author of this paper took interest in
cognitive quantum-like models when looking for novel QP applications, Busemeyer did so when
looking for a novel mathematical apparatus to model DM in psychology. In this paper, we are
not able to discuss the variety of contributions of other authors in the rapidly growing domain
of applications of QP to mathematical modelling of DM, cognition, psychology, finances, politics,
see the basic monographs [22,32,40–42] and, e.g., papers [43–52].

The statistical interpretation of probability is one of the distinguishing features of the Växjö
interpretation. In my opinion, this is the most adequate interpretation of QP in quantum physics.
Here, experimenters collect statistical data in huge ensembles of quantum systems, e.g. photons,
prepared in an (approximately) identical state ψ .

This interpretation of probability also matches modelling of statistics of DM by ensembles of
cognitive systems, the probabilities of the answers to questions asked to groups of participants
(typically students, mostly of departments of psychology and cognitive science). Thus, here the

1The modern theory of quantum information explores the notion of contextuality as dependence of the output of a
measurement of one observable A on joint measurement of a compatible observable B. This is a very special case of ‘Bohrian
contextuality’. For Bohr, even measurement of any single observable A is contextual.
2QP is considered as one possible alternative to CP. In principle, there is no reason to believe that QP covers completely
biology, see [24] for the detailed discussion.
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ψ-function (a quantum state) is used to represent statistical features of an ensemble of systems—
physical, biological or cognitive: photons, electrons, cells or humans. In quantum physics, this
was the interpretation of both Einstein and Bohr as well as Pauli [15–17].

Now, we are interested not in the description (and prediction) of the outputs of experiments
for groups of people, but in mathematical modelling of the intrinsic structure of the process
of DM by humans. For such a problem, the statistical (ensemble) interpretation seems to be
improper, because it is not about the probability of an individual event (the concrete decision),
but about ‘mass phenomenon, or a repetitive event, or simply a long sequence of observations’,
as was emphasized by von Mises [53]. Moreover, one of the main successes of quantum-like
DM is modelling of violations of the savage sure thing principle [34] which was formulated in
the subjective probability framework. Therefore, it is natural to use the corresponding subjective
probability interpretation of a quantum state.

To solve this problem in the quantum-like framework, we are looking for a subjective
probability interpretation of the quantum state and the corresponding probabilities for outputs
of measurements. As we know, there is only one such consistent and logically structured
interpretation, the one given by QBism. The main views of QBists on probability were presented
by Fuchs & Schack [6] as follows:3

The fundamental primitive of QBism is the concept of experience. According to QBism, quantum
mechanics is a theory that any agent can use to evaluate his expectations for the content of his
personal experience.
QBism adopts the personalist Bayesian probability theory pioneered by Ramsey [54] and de Finetti
[55] and put in modern form by Savage [34] and Bernardo & Smith [56] among others. This means
that QBism interprets all probabilities, in particular those that occur in quantum mechanics, as an
agent’s personal, subjective degrees of belief. This includes the case of certainty—even probabilities
0 or 1 are degrees of belief.. . .
In QBism, a measurement is an action an agent takes to elicit an experience. The measurement
outcome is the experience so elicited. The measurement outcome is thus personal to the agent who
takes the measurement action. In this sense, quantum mechanics, like probability theory, is a single
user theory. A measurement does not reveal a pre-existing value. Rather, the measurement outcome
is created in the measurement action.

This declaration of QBism supports strongly the use of quantum-like models for DM; this
is even more than one may expect from some subjective probability interpretation of QM.
QBists not only interpret probability subjectively, but they also emphasize the role of ‘personal
experience’ and interpret QM as ‘a single user theory’. Experts in cognition, DM, psychology
and psychophysics could not even expect that such a cognition friendly interpretation might
be elaborated in quantum physics. (Of course, one has to take into account the contribution
of the aforementioned quantum information revolution that changed the face of QM.)4 In this
paper, we would like to highlight the role of QBism in quantum-like modelling of cognition
and DM in a rather general sense, i.e. not only regarding possible DM results, but about all
DM-activity of humans. The QBist DM-scheme is based on generalization of classical FTP based
on PU of information given by an information complete measurement. This formula differs from the
aforementioned additive generalization of FTP representing quantum interference and is used in
the Växjö interpretation of the quantum formalism as a PU scheme.

We remark that, in fact, generalized ‘Växjö-FTP’ must not be rigidly coupled to the statistical
interpretation of the quantum state and QP. Following QBists, one can also use the subjective
interpretation.

Then, our final proposal is to proceed with the QBist subjective probability and private
experience ideology, but endowed with another PU rule—the one based on the Växjö version

3It is always better to cite explicitly the creators of theory.

4Of course, QBism is a grandson of Copenhagenists and the Copenhagen interpretation played the fundamental role in
establishing QBism. However, this private agent perspective is an invention of QBists, not of Copenhagenists, see the paper
of Mermin [57] for an excellent explanation of differences between QBism and Copenhagen.
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of generalized FTP. This can be considered as a new version of QBism, because both generalized
FTPs, owing to Fuchs & Schack [2] and my own [10], lead to the same result.

One can pose a deeper question: Is one of these generalized FTPs really realized by brain’s
‘hardware’ to perform DM and PU? For the moment, this is a very speculative question. But who
knows?

2. Subjectivist model of learning: classical (Boolean) probability framework
Here, we use some parts of the presentation from [58] on the subjectivist approach to PU and
learning. We complete this presentation with remarks on the role of CP and Boolean logic. The
probability of a hypothesis H conditional on a collected data E is the ratio of the unconditional
probability of the conjunction of the hypothesis with the data to the unconditional probability of
the data alone. This is the famous Bayes’ formula (in fact, serving as the definition of conditional
probability):

p(H|E) = p(H&E)
p(E)

, (2.1)

provided that both terms of this ratio exist5 and p(E)> 0.
Bayes’ theorem relates the ‘direct’ probability of a hypothesis conditional on the data, p(H|E),

to the ‘inverse’ probability of the data conditional on the hypothesis, p(E|H),

p(H|E) =
[

p(H)
p(E)

]
p(E|H). (2.2)

This possibility to ‘invert’ probability p(H|E), i.e. express it through the probability p(E|H) is based
on the use of Boolean logic, the basis to the modern probability theory and Bayesian reasoning. It
may be even better to consider Bayes’ theorem as an exhibition of commutativity of the operation
of conjunction in Boolean logic:

H&E = E&H. (2.3)

Quantum-like models of subjectivist PU, see §5, are based on non-classical (non-Boolean) logic.
Hence, we cannot expect that it would be possible to invert the p(H|E). It seems that Bayes’
theorem is a purely classical (Boolean) statement. We remark that, in spite of the great value
assigned to Bayes’ theorem in subjectivist approach to PU and learning on the basis of new
evidences, this approach is not reduced to the theorem, i.e. one can proceed as a consistent
subjectivist, but without any reference to the theorem.

Subjectivists think of learning as a process of belief revision in which a prior subjective
probability p is replaced by a posterior probability q that incorporates newly acquired
information. This process proceeds in two stages. First, some of the subject’s probabilities are
directly altered by experience, intuition, memory or some other non-inferential learning process.
Second, the subject ‘updates’ the rest of her opinions to bring them into line with her newly
acquired knowledge.

The simplest learning experiences are those in which the learner becomes certain of the truth
of some proposition E about which she was previously uncertain. Here, the constraint is that all
hypotheses inconsistent with E must be assigned probability zero. Subjectivists model this sort of
learning as simple conditioning, the process in which the prior probability of each proposition H
is replaced by a posterior that coincides with the prior probability of H conditional on E.

Simple conditioning. If a person with a prior such that 0< p(E)< 1 has a learning experience
whose sole immediate effect is to raise her subjective probability for E to 1, then her post-learning
posterior for any proposition H should be

q(H) = p(H|E). (2.4)

We remark once again that if one proceeds without Bayes’ theorem as the basic tool of PU and
learning, then she does not need to use Bayes’ formula to define conditional probability (nor to

5This remark on existence of these terms is very important in quantum-like modelling of subjectivist PU.
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use even Boolean logic); other non-Bayesian definitions of conditioning can be considered; one of
them is quantum conditional probability, §5.

Although useful as an ideal, simple conditioning is not widely applicable because it requires
the learner to become absolutely certain of E’s truth. As Jeffrey has argued [59,60], the evidence
we receive is often sufficient only to assign some probabilities to occurrence of E. Here, the direct
effect of a learning experience will be to alter the subjective probability of some proposition
without raising it to 1 or lowering it to 0. Experiences of this sort are appropriately modelled
by what has come to be called Jeffrey conditioning.

Jeffrey conditioning. If a person with a prior such that 0< p(E)< 1 has a learning experience
whose sole immediate effect is to change her subjective probability for E to q(E), then her post-
learning posterior for any H should be given by FTP:

q(H) = q(E)p(H|E) + (1 − q(E))p(H|Ē), (2.5)

where, for any proposition F, the symbol F̄ denotes negation of the proposition F. Obviously,
Jeffrey conditioning reduces to simple conditioning when q(E) = 1. We remark that FTP is also
based on Bayes’ formula as well as additivity of CP (Boolean logic is exploited twice, we use
commutativity of conjunction and distributivity law for disjunction and conjunction).

In the process of DM, one computes odds; for simple conditioning, it is given by

O(H) = p(H|E)
p(H̄|E)

; (2.6)

for Jeffrey conditioning,

O(H) = q(E)p(H|E) + (1 − q(E))p(H|Ē)
q(E)p(H̄|E) + (1 − q(E))p(H̄|Ē)

. (2.7)

If O(H)> 1, the collected data E can be treated as an evidence in favour of H, in the opposite case,
in favour of H̄.

Jeffrey conditioning can be generalized to the case of a collection of hypotheses and pieces of
data represented mathematically as the disjoint partitions of the space of elementary events Ω ,
(Hj) and (Ei), where Hi&Hj = ∅, Ei&Ej = ∅, i �= j :

q(Hj) =
∑

i

q(Ei)p(Hj|Ei), (2.8)

with odds:

O(Hj) =
∑

i q(Ei)p(Hj|Ei)∑
i�=j q(Ei)p(Hj|Ei)

. (2.9)

3. QBist generalization of formula of total probability
QBists strive to treat the quantum formalism in the purely probabilistic terms, as a machinery for
PU, cf. with the Växjö interpretation, §4 and appendix A. Similar to the latter they interpret QP as
a generalization of classical PU, in particular, the Born rule is coupled with FTP.

In QBism, quantum states are represented by density operators ρ in a Hilbert space assumed
to be finite dimensional. A measurement (an action taken by the agent) is described by a POVM
H = (Hj), where j labels the potential outcomes experienced by the agent. The agent’s personal
probability q(Hj) of experiencing outcome j is given by the Born rule

q(Hj) = Tr ρHj. (3.1)

The main achievement of QBism is the demonstration that this operational rule (which was
postulated by Born and which origin remains one the main mysteries of QM) can be treated as
a generalization of classical PU.6

6In fact, this is generalization of Jeffrey conditioning [59,60], see §2, the transformation (2.5). But it seems that QBists have
never paid attention to coupling of QBism with Jeffrey’s conditioning.
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One of the basic points of QBism is that the agent’s reference measurement is an arbitrary
informationally complete POVM, E = (Ei), such that each Ei is of rank 1, i.e. is proportional to a
one-dimensional projector Πi.7 Because the reference measurement is informationally complete,
any state ρ corresponds to a unique vector of probabilities q(Ei) = Tr ρEi, and any POVM F = (Fj)
corresponds to a unique matrix of conditional probabilities p(Hj|Ei) = Tr HjΠi. QBists formulated
the following statement of a high intrepretational value: the Born rule can be interpreted as one
special form of transformation of probabilities:

q(Hj) = f (q(Ei), p(Hj|Ei)). (3.2)

The same statement also plays the fundamental role in the Växjö interpretation of QM [7,10] and
§4. Thus, these two interpretations have a very important common point. However, otherwise
they differ crucially; not only in the interpretation of probability, but (what is more crucial for
formal considerations) also in the mathematical formulations of the transformation law (3.2),
cf. (3.3) and (5.3).

We remark that the classical FTP used in Jeffrey conditioning, see (2.8), has the form
q(Hj) = ∑

i q(Ei)p(Hj|Ei). As was emphasized above, in QBism the Born rule is treated as one of
the generalizations of FTP. In the special case when the reference measurement is SIC-POVM
(symmetric informationally complete POVM [2,61]), the functional relationship f takes the simple
form [2]:

q(Hj) = Tr ρiEj =
∑

i

(
(d + 1)q(Ei) − 1

d

)
p(Hj|Ei). (3.3)

Thus, a QBist says that QP-calculus is an operational representation (in complex Hilbert space,
by using linear operators) of the probabilistic calculus based on a new FTP given by (3.3). Of
course, it would be a great achievement of QBists if they were able to proceed another way
around, i.e. to reconstruct the formalism of QM starting directly from this generalized FTP. Really,
this problem is extremely complex mathematically.

4. Generalization of the formula of total probability: the Växjö version
The Växjö interpretation of QM is a statistical realist contextual interpretation, see appendix A
for brief presentation. We now proceed to derivation of the Växjö version of generalized FTP
matching the Born rule [10].

Consider two observables of the von Neumann–Lüders type given spectral decompositions of
the Hermitian operators A = ∑

i aiAi and B = ∑
j bjBj, where Ai and Bj are orthogonal projectors on

eigenspaces corresponding to eigenvalues ai and bj. In the case of infinite-dimensional state space,
we restrict our consideration to operators with purely discrete spectra. For the sake of simplicity,
here we proceed with pure states only; generalization to the case of an arbitrary quantum state
represented by a density operator is straightforward, but less visualizable. By using Born’s rule,
we obtain

p(B = bj) = ‖Bjψ‖2 =
∑

k

∑
m

〈BjAkψ |BjAmψ〉

=
∑
k=m

(. . .) +
∑
k �=m

(. . .) = pdiag(B = bj) + pndiag(B = bj). (4.1)

The term pdiag can be treated as the classical counterpart of the quantum generalization of FTP
and the term pndiag as the non-classical counterpart, the interference term.

7Such measurements exist for any finite Hilbert-space dimension! Thus, the assumption that the state space is finite-
dimensional plays the important role in QBist derivation of generalized FTP.
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Set ψak = Akψ/‖Akψ‖. This is the output state of the A-measurement with the fixed result A =
ak (for the input state ψ). For pdiag, we have

pdiag(B = bj) =
∑

k

‖Bjψak‖2‖Akψ‖2 =
∑

k

p(b = bj|a = ak)p(a = ak). (4.2)

Thus, formally (4.2) coincides with classical FTP, see (2.8). Now, we turn to analysis of the
interference term. We set ψbj|ak = Bjψak/‖Bjψak‖. This is the output state of the B-measurement
with the fixed result B = bj (for the input state ψak ).

By representing the elements of pndiag in the Euler form with the phases denoted as γj;k,m, we
obtain the following representation:

pndiag(B = bj) =
∑
k<m

|〈BjAkψ |BjAmψ〉|[eiγj;k,m + e−iγj;k,m ]

= 2
∑
k<m

|〈ψbj|ak |ψbj|am 〉|‖Bjψak‖‖Bjψam‖‖Akψ‖‖Amψ‖ cos γj;k,m

= 2
∑
k<m

cos γj;k,m|〈ψbj|ak |ψbj|am 〉|

×
√

p(B = bj|A = ak)p(A = ak)p(B = bj|A = am)p(A = am). (4.3)

Now, we discuss the probability interpretation of the term

p(bj|ak, bj|am) = |〈ψbj|ak |ψbj|am 〉|2.

This is the probability of transition between the two states φ =ψbj|ak and ξ =ψbj|am . In the purely
PU-framework (i.e. without explicit relation to physics), this term can be treated as the coefficient
of correlation between two conditional measurements of B with the same result b = bj : one is
conditioned on the result a = ak and another on the result a = am of the A-measurement. Thus,
finally, we obtain the following generalized FTP:

p(B = bj) =
∑

k

p(B = bj|A = ak)p(A = ak) + 2
∑
k<m

cos γj;k,m

√
p(bj|ak, bj|am)

×
√

p(B = bj|A = ak)p(A = ak)p(B = bj|A = am)p(A = am). (4.4)

Consider now the case of the B-observable represented by an operator B̂ with non-degenerate
spectrum. Here, the states ψbj|ak and ψbj|am coincide (the eigenvector of B̂ corresponding to the
eigenvalue bj). Thus, the transition probability p(bj|ak, bj|am) = 1, and the quantum FTP is simpler:

p(B = bj) =
∑

k

p(B = bj|A = ak)p(A = ak)

+ 2
∑
k<m

cos γj;k,m

√
p(B = bj|A = ak)p(A = ak)p(B = bj|A = am)p(A = am). (4.5)

We remark that by representing the product cos γj;k,m

√
p(bj|ak, bj|am) as a cosine of new angle,

we can write even (4.4) in simpler way as (4.5).

5. Quantum-like models of decision-making
We now borrow methods of QM to use them for DM and cognition modelling. Thus, the reader
must not project the coming considerations to quantum physics. In particular, we hope that QBists
will not be annoyed too much by a possible misuse of their formalism and ideology. (For example,
we suspect that the reference to the conscious–unconscious interrelation in the process of DM
would not be accepted by a QBist-physicist.) In the same way, those who keep to the statistical
interpretation of QP might be displeased that we explore the methods developed in the Växjö
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approach (elaborated for justification the possibility of the realist interpretation of QM, statistical
and contextual) for PU of subjective probabilities of decision-makers.

(a) A prior state version of a prior probability
In classical subjectivist approach to DM, an agent, say Alice, assigns to a hypothesis H, a prior
probability which is mathematically represented by a probability measure p. Then, she updates
p(H) on the basis of gained information about the data E as the conditional probability p(H|E)
(simple conditioning). To determine this conditional probability, Alice uses a prior probability
p(H) and conditional probability p(E|H) and Bayes’ theorem, see (2.2). More generally, she
proceeds with Jeffrey conditioning (2.5), but conditional probability p(H|E) is still determined
with the aid of (2.2). Probability q(E) (more generally, probabilities q(Ei), i = 1, . . . , n) can be
determined by context of PU, context of gaining new information about the degree of truthfulness
of the hypothesis H. It depends on the prior probability p(E) (the prior probabilities p(Ei)).

In the quantum-like approach to DM, the basic initial entity is not the prior subjective
probability of H, but the prior belief state ρ, encoding complete context of decision-making.
This belief state encodes not only information about the hypothesis H, but also all available
information about the data E = (Ei) which can be used to make decision regarding the degree
of truthfulness of H. From this state ρ, Alice extracts the probabilities q(Ei), , i = 1, . . . , n, and
conditional probabilities p(H|Ei). Thus, in general,

q(Ei) ≡ qρ (Ei), p(H|Ei) ≡ pρ (H|Ei).

The probabilities q(Ei) are her subjective probabilities assigned to pieces of data Ei which are
encoded in ρ and extracted during self-measurement, see below. These quantities are extracted
‘directly’ from ρ, i.e. without the inversion procedure (2.2) which is impossible in the quantum
framework.

We emphasize the crucial difference between the notions of conditional probability in classical
and quantum frameworks. We repeat that classically the probability of a hypothesis H conditional
on a collected data E is the ratio of the unconditional probability of the conjunction of the
hypothesis with the data to the unconditional probability of the data alone. In the quantum case,
conjunction of H and E is not well defined.8 Therefore, quantum(-like) conditioning is based on a
different approach. Here we are interested in the feedback E = (Ei) based on measurement of the
belief state ρ.

This is a delicate point of our considerations. The E-measurement is performed by Alice on
the unconscious level. This is a self-measurement performed by Alice; its aim is to determine
probabilities q(Ei). If such measurement outputs the data Ei, then the initial belief state ρ is
transformed to the new state ρi. It is important to point out that Alice does not feel this update of
the belief-state consciously. She makes unconscious reasoning of the following type. Suppose the
correct piece of data (the true state) is Ei.

‘What (subjective) probability shall I (Alice) assign to it on the basis on my personal belief
state ρ?’

By assigning the concrete value of probability q(Ei) (still unconsciously) she changes her
belief state ρ→ ρi, Then, for this belief state ρi, Alice assign the subjective probability p(H|Ei),
representing the degree of her belief in truthfulness of the hypothesis H for the belief state ρi.
This self-measurement E performed on the unconscious level differs crucially from the quantum
physical measurements: it does not destroy the initial belief state ρ. Alice can repeat her reasoning
for another Ek, k �= i, and assign q(Ek) and p(H|Ek). In this way, she collects all probabilities
(q(Ei), p(H|Ei), i = 1, . . . , n).

8To be more precise, one can say that we can consider ‘ordered conjunctions’ first H and then E and first E and then H. They
do not coincide and they generate different probability distributions which (in general) cannot be coupled.
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(b) Quantum(-like) Jeffrey conditioning
Finally, she uses some generalization of FTP (in this paper, we consider two of them, QBism-FTP
and Växjö-FTP) to perform generalized Jeffrey-like conditioning. This step is also realized at the
unconscious level of information processing. Only the output of this step, q(H), is transferred
to consciousness. This procedure differs crucially from the classical Bayesian PU and learning.
The only coupling to the Bayesian scheme is the use of a generalized FTP. (Its classical version
is derived by using the Bayes formula for conditional probability). Therefore, the terminology
related to Bayesian PU and learning is not very acceptable anymore. Generalized FTPs are derived
without the Bayes formula. Such FTPs are the cornerstones of the quantum scheme. I would prefer
to speak about quantum-like Jeffrey conditioning and learning.9

Instead of one hypothesis H, we can consider a complete group of mutually exclusive
hypotheses (Hj, j = 1, . . . , k). In the quantum model, they are represented by a POVM H = (Hj).

(i) QBism

For example, we can guess that Alice’s brain uses QBist FTP (3.3). We now briefly
discuss its features. One of the most important points concerns informationally complete
(self-)measurement. This implies that determination of the probabilities q(Ei) is equivalent to
complete determination of the belief state ρ which represents the context of (unconscious)
learning about the probability q(Hj). Thus, by PU based on QBist FTP (3.3), Alice uses complete
information about ρ.

Of course, this completeness of information gain consumes a lot of computational resources,
POVM E = (Ei) consists of n = d2 elements, where d is the dimension of the Hilbert space. In some
DM-situation this question, about consumption of computational resources, can be critical. In
such situations, it can be more useful to proceed with E-measurement which provides incomplete
information about ρ, cf. with the Växjö scheme for PU.

For me personally, the main problem of QBist FTP (3.3) is that it does not have the form of a
perturbation of the classical FTP (2.8).

(ii) QBism with Växjö flavour

Another possibility is to use the Växjö version of generalized FTP. However, we have to
change the interpretation of probability from statistical to subjective. Thus, we adopt the basic
mathematical formula of the Växjö interpretation of QM, endowing it with a new interpretation
borrowed from QBism. This section can be considered as (an unexpected, cf. [7]) mixture of
QBism and ‘Växjöism’. First, we write Växjö-FTP in PU friendly notations, A → E = (Ei), B → (Hj),
where components of POVMs are orthogonal projectors and Ei ⊥ Ej, Hi ⊥ Hj, i �= j and

∑
i Ei =

I,
∑

j Hj = I, and FTP has the form:

q(Hj) =
∑

k

p(Hj|Ek)q(Ek)

+ 2
∑
k<m

cos γj;k,m

√
p(Hj|Ek)q(Ek)p(Hj|Ek)q(Em). (5.1)

First, we point to the main advantage of this type of quantum Jeffrey conditioning. This
generalized FTP matches well the classical FTP (2.8), i.e. coincides with it if the interference term

9We remark that in the quantum formalism the output probability q(H) can be written directly with the aid of Born’s rule.
Thus, one can speculate that Alice’s brain assigns the probability q(H) without using the presented quantum-like Jeffrey
conditioning. For example, the brain might really represent belief states in complex Hilbert space and use directly Born’s
rule. Of course, one has to distinguish between a mathematical and physical models. On the physical level, the complex
Hilbert space can appear in quantum-like models of brain’s functioning based on the representation of belief states by the
classical electromagnetic field in the brain, see [42]. However, in this paper, we want to explore the subjective probability
framework. Here, quantum-like Jeffrey conditioning provides the most consistent scheme of PU and learning. Finally, we
remark that here PU has to be treated not so straightforwardly as in the classical Bayesian approach where PU is the update
of a prior probability to a posterior probability. In the quantum-like model, this ‘update’ is, in fact, the assignment of subjective
probability to the hypothesis H on the basis of the reference self-measurement on the belief state ρ.
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in (5.1) goes to zero. Thus, new Jeffrey conditioning differs from ‘conventional one’ by appearance
of additional terms (of the interference type) correcting the classical conditioning. We also remark
that, in contrast to QBist FTP (3.3), our FTP is valid even for infinite-dimensional state spaces.

The main problem of FTP (5.1) is to present a proper interpretation of the interference term.
The most consistent interpretation is that Alice’s brain really constructs a kind of Hilbert space

representation for probabilities, i.e. it operates (unconsciously) with complex amplitudes (to be
precise, with physical carries of such amplitudes).

However, by presenting the general scheme of DM and learning based on FTP (5.1), we do not
couple it to any concrete quantum or subquantum physical model. Therefore, we treat ‘phases’
γj;k,m as adjustment parameters which are used by Alice’s brain in the process of PU, i.e. Alice
uses not only probabilities, q(Ek), p(Hj|Ek), but also some updating parameters that depend on the
belief state ρ, the data-observable E representing self-measurement to extract information from ρ,
and the hypothesis observable H.

There are two possibilities, either these phases are produced in each act of PU and DM or they
are outputs of learning based on the previous experience (they were memorized in Alice’s brain).
When Alice recognizes the concrete belief state ρ, she takes these parameters from her memory.
We can assume that some representations of the observables E and H were also created from the
previous experience and were memorized.

In this framework, Alice operates just with the collection of probabilities q(Ek), p(Hj|Ek) and the
phases γj;k,m or simply adjustment parameters λj;k,m = cos γj;k,m. We remark that

|λj;k,m| ≤ 1. (5.2)

She takes these probabilities and parameters and transfer them to

q(Hj) =
∑

k

p(Hj|Ek)q(Ek) + 2
∑
k<m

λj;k,m

√
p(Hj|Ek)q(Ek)p(Hj|Em)q(Em). (5.3)

We remark that, for any pair of vectors of probabilities (p(Hj|Ek), q(Ek)), we have∑
j
∑

k p(Hj|Ek)q(Ek) = ∑
k q(Ek)

∑
j p(Hj|Ek) = 1. Therefore, to produce q(Hj) satisfying the

normalization condition
∑

j q(Hj) = 1, the adjustment parameters λj;k,m have to satisfy the
following constraint:

∑
j

∑
k<m

λj;k,m

√
p(Hj|Ek)q(Ek)p(Hj|Em)q(Em) = 0. (5.4)

This constraint is not redundant, i.e. the PU adjustment parameters cannot be arbitrary. (Here, it is
important that we proceed with a very special class of observables, of the Lüders–von Neumann
type. By considering observables that do not belong to this class, we can relax this constraint, but
not completely.) We also remark that updated probabilities q(Hj) should be non-negative. This
induces an additional constraint on the PU-adjustment parameters:

∑
k

p(Hj|Ek)q(Ek) + 2
∑
k<m

λj;k,m

√
p(Hj|Ek)q(Ek)p(Hj|Em)q(Em) ≥ 0. (5.5)

This constraint is also non-trivial. Take, for example, n = 3 and q(Ek) = 1
3 and also suppose that

p(Hj|Ek) = cj, where cj is a constant, cj ∈ [0, 1]. Then, we have that q(Hj) = c[1 − 2]< 0.
Thus by using the Växjö scheme for Jeffrey-like conditioning, Alice has to use adjustment

parameters λj;k,m ∈ [0, 1] satisfying two constraints, (5.4) and (5.5). Such selection of these
parameters implies the consistent procedure of Jeffrey-like conditioning and learning about
probabilities for the hypotheses H = (Hj) on the basis of information about the data E = (Ei).

However, a selection the PU-adjustment parameters λj;k,m ∈ [0, 1] satisfying (5.4) and (5.5)
does not guarantee that it is possible to construct a quantum state (in this paper, we use the
Växjö approach to PU and learning only for pure states, but in principle, the approach can be
generalized to arbitrary quantum states) and two Hermitian operators H and E generating the
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vectors of probabilities p(Hj|Ek), q(Ek), k = 1, . . . , n, and the phases θj;k,m, where λj;k,m = cos θj;k,m.
This is a complex problem.10

It can be easily solved in the case of dichotomous observables H and E, see [10]. Here, the
sufficient and necessary condition for existence of such quantum representation of probabilistic
data is double stochasticity of the matrix of conditional probabilities, P = (p(Hj|Ek))j,k=1,2, i.e.

p(Hj|E1) + p(Hj|E2) = 1,

for any j. We remark that the matrix P is also always stochastic, i.e. for each k,

p(H1|Ek) + p(H2|Ek) = 1.

However, already the case of triple-valued observables is very difficult from the mathematical
viewpoint, see Nyman & Basieva [62] for some partial results. This inverse Born problem can be
formulated in a more general setting: to construct a density operator and POVM observables from
probabilities. The problem has not yet been solved, i.e. the situation is similar to the QBism.

6. Concluding remarks
In this paper, we have analysed the possibility to treat QBism as a general subjective probability
scheme for DM. Thus, we try to extend the domain of its applicability outside of quantum
physics—to cognition, psychology, economics. We stress again that this is not an attempt of
quantum mechanical explanation of cognition and consciousness. Following Appleby [63], we
can say that our study supports the project of creation of unified psychophysical model.

Then, we made a step towards merging the Växjö interpretation of QM (originally—statistical
contextual realist interpretation) with QBism by switching from the statistical interpretation of
probability to subjective one. We were motivated by evident advantages of the use of subjective
probability in modelling the process of DM (by an individual agent). Our main aim was to explore
the Växjö version of the FTP as the basis of the generalized scheme of PU based on the quantum
representation in complex Hilbert space. This formula differs from QBist FTP of Fuch and Schack.
We analysed advantages and problems of both types of quantum FTPs.
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Appendix A. Växjö interpretation
This interpretation was born in attempt to combine consistently the views of Einstein and Bohr
[7]: realism and contextuality. This is the (ensemble) statistical interpretation. It was born from
the observation that, in fact, Bohr’s contextuality does not imply non-realism. Thus, a theory can
(but need not) be both contextual and realistic. Contextuality has to be treated statistically as
contextuality of probabilities, their dependence on experimental contexts.

Such contextuality means that each (experimental) context C determines its own Kolmogorov
probability space,11 PC = (ΩC,FC, pC). Compatibility of a family of contexts C = (Cα) means that

10We call it the ‘inverse Born problem’. Born solved the problem of the probabilistic interpretation of the quantum
measurement scheme. He presented the explicit formula transferring quantum entities into probabilities. Now, we want
to construct quantum entities from probabilities.
11As was pointed out in Introduction, this viewpoint on contextuality is more general than the one used in the quantum
community in discussions related to violation of Bell’s inequality. The latter contextuality is defined as dependence of the
results of measurement of a quantum observable A on results of measurements of another observable B which is measurable
jointly with A. This is a very special case of ‘Växjö contextuality’ which definitely matches Bohr’s views better. We remark
that recently the notion of contextuality which is close (but not identical) to ‘Växjö contextuality’ was invented by Dzhafarov
[64,65], who proposed to assign context dependence to observables and not to probabilities.
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they can be represented within a single probability space

PC = (ΩC ,FC , pC)

in such a way that the concrete context probability pC, C ∈ C, is given as (classical) conditional
probability in PC given by the Bayes formula. In the opposite case, a family of contexts C is treated
as incompatible.12

By the Växjö interpretation, QM is a special mathematical formalism for working with
contextual probabilities for families of contexts which are, in general, incompatible. Of course,
QP is not the only possible formalism to operate with contextual probabilities. A general theory
of contextual probability was presented in monograph [10].

The main distinguishing feature of QP is its complex Hilbert space representation. All quantum
contexts can be unified with the aid of a quantum state ψ . Of course, ψ represents only a part of
context, another part is given by an observable. From the Växjö viewpoint this contexts unifying
function of a quantum state ψ is the key-element of QP. It is not about just a collection of Kolmogorov
probability spaces corresponding to different experimental arrangements. All these arrangements
are coupled with the aid of quantum states. The formal mathematical structure of this coupling is
simple and clear. However, we are far from understanding its mechanism. From the viewpoint of
contextual probability, this context (probability space) unifying function of a quantum state is one of the
mysteries of QM.
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