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There is broad consensus that the diversity of functional traits within species

assemblages drives several ecological processes. It is also widely recognized that

rare species are the first to become extinct following human-induced disturbances.

Surprisingly, however, the functional importance of rare species is still poorly

understood, particularly in tropical species-rich assemblages where the majority

of species are rare, and the rate of species extinction can be high. Here, we inves-

tigated the consequences of local and regional extinctions on the functional

structure of species assemblages. We used three extensive datasets (stream fish

from the Brazilian Amazon, rainforest trees from French Guiana, and birds from

the Australian Wet Tropics) and built an integrative measure of species rarity

versus commonness, combining local abundance, geographical range, and habitat

breadth. Using different scenarios of species loss, we found a disproportionate

impact of rare species extinction for the three groups, with significant reductions

in levels of functional richness, specialization, and originality of assemblages,

which may severely undermine the integrity of ecological processes. The whole

breadth of functional abilities within species assemblages, which is disproportio-

nately supported by rare species, is certainly critical in maintaining ecosystems

particularly under the ongoing rapid environmental transitions.
1. Introduction
All ecosystems on Earth are facing unprecedented levels of disturbance [1] contri-

buting to the sixth extinction crisis [2], with rare species often being the most

vulnerable [3]. Species can be considered rare when they have small population

sizes, restricted geographical ranges, or narrow habitat tolerances; these combined

characteristics define several forms of rarity [4] and different levels of extinction

risk [5]. Therefore, compared with abundant and widespread species, rare species

have greater sensitivity to both natural- and human-induced disturbances such

as overexploitation, habitat loss, and global environmental changes [6,7]. Rare

species have thus received significant attention from conservation biologists; never-

theless, the functional consequences of their decline remain largely overlooked [8].

Beyond the loss of species, there is a growing awareness that the loss of ecologi-

cal processes that sustain ecosystem functioning can be the most critical impact

under accelerating global changes [9]. Given their low representativeness in terms

of numerical abundance or total biomass, one may expect a low contribution of
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Figure 1. Hypothetical scenarios for the contribution of rare species to the func-
tional structure (FS) of species assemblages. Each plot represents a different study
case where species (dots) are distributed across a two-dimensional functional
space. The level of species commonness (accounting for abundance, geographical
range, and habitat breadth) is illustrated by the size of the dots, rare species being
represented by small dots. Three FS indices are illustrated separately: functional
richness (convex-hull volume of the functional space filled by all species within
the assemblage; grey polygon projected); functional specialization (mean distance
between each species and the average position—black cross—of all species;
dashed lines); and functional originality (mean distance between a given species
and its nearest neighbour; grey arrows). The contribution of rare species to FS
increases from the left to the right of the figure in the sense that their loss
would significantly reduce the value for each index.
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rare species to ecosystem functioning as a whole [10]; although

less common species have already been reported exerting signi-

ficant impacts on different processes, such as improving

resistance to invasions [11] and acting as keystone [12] or corner-

stone species [13]. Nevertheless, most of the research on these

relationships has so far examined individual processes even

though ecosystem functioning relies on many processes that

often require multiple ecological roles to be achieved [14]

across many environmental conditions [15]. This multi-

functionality of ecosystems and the diversity of ecological

processes are increasingly seen as being more closely related to

the diversity of functional traits within communities than to

the diversity of taxa per se, because species with different traits

are more likely to play complementary roles [16,17]. In this con-

text, considering the high vulnerability of rare species to

extinction, a critical issue is to assess their contribution to the

functional structure of assemblages (FS), i.e. the diversity and

distribution of functional traits. If rare species mainly support

roles that are also played by common species, then we would

expect a low impact following their extinction. On the other

hand, if rare species over-contribute to FS then their extinction

may lead to a significant loss of ecological processes.

A recent study shows that in three regional species pools

(coral reef fish, tropical trees, and alpine plants) the most dis-

tinct combinations of traits are mainly supported by rare

species [18], which may suggest that they are functionally irre-

placeable. At the same time, many rare species support the

most common functions and only add functional redundancy

to the system [18]. However, Mouillot et al. [18] only focused

on individual species through their functional distinctiveness,

whereas the contribution of rare species to the FS of assem-

blages remains uncertain. Very few studies explicitly tackled

the functional importance of rare species at the assemblage

level [19], and none investigated the consequences of their

loss at different spatial scales and on the multiple facets of FS.

Here, we built an integrative measure of species rarity

versus commonness (i.e. combining local abundance, geo-

graphical range, and habitat breadth), and we considered

species traits and their distributions within a functional space

(sensu Mouillot et al. [20]) to quantitatively assess the contri-

bution of rare species to three complementary facets of

assemblage FS: functional richness [21], functional specializ-

ation [20], and functional originality [20]. If rare species tend

to support the most extreme and unique combinations of

traits, then we expect that their extinction would deeply

affect the three functional facets (figure 1). We designed scen-

arios of species loss, both at the local and regional scales, to

test whether rare species over- or under-contribute to the FS

of assemblages. Testing these two alternative hypotheses is

particularly important in the tropics where a large proportion

of species are rare [22,23], and high rates of species loss are

expected in the near future [24]. Therefore, we applied this fra-

mework to three extensive datasets of species-rich tropical

assemblages to enhance the generality of our findings: stream

fish from the Brazilian Amazon, rainforest trees from French

Guiana, and birds from the Australian Wet Tropics (AWT).
2. Material and methods
(a) Datasets
The datasets were chosen because sampling (i) was carried out in

sites covering broad geographical and environmental gradients
within well-preserved regions (electronic supplementary material,

figure S1), (ii) was standardized for species local abundances

and local habitat characterization, and (iii) included a functional

characterization of all the species. For each study case, we selected

a set of relevant and complementary functional traits to describe

the ecological attributes of all the species present.

(i) Fishes
Fishes were sampled in 320 rainforest streams of the Brazilian

Amazon between 2004 and 2012, encompassing over 2.3 million

km2 along the main tributaries of the cis-Andean Amazon basin.

In each stream, we determined a set of 15 environmental parameters

describing stream-channel structure, substrate, and water quality

(electronic supplementary material, appendix S1). All streams

have small dimensions allowing for effective sampling of fish abun-

dances within well-delimited habitat boundaries. The stream
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extremities (50 m long section) were blocked with fine-mesh nets,

and fishes were caught using seine and hand nets. A total of 395

taxa were counted and identified at the species level. Each species

was functionally described using a set of 18 ecomorphological

traits related to food acquisition, locomotion, and habitat prefer-

ences: teeth shape and number; gill-raker shape; mouth

protrusion; oral-gape surface, shape and position; eye size and pos-

ition; body mass, surface, and shape; caudal-peduncle throttling;

pectoral-fin shape and position; caudal-fin shape; fin surface ratios

(details in the electronic supplementary material, appendix S2).

(ii) Trees
Trees were inventoried in 36 lowland rainforest plots (2 ha)

in French Guiana between 2009 and 2010, covering an area

of 15 427 km2. In each of the 36 plots, we determined a set of

14 environmental parameters describing climate and soil character-

istics (electronic supplementary material, appendix S1), and

we counted and identified all trees greater than or equal to 2.5 cm

diameter (at 1.3 m height) in 10 2 � 50 m belt transects. Given the

operational difficulties to thoroughly measure traits in species-

rich tree assemblages, we selected six out of the 36 plots that

represented the broader environmental gradient within the region

to functionally characterize all species (totalling 262 species). We

measured 15 functional traits describing leaf and wood character-

istics related to resource capture, nutrient transport, structure, and

defence: laminar thickness, toughness and chlorophyll; leaf area,

specific area and density; foliar carbon, nitrogen, phosphorus,

potassium, C : N ratio and 13C composition; trunk bark thickness;

root- and stem-wood specific gravity (details in the electronic

supplementary material, appendix S2). Although the functional

assessment at the local scale was restricted to the six plots, the esti-

mates of species distribution and abundance included all 36 plots.

(iii) Birds
Birds were sampled between 1992 and 2009 in the AWT, a bior-

egion that covers 18 000 km2 of mixed tropical forests ranging

from sea level to ca 1 600 m. The region is dominated by rainfor-

ests with most of the area protected in the AWT World Heritage

Area [25]. Birds were recorded within 1 323 standardized dawn

surveys across 180 permanent 150 m transects. Each survey

was 30 min duration with all individuals counted and identified

using calls and visual observations, totalling 86 species. The

transects were distributed across 47 subregions delimited by

Williams et al. [26] to cover elevational, climatic, and latitudinal

gradients across all the AWT. Given that most birds are highly

mobile organisms and local-assemblage boundaries are difficult

to delimit, we considered each of these 47 subregions as local

assemblages in this study. Seven traits describing the key aspects

of bird’s life history and behaviour were used to functionally

characterize the 86 species: body mass; diet; activity period;

reproductive seasonality; clutch size; shelter type; vertical strata

(details in the electronic supplementary material, appendix S2).

(b) Rarity assessment
Different approaches to define species rarity have been proposed,

being most frequently based on three primary characteristics:

local abundance, geographical range, and habitat breadth [4].

Because they all determine extinction risk while being comp-

lementary to each other [5,25], we embedded these three

characteristics within an integrated framework to assess species

rarity versus commonness.

For the three datasets, the local abundance of a species i (LAi)

was determined as the mean number of individuals counted where

that species was present. For fish and tree species, the geographical

range (GRi) was estimated by the area (km2) that lies within the

outermost limits of the occurrence of each species, based exclu-

sively on their distribution across our sample sites (320 streams,
36 tree plots). For species recorded only in one sample site, GRi

was defined as the area of the site in which that species occurred.

For species recorded only in two sites, GRi was estimated as the

area of a polygon whose sides are the mean extension of the two

sites and the distance between them. We chose to restrict geo-

graphical range estimates to our own data, because secondary

information is mostly lacking for fish and tree species; a lacuna

widely recognized for the Amazon forest [23]. For AWT birds,

however, species geographical ranges had been previously well

established during decades of intensive studies across the region.

Therefore, we used the GRi data compiled in Williams et al. [26].

For fish and tree species, habitat breadth (HBi) was estimated by

the ‘tolerance’ metric from Outlying Mean Index analyses [27],

which is a measure of the species-specific niche breadth relative

to the available niche space of the region (i.e. environmental

parameters measured across sites). For bird species, HBi was esti-

mated by the proportion of occurrences in different structural

vegetation types (‘vegetation specialization’ in Williams et al. [26]).

We built an integrative measure of rarity by combining the three

metrics into a single index. Each metric was log-transformed to

decrease the magnitude across observed values, and then standar-

dized between 0 and 1 by dividing them by the respective

maximum value observed over all species in each dataset. To take

into account the degree of dependence between the three metrics,

we down-weighted each one by its correlation with the two

others [28]. The rarity index for a species i (RIi) is thus calculated as

RIi ¼
½ðLAi � wlaÞ þ ðGRi � wgrÞ þ ðHBi � whbÞ�

ðwla þ wgr þ whbÞ
,

where wla, wgr, and whb are the weighting parameters that represent

the degree of independence of each rarity metric to the others. For

instance, the weighting parameter for rarity in terms of local abun-

dance wla is calculated as

wla ¼
1

2
þ

1� jrlagrj
2

� �
þ 1� jrlahbj

2

� �� �
,

where rlagr is the Pearson’s correlation coefficient between local

abundance and geographical range and rlahb is the Pearson’s corre-

lation coefficient between local abundance and habitat breadth

(electronic supplementary material, figure S2).

Because each metric scales between 0 and 1, and their weighted

values are relativized by the sum of the weighting parameters, RIi

also varies between 0 (the potential value reached by the rarest

species) and 1 (the potential value reached by the most com-

mon species). Therefore, even considering that rarity might be

differently expressed for each of the three taxonomic groups, the

use of RIi makes them more comparable. However, RIi is a contextual

measure, because a species can be rare in a given dataset but

common elsewhere and because it highly depends on the species

pool (comparatively to the most common species).
(c) Functional structure of species assemblages
For each taxonomic group, we first computed the functional dis-

tance between each pair of species. All traits were continuous for

trees, so we computed the Euclidean distance on the scaled and

centred trait values. Functional traits were not all continuous for

fish and birds, so we used the Gower distance, which allows con-

sidering different types of traits while standardizing them [21].

We then ran a principal coordinate analysis (PCoA) on each func-

tional distance matrix to build a multidimensional functional

space and estimate the different functional facets of assemblage

structure [20]. For each taxonomic group, the number of dimen-

sions (i.e. PCoA axes) was chosen based on the quality of the

functional space, i.e. the extent to which it accurately represents

the initial functional distances between species pairs, quantified

by the mean squared-deviation index—mSD [29]. We kept the

minimum number of axes that provides a high-quality functional
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space to minimize the amount of assemblages we had to exclude

to attain computation requirements (i.e. higher number of species

than PCoA axes [21]). We thus kept the first four, nine, and five

PCoA axes for fishes, trees, and birds, respectively (see details in

the electronic supplementary material, figure S3 and table S1).

We used three complementary indices to quantitatively

describe the FS (figure 1): functional richness (FRic), functional

specialization (FSpe), and functional originality (FOri). FRic is the

convex-hull volume of the functional space filled by all species

within the assemblage, indicating the range of trait combinations

[21]. We standardized FRic values by expressing them as a pro-

portion of the volume filled by the pool of species in each

dataset. FSpe represents the distinctiveness of species traits in the

assemblage [20]. FSpe is expressed as the mean Euclidean distance

between each species and the average position of all species (i.e.

barycentre) in the functional space. FOri reflects the degree of

uniqueness of species traits in the assemblage [20]. FOri is

expressed as the mean distance between each species and its nearest

neighbour in the functional space. The raw values of FSpe and FOri

were standardized between 0 and 1 by dividing them, respectively,

by the maximum distance to the barycentre and by the maximum

nearest-neighbour distance observed over all species present in

each dataset [20]. These functional indices are complementary to

each other in the sense that they describe different facets of the

assemblage FS. For instance, a species can be placed at the centre

of the functional space (i.e. low contribution to FSpe and no contri-

bution to the assemblage FRic) while being isolated from other

species (i.e. high contribution to FOri). Because none of the rarity

metrics was taken into account in the calculation of functional indi-

ces, there were no trivial relationships between rarity and FS

assessments.
(d) Scenarios of species loss
To assess the consequences of potential extinctions on the FS

of each of the three regional assemblages (395 fishes, 262 trees,

and 86 birds), we simulated a set of species-loss scenarios.

We first sequentially removed species from the rarest to the most

common and we computed the three FS indices at each step. We

compared the level of functional erosion obtained under this scen-

ario with the ones obtained from a scenario simulating an

unrealistic sequential species loss from the most common to the

rarest and from a null scenario simulating a random sequential

extinction (i.e. independently of species commonness). To perform

this null scenario, we shuffled 1 000 times the order of the species

while keeping their trait values constant. Because the 22 rarest tree

species have an equal RIi value, we randomized their rank 100

times and used the median value of FS for each deletion step.

While regional or global species extinctions have been scar-

cely reported, local species extirpations are more and more

common worldwide. Therefore, we conducted another set of

simulations to assess the potential consequences of local extirpa-

tions on the FS of the local assemblages (320 streams, six tree

plots, and 47 subregions). We defined nine levels of species

loss for each of them, removing from 10% to 90% of the species,

and then computed FS indices, following three different scen-

arios: rarest species lost first; most common species lost first;

and random loss of species (1 000 times). We then carried out a

Friedman paired test to compare the three scenarios. This

allows removing the effects of local specificities (e.g. species rich-

ness) on FS while comparing the scenarios. When the remaining

number of species after species removal was lower than the

number of functional dimensions, we excluded that local assem-

blage from the analysis (see final sample sizes in the electronic

supplementary material, table S2). Because the estimation of

the commonness status (RIi) for a given species takes into account

both local and regional characteristics, we considered the same

RIi value for each species in the two sets of simulations.
All computations were carried out using R software [30]. A list

of the main functions used with the respective packages and

the scripts to run all simulations are provided in the electronic

supplementary material (table S3 and appendices S3–4).

(e) Sensitivity analyses
We conducted a set of sensitivity analyses to assess the robustness

of our findings to three methodological aspects: (i) the influence of

each particular trait, (ii) the potential effects of the uneven number

of traits among the study cases, and (iii) the influence of the

number of dimensions (see methodological details and results in

the electronic supplementary material, appendix S5).
3. Results
Simulations of species removal from regional pools showed a

consistent and significant pattern: a faster decrease of func-

tional richness (FRic) when species were lost from the rarest

to the most common compared with a random species loss

(figure 2). For example, losing the 20% rarest species of fishes

and trees led to a supplemental loss of, respectively, 7.2%

and 9% of regional FRic when compared with a random loss.

For birds, the impact of rarest species loss was even more criti-

cal, with the extinction of the 20% rarest species inducing an

extra decrease of 28.3% for FRic compared with a random

loss. The extinction of the rarest species also led to a decrease

of mean functional specialization (FSpe) and originality

(FOri) for the three taxonomic groups. Conversely, when the

most common species were removed first in each of the three

datasets, a general trend of increasing FSpe and FOri was

observed (figure 2).

At the local scale, the loss of the rarest species also induced a

severe decrease of the functional indices. The erosion of FRic

when the rarest species were removed first was significantly

higher than in the random loss scenario for all three groups

(figure 3). Conversely, FRic generally dropped less than

expected under a random loss scenario when common species

were firstly removed (figure 3). FSpe of local assemblages

decreased more than expected under a random loss scenario

when the rarest species were firstly removed for the three

study cases (figure 3). Local FOri of tree and bird assemblages

decreased more than expected when the rarest species were

first removed, whereas it increased when most common species

were lost first. For fish, FOri values did not differ from null model

expectations when the top 50% rarest species were removed first,

but they were significantly higher than expected when the top

50% most common species were removed first (figure 3).
4. Discussion
Our scenarios of species loss demonstrate a disproportional

influence of rare species on the functional structure of tropical

assemblages, both at local and regional scales. Losing rare

species would reduce the functional richness, specialization,

and originality of assemblages more than expected under a

random loss of species. Therefore, beyond taxonomic or aes-

thetic loss, extirpating rare species may represent the loss of

irreplaceable functions and a reduced diversity of ecological

niches within assemblages, potentially disrupting refined inter-

actions among species, eradicating highly specialized forms of

resource utilization and undermining the integrity of important

ecological processes. Given that the multifunctionality of
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ecosystems can be strongly predicted by the FS [17,31], the loss

of rare species may ultimately result in significant impacts on

the long-term provisioning of ecosystem goods and services.

The generality of these findings and potential implications is

strengthened by the strong convergent patterns observed

among three taxonomic groups highly distinct in terms of

evolutionary history and ecology.

We assumed that the rarest species are those that combine

the three basic characteristics of having small local populations,

restricted geographical range, and narrow habitat breadth.

Small populations are more vulnerable to demographic,

environmental, and genetic stochasticity [32], and investigations

of these processes (i.e. small-population paradigm) led to sev-

eral theoretical and applied insights into conservation biology

[33]. Restricted geographical distribution is also widely recog-

nized as a strong predictor of species extinction risk, mainly
because even a punctual impact (e.g. a river impoundment for

fishes or a fire event for trees) may severely impair the persist-

ence of a species [34]. Finally, less-tolerant species in terms of

habitat conditions are obviously under higher vulnerability,

because even small environmental changes can be lethal to

these organisms. Therefore, our scenarios simulating the loss

of rare species first could be considered as the most realistic.

Using a single and individual species-based functional

index, Mouillot et al. [18] showed that in some regional species

pools the most distinct combinations of traits are supported by

rare species but that, at the same time, many rare species sup-

port common traits and thus redundant functions. On balance,

the impact of losing rare species remains unknown. Scaling up

at the assemblage level and using a multifaceted framework,

we demonstrate that beyond supporting the most unusual

traits, rare species over-contribute to the functional structure
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of species assemblages in several ways as illustrated by a closer

examination of their positions in functional space (see figure 4

and electronic supplementary material, figures S4–S6). For

instance, the southern cassowary Casuarius casuarius (Casuarii-

dae), ranked within the top 16% rarest species and listed as

vulnerable by the International Union for Conservation of

Nature (IUCN) [35], strongly contributes to the functional

structure of bird assemblages in the AWT because of its high

functional specialization and originality (figure 4). This species

is the only remaining large-bodied plant disperser over long

distances in Australian tropical rainforests [36]. Losing

C. casuarius could therefore affect plant population dynamics

across the landscape, particularly for large-seeded species.

Rare fish species also tend to be placed relatively isolated

and on the edge of the functional space (figure 4), increasing

the FS. For instance, the vampire catfish Paravandellia sp.
(Trichomycteridae), ranked within the top 2% rarest species,

has a very particular oral apparatus to feed on blood from

other small-bodied fishes [37], being one of the few haemato-

phagous species recorded in small Amazonian streams. The

poeciliid Fluviphylax simplex, ranked within the top 5% rarest

species, is a miniature fish with highly specialized morphology

(e.g. superior-oriented mouth and extremely large eyes) allow-

ing for feeding on fine particulate detritus and on very small

prey at the water–air interface (i.e. neustophagia). Beyond indi-

vidual species, some rare functional groups have critical roles in

aquatic systems. That is the case of periphyton-grazing fishes,

which have restricted geographical ranges and are often

found in low local abundances in small Amazonian forest

streams (13 species among the top 20% rarest; figure 4). These

species use particular traits to directly exploit the periphyton,

being the only fish group responsible for the early incorporation
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of autotrophic carbon along the fluvial continuum (M Anjos

2015, personal communication).

The rainforest trees Brosimum acutifolium (Moraceae) and

Protium giganteum (Burseraceae), both within the top 20% rarest

tree species in French Guiana, are relatively isolated and at oppo-

site extremes in the functional space (figure 4). The former is

characterized by dense wood and high specific leaf area with

milky latex on the leaves, which is typically associated with

defence capacity against herbivores and fungal pathogens [38].

On the other functional extreme, P. giganteum holds high values

of laminar and trunk bark thickness, which ensures protection

against the increasing frequency and intensity of wildfires that

may occur in the region [39]. The asynchrony of species responses

to environmental fluctuations is an important mechanism

through which biodiversity can stabilize ecosystem properties

[40]. In this context, maintaining rare species and the high diver-

sity of traits within assemblages may provide resistance and

resilience to a variety of disturbances in a changing world.
We demonstrate that losing rare species negatively over-

influenced assemblage functional structure not only at the

local scale, but also at the regional scale. Biodiversity can pro-

vide insurance for ecosystem functioning across several spatial

scales producing alpha, beta, and gamma diversity–stability

relationships [41]. As a consequence, losing species may

impair ecosystem stability and functioning at large spatial

scales by reducing the capacity of connected systems to share

or replace potential key functions. This is particularly impor-

tant for management decisions which are often made at

the landscape scale [41]. Given that this spatial biodiversity–

stability relationship is primarily driven by differences in the

fundamental niches and complementarity of the species [42],

keeping the pool of traits and the functional structure of

regional assemblages is critical to maintain the functional

insurance within and across ecosystems.

In addition to the implications for biodiversity conservation,

our findings bring new theoretical insights into community
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ecology, particularly about the contrasting hypotheses proposed

to explain the assembly of species into communities. Neutral

models assume ecological equivalence among species, with

their abundances mainly driven by dispersal limitation and

demographic stochasticity [43]. In contrast, niche differentiation

hypotheses postulate that species rarity and commonness will be

better explained by differences in functional traits and their

interactions with prevailing environmental conditions [44].

Under this latter assumption, rare species should be ecologically

distant from common species and from each other, with

the mechanism of resource partitioning mainly driving commu-

nity assembly (see Mi et al. [45] for an example of how these

opposing paradigms were tested drawing on rare species contri-

bution to the phylogenetic diversity of communities). Although

our study has not been designed to test community assembly,

the high functional diversity supported by rare species indicates

that niche differentiation mechanisms may be important

determinants in tropical assemblages.

Although broad in scale, our study includes some limit-

ations. First, we assume that traits are relevant proxies for

species roles while this is sometimes not so straightforward

[46]. Traits certainly matter for defining functions, but some

functions are still ignored, because corresponding traits

cannot be easily measured (e.g. ecophysiological characteristics

in animals). This research gap prevents us reaching broader

conclusions about the vulnerability of ecosystem functioning

(e.g. biogeochemical cycles in streams) and should be consid-

ered in the agenda of functional-based approaches. Second,

although we avoid spurious relationships, one might expect

background associations between some functional traits and

the patterns of species distribution (e.g. organisms with

higher body mass tend to have broader geographical ranges).

However, our sensitivity analyses show that no particular

trait drives the patterns alone. Finally, we recognize that, par-

ticularly for tree species, using additional data to improve the

estimation of their geographical range would improve the

strength of our rarity versus commonness estimates. However,

we believe this would not change our main conclusions as we

found consistency between the rarity ranking for several species

from our estimates and from a broader assessment of Amazon

tree distribution [47].

Given the operational difficulties involving the study of rare

species (e.g. poor ecological knowledge), they have frequently

been neglected in community ecology and in experimental

tests on the effects of biodiversity on ecosystem functioning

[8]. According to the ‘commonness-dominance’ paradigm, the

focus on the common species is also justified because they

often account for the major overall biomass and energy use in

a community (i.e. mass-ratio hypothesis [10]), whereas

restricted-range and less abundant species supposedly use mar-

ginal resources or habitats (i.e. resource availability hypothesis
[48]), playing a negligible role in the short-term structure and

functioning of ecosystems [44]. However, our results indicate

that this overlooked attention on rare species can be a misjudge-

ment in the long term, because they are irreplaceable

components of the functional structure of assemblages. More-

over, the loss of rare species could have deep impacts on

community and ecosystem functioning if they exhibit compen-

satory growth to common species declines or are favoured by

environmental changes [19]. An appropriate management of

ecosystems should thus not only focus on the provision of func-

tions and services under current conditions, but also consider

their maintenance under future changes [49].

Tropical ecosystems are facing unprecedented levels of

pressure from multiple sources and at all scales. Our empiri-

cal knowledge of tropical biodiversity is still too limited to

make robust predictions about its conservation value [50].

However, we can reasonably assume that not just common

and dominant species are functionally important. Dispropor-

tionately supporting the whole breadth of functional abilities

within assemblages, rare species potentially play critical roles

in maintaining ecological processes in space and time par-

ticularly under the ongoing rapid environmental transitions

in the tropics. This justifies the application of the precaution-

ary principle for conservation strategies and undermines

arguments that many species are functionally redundant in

highly diverse systems.
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