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At present, there is substantive evidence that the nutritional content of agricul-

turally important food crops will decrease in response to rising levels of

atmospheric carbon dioxide, Ca. However, whether Ca-induced declines in

nutritional quality are also occurring for pollinator food sources is unknown.

Flowering late in the season, goldenrod (Solidago spp.) pollen is a widely avail-

able autumnal food source commonly acknowledged by apiarists to be

essential to native bee (e.g. Bombus spp.) and honeybee (Apis mellifera)

health and winter survival. Using floral collections obtained from the Smith-

sonian Natural History Museum, we quantified Ca-induced temporal changes

in pollen protein concentration of Canada goldenrod (Solidago canadensis), the

most widespread Solidago taxon, from hundreds of samples collected through-

out the USA and southern Canada over the period 1842–2014 (i.e. a Ca from

approx. 280 to 398 ppm). In addition, we conducted a 2 year in situ trial of

S. canadensis populations grown along a continuous Ca gradient from approxi-

mately 280 to 500 ppm. The historical data indicated a strong significant

correlation between recent increases in Ca and reductions in pollen protein

concentration (r2 ¼ 0.81). Experimental data confirmed this decrease in

pollen protein concentration, and indicated that it would be ongoing as Ca

continues to rise in the near term, i.e. to 500 ppm (r2 ¼ 0.88). While additional

data are needed to quantify the subsequent effects of reduced protein concen-

tration for Canada goldenrod on bee health and population stability, these

results are the first to indicate that increasing Ca can reduce protein content

of a floral pollen source widely used by North American bees.
1. Introduction
As has been observed in nearly a 100 individual studies and several meta-

analyses, as atmospheric carbon dioxide (Ca) increases, nitrogen (protein)

concentration declines in a wide range of plant species [1–5]. This decline can

be associated with dilution resulting from increased carbohydrate production

[4,6]; reduced transpiration and a reduction in mass flow of N and other

mobile elements [4,7,8] and/or the need for less Rubisco with a subsequent

lowering of plant demand for N, particularly in photosynthetic tissues [9]. The

Ca-caused reduction in protein has been observed in a wide range of plant tissues,

including leaves, stems, roots, tubers, seeds and grains [1–3,5] and has been

correlated with negative effects on human nutrition on a global scale [3,10]. How-

ever, whether such reductions also occur for pollen, with subsequent effects on

pollinator nutrition, are unknown.
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At present, there is considerable concern regarding the

widespread decline in native bee and honeybee colony num-

bers and increasing annual colony losses, particularly in the

US and Europe. Drivers that have been associated with

these declines include, but are not limited to, socioeconomic

concerns (e.g. agricultural intensification), invasive pests

and/or pathogens (e.g. Varroa, Nosema), agrochemicals

(e.g. neonicotinoids) and a decline in genetic diversity of

bee populations and food sources (e.g. over-reliance on one

floral source) [11–17]. These factors may act singly or in

combination to influence bee health [14,15].

Vulnerability to these reported environmental stressors is,

in part, linked to pollinator nutrition [13,18]. For example,

nutrition/diet can affect bee immunocompetence and the

response to parasites (e.g. Varroa destructor or Nosema ceranae),

which, in turn, can feedback to exacerbate nutritional

stress [19–21]. Good nutrition can also aid in pesticide

detoxification [22–24].

As all bees, wild or domesticated, obtain their energy and

nutrition from flowering plants, any stressor that affects floral

physiology on a panoptic scale could, potentially, alter

long-term bee health. Nectar is the primary source of energy

for the colony; however, pollen is the sole source of protein

for all bees, wild and domesticated, and fulfils dietary require-

ments for the lipids, sterols, vitamins and minerals needed for

larvae development [25–27]. In contrast to nectar, only a small

amount of pollen is stored in the colony at any given time,

making bee colonies susceptible to sudden fluctuations in

pollen quantity or quality [28–30]. Lower pollen quality has

been shown to negatively impact adult longevity in bees in a

number of studies [31–34].

In northern latitudes in North America and Europe where

little pollen is available during winter, plants that serve as

late-season pollen sources are especially important for

winter survival [35]. Among such sources, goldenrod (Soli-
dago spp.) is a late-season perennial with a long bloom

period from late July through to October. Although national

estimates of pollen sources for bee diets do not exist; golden-

rod has been recognized as a primary autumn pollen source

for many pollinators in North America, including wild and

domesticated bees, by apiarists and extension agents

throughout Canada [36,37], New York [38], Ohio [39], Wis-

consin [40], Michigan [41] and Minnesota [42], inter alia.

The USDA Handbook of Agriculture lists goldenrod as an

important nectar and pollen plant for all regions of the

USA except the West [43].

Although there are numerous Solidago species, Solidago
canadensis (Canada goldenrod) is the widest spread taxon,

and includes several taxa which are frequently granted species

status including Solidago altissima L., lepida DC (sensu Fernald),

Solidago gilvocanescens (Rydb.) Smyth, Solidago scabra Muhl.,

Solidago elongate Nutt., Solidago salebrosa (Piper) Rydb. and Soli-
dago pruinosa Greene [36]. Solidago canadensis is found in almost

every state in the USA and throughout Canada (http://www.

fs.fed.us/database/feis/plants/forb/solcan/all.html).

Whether recent or projected increases in Ca can induce

changes in pollen protein concentration that could, poten-

tially, also impact pollinator health, has not been

established. Yet, such information may be particularly rel-

evant for bees and other pollinators, given their role in

global food production; hence, we wished to determine

whether Ca has, or could, affect pollen protein levels using

S. canadensis as a test case.
2. Material and methods
(a) Anatomical considerations
To determine variation between floral parts with respect to nitro-

gen and carbon, pollen was collected in situ for tall or Canada

goldenrod at three locations within Indiana and two locations

in Maryland in 2012. Pure pollen was compared to pollen/

anther composition with respect to carbon and nitrogen concen-

tration using carbon, hydrogen, nitrogen (CHN) analysis (see

CHN analysis section). Pollen and anther C and N were similar

in concentration and highly correlated (r2. 0.96). This allowed a

relative comparison between pollen per se and the anther/pollen

samples taken from the historical and experimental studies.

(b) Historical
Canada goldenrod (S. canadensis) is the largest goldenrod taxon

and includes a number of taxa that have species status such as S.
altissima (http://plants.usda.gov/core/profile?symbol=soal6).

Taxonomically identified specimens of S. canadensis were obtained

from the Smithsonian Institution’s Museum of Natural History’s

collection. Pressed plants contained both vegetative and floral

tissue, as well as date and location of the collected specimen. All

samples contained fully developed flowers. Because these flowers

were dry and subject to protein degradation, elemental analysis

(C, H and N) was used to estimate protein concentration.

The collected plants from the USA were from Arizona,

California, Colorado, Indiana, Maryland, Texas and the District

of Columbia. Canadian samples, all from Ontario province, were

also examined. Floral branches, usually 4–6 per plant and

4–10 cm in length were excised from each sample. Each branch

was placed in a scintillation vial and labelled. A hand lens with

razor blade or tweezers was used at the laboratory to remove flor-

ets from involucres. Anthers and pollen were placed into tin

capsules (8 � 5 mm) and weighed on a Perkin-Elmer autobalance.

Overall, four to six floral branches were collected from each of 350

individual plant specimens in the USA and Canada that spanned a

time period from 1842 through to 1998. Florets from each branch

were analysed separately then averaged for a given herbarium

sample. Additional field samples were processed from Maryland

(2008, 2012, 2014) and Texas (2012, 2014).

(c) Experimental: floral demography and insect
visitation

To provide a more updated assessment of autumn floral demo-

graphics and to quantify Solidago populations, we measured the

frequency of flowering stems and mapped their distribution

using a 24 � 24 m area gridded into 1 m2 quadrats in Williams-

town, Berkshire County, Massachusetts. We identified all stems

to the species level and for quadrats with less than 15 stems, we

recorded the x- and y-coordinates; for quadrats with more than

15 stems, we assigned coordinates so that stems were evenly dis-

tributed in the quadrat. To determine the type and frequency of

flower visitors to autumn-blooming Asteraceae, we marked out

ten 1 m2 quadrats and directly scored visitors to flowers in five

3 min observations periods (15 min) for 10 quadrats for a total

of 750 min. We recorded the identity of each insect that visited a

flower in the quadrat. Both sets of observations were from 2010;

September and early October, up until the first frost.

(d) Experimental: field trials
Solidago canadensis was grown in assemblages of prairie plants

along a pre-industrial (subambient) to projected Ca gradient

(500 ppm) in the Lysimeter CO2 Gradient (LYCOG) facility

located in central Texas USA (318050 N, 978200 W). The LYCOG

consists of two transparent and tunnel-shaped chambers, aligned

http://www.fs.fed.us/database/feis/plants/forb/solcan/all.html
http://www.fs.fed.us/database/feis/plants/forb/solcan/all.html
http://www.fs.fed.us/database/feis/plants/forb/solcan/all.html
http://plants.usda.gov/core/profile?symbol=soal6
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in parallel along a north–south axis. At present, this is the only

field-based facility capable of exposing plant assemblages to a

continuous gradient of Ca spanning pre-industrial to elevated

concentrations [44,45].

Each chamber in LYCOG is divided into 10 consecutive com-

partments each 5 m long and 1.2 m (LYCOG) wide and tall.

Chambered vegetation was enclosed in a transparent polyethy-

lene film. Photosynthesis by enclosed vegetation progressively

depleted the CO2 concentration in air as it was moved by blowers

towards the air outlet of each chamber to create daytime CO2 gra-

dients of 500–395 ppm (elevated chamber) and 395–250 ppm

(subambient chamber). Night-time CO2 concentrations were

regulated at 130–150 ppm above daytime values along each

chamber. Air temperature and vapour pressure deficit were

regulated near ambient values by cooling and dehumidifying

air at 5 m intervals along chambers. CO2 treatments are maintained

each growing season from April through to mid-November.

The LYCOG facility was constructed atop 1.2 m wide � 1.6 m

deep steel containers that were buried to 1.2 m depth and into

which were placed intact soil monoliths (each 1 � 1 � 1.5 m

deep) of three soil types: silty clay, clay and sandy loam [44].

Four perennial C4 grass species and three perennial C3 forb species,

all characteristic of tallgrass prairie in central Texas, were trans-

planted into each monolith in June 2003, 3 years prior to CO2

treatment [44,45]. Eventual dominants included the C4 grasses

Bouteloua curtipendula (Michx.) Torr. and Sorghastrum nutans (L.)

Nash and the forb S. canadensis (Canada goldenrod). CO2 treat-

ments were initiated in 2006. Each monolith in the LYCOG was

irrigated twice weekly during each growing season. Irrigation

was applied to simulate the seasonal distribution and average of

growing season precipitation in central Texas (560 mm). Solidago
canadensis was sufficiently abundant to assess relationships

between pollen N and Ca only for monoliths from the clay soil.

In early October of 2012 and again in 2014, we collected

10–15 floral branches (3–6 cm in length) with pollen-bearing

anthers from monoliths of the clay soil along the Ca gradient

(i.e. from 280 to 500 ppm). (Samples were also taken in 2013,

but were not analysed owing to the government shutdown.)

Floral collections were accessed through zippered-openings in

the polyethylene film enclosing vegetation. Samples were col-

lected from each inflorescence present in each monolith (more

than three flowering stems/monolith), combined for a given

monolith, and stored in labelled vials. All vials were sent to Belts-

ville, MD, USA where they were processed as with the historical

samples. The Ca to which plants in each monolith was exposed

was calculated from the linear relationship between Ca and the

physical position of each monolith along the gradient [44,45].

The effect of Ca on floral quality did not differ as a function of

year, so both years were combined for analysis; however, S. cana-
densis biomass production was not correlated with Ca for either

year (p ¼ 0.26 and 0.87 in 2012 and 2014, respectively). The

forb contributed an average of 12.5% of above-ground

production of prairie assemblages along the Ca gradient.
(e) Carbon, hydrogen, nitrogen analysis
Elemental concentrations of carbon and nitrogen were

determined using a Perkin-Elmer 2400 CHN/O analyser

(Perkin-Elmer, Waltham, MA, USA). Samples from all floral

branches for a given specimen/sample were collected and

pooled, and three subsamples were run to establish an average

value. Nitrogen and carbon content were determined as a per-

centage of the dry weight of the sample. Because it has been

used previously for assessing nitrogen to protein conversion

for pollen in bee diets, a conversion factor (N to protein) of

6.25 was used [46]. The protein concentration reported for

S. canadensis in this study for ambient Ca is consistent with that

of other studies [47].
( f ) Statistical considerations
For analysis of both historical and experimental data, we used

regression analysis to test for significance between Ca and the

response variable using SIGMAPLOT (v. 12, 2014). We tested

different functions for data fitness and selected the model with

the highest adjusted r2. If no differences were evident, we

report results for the linear ‘best-fit’ model.
3. Results
Although there are a number of older quantitative estimates of

demography and predominance of S. canadensis and related

taxa (e.g. S. altissima) [38]; we wished to update these data

by documenting the floral dominance and pollinator visits

for Solidago during the autumn, including domesticated and

wild bees. We observed that of 11 718 flowering stems,

10 993 (87%) are Solidago with S. altissima representing 5964

(50%) and Apis, or honeybees, being the dominant pollinator

(figure 1a,b). The relative abundance of Solidago observed

was consistent with previous observations (e.g. [38]).

Having confirmed the dominant role of Solidago in

pollen availability during the autumn; we then determined

whether Ca influenced the nutritional value of S. canadensis
pollen. We employed two independent methodological

approaches. Both approaches; one historical, one experimen-

tal, make use of a continuous Ca gradient. Results from

continuous Ca gradients can be highly informative, as plant

properties, including tissue chemistry, do not always respond

in a linear manner with ambient Ca versus 2� ambient Ca

comparisons [48].

Historical data were obtained through the Smithsonian

Institution’s National Museum of Natural History archives.

These archives contain floral S. canadensis plant samples

collected between 1842 and 1998 across a wide range of

biogeographic locations throughout the USA and southern

Canada. In addition, we supplemented these historical data

with S. canadensis samples obtained in situ from Maryland

(2008, 2012, 2014) and Texas (2012, 2014). The increase in Ca,

from the onset of the industrial revolution to the beginning

of the twenty-first century, was highly correlated with the

observed decline in pollen protein (r2 ¼ 0.81, p , 0.001) with

overall pollen protein declining by approximately one-third

(from approx. 18 to 12%; figure 2a). Although the entire Ca

record is over a 170 year period, the bulk of the Ca increase

has, in fact, occurred since the latter half of the twentieth

and early twenty-first century (i.e. Ca has risen from approx.

315 ppm in 1960 to 398 ppm in 2014); consequently, the largest

decrease in pollen protein for S. canadensis has occurred during

that time. The observed decrease in protein is concomitant to a

parallel increase in the ratio of carbon to nitrogen (figure 2b).

Such an increase is consistent with previous studies and is

likely to indicate more substantial increases in carbohydrate

to protein ratio as increasing Ca tends to increase the concen-

tration of starch and sugars while reducing the concentration

of protein (nitrogen) in plant tissues (e.g. [5,9]).

The experimental study was conducted in situ, using

parallel, elongated chambers to maintain a continuous Ca

gradient spanning pre-industrial to projected mid-twenty-

first century (500 ppm) concentrations [44,45]. Carbon and

nitrogen were quantified and pollen protein estimated for

S. canadensis flowers grown along this Ca continuum during

2012 and 2014. Although the absolute numbers differed, the
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pollen-Ca pattern observed was consistent with that derived

from historical data; i.e. at higher Ca levels along the exper-

imental tunnels, pollen protein concentration declined and

carbon : nitrogen ratios increased (figure 3a,b). In addition,

both approaches showed a similar decline in protein

content and concurrent increase in carbon : nitrogen ratio

for S. canadensis pollen in response to increased Ca.
4. Discussion
The decline in pollen protein concentration with Ca for

S. canadensis observed in both the historical and experimental
analyses is consistent with many studies and meta-analyses

which have shown that increased Ca systemically reduces

nitrogen and protein concentration in non-leguminous plant

tissues [1–6,8,9]. Decreases in nitrogen concentration have

also been reported for herbaria plant specimens in response

to the increases in Ca during the twentieth century [50]. Over-

all, the data from the current study provide strong evidence

that rising Ca since the start of the industrial age has, and

will continue in the near term, to reduce the pollen protein

concentration of Solidago, an important autumn pollen

source for bees and other pollinators.

Because pollen provides all of the essential amino acids

needed for bee development and can, in turn, affect hypo-

pharyngeal gland and ovary development, pathogen

susceptibility, immunocompetence and overall bee longevity

[21,25,51–53], reductions in pollen protein concentration of

Solidago have the potential to negatively affect bee health

and survival.

These results for Solidago may be particularly relevant to

potential health impacts for bees as it is the source of some

of the last seasonal pollen acquired prior to winter, and

thus constitute the nutrient load available for overwintering.

Bees that overwinter require substantial pollen stores because

late winter brood rearing occurs prior to the availability of

spring pollen in temperate zones. For example, Farrar [54]

found that the spring bee population as a percentage of the

http://www.esrl.noaa.gov/gmd/ccgg/trends/
http://www.esrl.noaa.gov/gmd/ccgg/trends/
http://plants.usda.gov/core/profile?symbol=soal6
http://plants.usda.gov/core/profile?symbol=soal6
http://plants.usda.gov/core/profile?symbol=soal6


14

13

12

11

10

9

8

7

35

30

25

20

15

14

13

12

11

10

9

8

7

35

30

25

20

15
250 300 350

treatment CO2 concentration (ppm)
400 450 500

ca
rb

on
:n

itr
og

en
es

tim
at

ed
 p

ro
te

in
 (

%
)

(a)

(b)

r2 = 0.88, p < 0.01

r2 = 0.92, p < 0.01

Figure 3. Average and variation (+s.e.) in estimated protein concentration
(a) and carbon to nitrogen ratio (b) for experimental samples from floral
(anthers and pollen) tissue for S. canadensis growing along a continuous
gradient of Ca in clay soil for a mixed prairie community. Ca treatments
were initiated in 2006. Data were averaged for 2012 and 2014 for each Ca

treatment sampled within the LYCOG facility, n ¼ 6 – 14 per Ca.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

283:20160414

5

autumn population was positively correlated with the

amount of stored pollen. In general, for temperate climates,

early spring is recognized as a time of pollen protein

shortages and colony starvation [22,27,35].

But can bees distinguish protein concentration among

diverse pollen sources; and by doing so, compensate for

any Ca-induced decrease? It has long been known that honey-

bees can differentiate sugar content among nectar sources

and convey such information to the colony (e.g. the ‘waggle

dance’). However, while amino acid composition has been

suggested as a learned aspect of honeybee protein forag-

ing [55]; the overall consensus is that bees do not collect

high-quality pollen preferentially [56,57].

There is widespread agreement then that: (i) pollen

protein is an essential aspect of bee diet, and (ii) bees do

not appear able to compensate by choosing other floral

sources with higher protein concentration. Given the tem-

poral importance of autumn pollen in pollinator life cycles

in North America, the increase in Ca associated with climatic
change and the resultant decline in pollen protein concen-

tration of S. canadensis, could adversely affect bee health

and overwintering capacity on a continental scale.

However, there are a number of caveats that need to be

considered. First, it cannot be assumed that projected

increases in Ca above those considered here will be propor-

tionate to protein loss; i.e. there is the potential for

saturating effects on protein concentration with rising Ca.

Second, the subsequent influence of reduced protein concen-

tration from S. canadensis on bee feeding, health or

demographics has not been explicitly determined. Finally,

whether Ca is also resulting in similar reductions in pollen

protein in other floral species needs to be quantified (e.g.

[58]). Overall the specific consequences of declining pollen

concentration are likely to be dependent on these factors, as

well as other environmental characteristics (e.g. Varroa, neo-

nicotinoids), percentage of Solidago among flowering species

in the autumn, etc. These environmental parameters and

their potential interactions will require further elucidation

in the context of Ca-induced nutritional changes in order to

fully quantify impacts to bee health and population stability.

Although additional information is clearly needed, the

current data do indicate a clear and unequivocal link, both

historically and experimentally, between rising Ca and a

qualitative decline in pollen protein for S. canadensis;
among the most widely recognized and widely available

food source for bees in North America (e.g. [43]). Given the

economic and environmental importance of bees, and

because the rise in Ca is global in nature, these data provide

an urgent and compelling case for establishing the Ca sensi-

tivity of pollen protein for other floral species and, in turn,

quantifying the potential consequences for pollinator

physiology around the globe.
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