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Remodelling of soft biological tissue is characterized by interacting

biochemical and biomechanical events, which change the tissue’s micro-

structure, and, consequently, its macroscopic mechanical properties.

Remodelling is a well-defined stage of the healing process, and aims at

recovering or repairing the injured extracellular matrix. Like other physio-

logical processes, remodelling is thought to be driven by homeostasis, i.e. it

tends to re-establish the properties of the uninjured tissue. However,

homeostasis may never be reached, such that remodelling may also

appear as a continuous pathological transformation of diseased tissues

during aneurysm expansion, for example. A simple constitutive model

for soft biological tissues that regards remodelling as homeostatic-driven

turnover is developed. Specifically, the recoverable effective tissue

damage, whose rate is the sum of a mechanical damage rate and a healing

rate, serves as a scalar internal thermodynamic variable. In order to inte-

grate the biochemical and biomechanical aspects of remodelling, the

healing rate is, on the one hand, driven by mechanical stimuli, but, on

the other hand, subjected to simple metabolic constraints. The proposed

model is formulated in accordance with continuum damage mechanics

within an open-system thermodynamics framework. The numerical

implementation in an in-house finite-element code is described, parti-

cularized for Ogden hyperelasticity. Numerical examples illustrate the

basic constitutive characteristics of the model and demonstrate its poten-

tial in representing aspects of remodelling of soft tissues. Simulation

results are verified for their plausibility, but also validated against reported

experimental data.
1. Background
Living matter has the ability to adapt and evolve in response to disease, exter-

nal loads and environmental stimuli or aggressions. In particular, tissues are

capable of healing in order to arrest the extent of the damage caused by

injury or disease and, ultimately, restore the tissue’s original function. The

repair of soft tissues is known to be driven by a complex sequence of events

involving cellular processes as well as biochemical and biomechanical factors

[1,2]. The exact role of many of these factors is not completely understood

yet. Nonetheless, from a physiological point of view, the healing process is

classified into four distinct but overlapping phases: haemostasis, inflammation,

proliferation and remodelling [3,4].

Following an injury, the loss of structural integrity in the tissue immediately

activates the coagulation cascade that results in a platelet-rich fibrin clot
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(haemostasis phase). Within 1–3 days after injury, neutro-

phils and macrophages are attracted to the wound site to

phagocytose bacteria and debris, preventing wound infection

(inflammation phase). Cytokines are also released, which

stimulate angiogenesis and enhance the production of fibro-

blasts. The ensuing fibroblast proliferation and migration

results in the synthesis and deposition of collagen in the

extracellular matrix (ECM), that leads to the formation of

granulation tissue (proliferation phase). This phase can last

up to several weeks. In skin wounds, epithelialization and

wound retraction is also observed [5]. The final stage (remo-

delling phase) lasts from weeks to years and consists of a

continuous synthesis and degradation of collagen as the

ECM is remodelled, and the granulation tissue becomes the

scar tissue. As this matrix turnover takes place, its compo-

sition shifts and reorganizes: the newly formed blood

vessels regress, the ‘flaws’ (such as fat cells and inflammatory

pockets) are removed, and the collagen fibres become increas-

ingly organized. Over time, and under adequate biochemical

and biomechanical conditions, the remodelled tissue

approaches the characteristics of the original undamaged

tissue. However, the completely healed scar tissue often

does not fully recover the characteristics of the uninjured

tissue it replaces [1]. In addition, homeostasis may never be

reached, such that remodelling may also appear as a continu-

ous pathological transformation of diseased tissues during

aneurysm expansion for example [6].

The mathematical modelling of wound healing has been

widely addressed since the development of the first models

in the 1990s [7–9]. These models focus on the underlying

cellular and biochemical mechanisms to define and simulate

dermal wound contraction [10–12] and angiogenesis [13–15]

from a continuum-based approach. The inflammation and

proliferation phases have also been modelled using a discrete

or a hybrid discrete/continuum approach [16–18] and, more

recently, a systems-biology multi-scale and multi-field

approach has been proposed [19]. The reader is referred to

the works by Tepole & Kuhl [20] and Valero et al. [21] for a

comprehensive review of mathematical and computational

dermal wound healing models.

On the other hand, the remodelling phenomena, under-

stood as a change in the properties of the tissue, have also

been extensively addressed. In general, it is treated together

with growth and not necessarily in the biological context of

the above-described tissue healing process [22–25]. Many

of these models aim at characterizing collagen fibre reorienta-

tion through evolving structural tensors [26–31]. A different

approach characterizes growth and remodelling as a

continual turnover of tissue constituents by means of a con-

strained mixture theory [32–35], or, more recently, a

mechanistic microstructural theory [36].

Over the past few years, advancements in the field resulted

in sophisticated models with cellular [37,38] and molecular

[39] processes being the driving forces of remodelling. In this

sense, much effort is directed towards representing remodel-

ling in vascular tissue [40–43], with a particular focus on the

pathological remodelling observed in aortic aneurysm tissue

[44–46]. The mathematical modelling of the inflammation,

proliferation and remodelling phases in ligament tissue has

also been addressed [47,48].

Numerous studies, both in animal models and in patients,

have shown that mechanical loading has a significant impact

on the speed and efficiency of healing [49–52]. However, the
optimal loading regime remains unclear, and the detailed

mechanobiogical mechanisms involved are not fully under-

stood. Computational approaches have been widely used in

bone healing mechanobiological modelling to enable predic-

tions of bone healing and improve the understanding of both

mechanical and biological mechanisms at play [53,54]. In

order to apply this approach to soft tissue healing, a conti-

nuum constitutive model is required that can represent both

the changing soft tissue mechanics during healing and the

proposed biophysical stimuli for the cells involved.

This work introduces a novel constitutive model that

captures the continuous turnover of tissue observed in the

remodelling phase that ultimately leads to the recovery of

injured tissue. This homeostatic-driven turnover remodell-

ing (HTR) model is capable of modelling the last stage in

the above-described healing process, but can also capture

the pathological remodelling of tissue observed in certain

diseases [55], such as the abdominal aortic aneurysm

(AAA) [56].

The proposed HTR model is consistent with an open-

system thermodynamics framework [57]. It is formulated

in accordance with the principles of continuum damage

mechanics (CDM), following ideas proposed in bone remo-

delling by Doblaré & Garcı́a [58]. Consequently, damage is

assimilated to an apparent density that evolves in response

to mechanical loading. In the present formulation, how-

ever, damage (and its repair) can be physically associated

with the injury (and healing) observed in live tissues.

Thus, the granulation tissue formed in the proliferation

phase is akin to a damaged material in CDM, character-

ized by microfissures and voids that result in a loss of

stiffness and strength. Then, through remodelling, the

‘flaws’ in the granulation tissue are removed (healed) and

it becomes increasingly organized, approaching the original

characteristics of the ECM material. This process is compar-

able to a reversal of damage in a CDM framework, in

which the load-carrying capacity of the tissue is gradually

recovered.

The HTR model describes the overall change in material

behaviour at tissue level of healing/remodelling tissues.

Healing in this model is not only driven by mechanical load-

ing, but also by biological stimuli. In particular, the

underlying metabolism in healing tissues is represented by

phenomenological parameters.

The thermodynamic basis and derivation of the HTR con-

stitutive model is developed in §2. The damage evolution and

healing rate equations are also outlined in this section as are

the details of the numerical implementation in an in-house

finite-element (FE) software [59]. Additional information for

this numerical implementation is detailed in appendix

A. Section 3 includes several examples with the aim of illus-

trating the basic constitutive characteristics of the model and

validate it with experimental data from the literature. The

characteristics of the model, in addition to its advantages

and shortcomings, are discussed in §4. Finally, conclusions

are addressed in §5.
2. A constitutive model for homeostatic-driven
turnover remodelling

Soft tissue is known to be highly deformable, yet experience neg-

ligible volume changes, and exhibit a characteristic J-shaped
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nonlinear response [60]. For many applications, its behaviour can

be described by means of decoupled quasi-incompressible

hyperelastic models [61–63], with damage affecting solely the

deviatoric term [64–68]. Albeit their limitations, discussed in

§4, these simplifying hypotheses are also assumed in this work.

The HTR model captures the homeostatic-driven turnover

remodelling of soft tissues, i.e. the last phase of tissue healing.

The model is developed within the framework of CDM and is

based on the thermodynamics of irreversible processes with

internal state variables [69–72].

Unlike inert materials, tissues have an underlying metab-

olism, which is essential to the growth, healing and

remodelling processes characteristic of living organisms.

From a continuum mechanics standpoint, this metabolism

introduces energy into the system, allowing for the ‘recovery’

of the energy dissipated during damage and, thus, permitting

a ‘reversal’ of the damage produced in the material. Conse-

quently, the total specific Helmholtz free energy density

introduced into the system is the sum of the initial strain

energy Cini contained in the tissue and the strain energyeCR introduced by the metabolism such that

C ¼ Cini þ eCR ¼ Cvol þ eCini þ eCR: ð2:1Þ

Here, the energies are given with respect to the density in the

reference configuration, and the tilde indicates the deviatoric

or volume-preserving part of the free energy. The subscript

‘vol’ refers to the volumetric part.

The recovery energy eCR reverses the damage in the tissue

such that the internal damage variable is no longer accumu-

lative in nature, i.e. as in classic CDM models. Specifically, we

postulate the deviatoric part of the specific Helmholtz free

energy density to be of the form

eC ¼ eCini þ eCR ¼ ð1�DeffÞ eC0, ð2:2Þ

where eC0 ¼ eC0ðeCÞ is the original (undamaged) hyperelastic

specific Helmholtz free energy density given in terms of the

deviatoric part of the right Cauchy–Green strain tensor, eC.

The effective damage Deff is the internal (recoverable) damage

variable, which only affects the deviatoric part of the tissue’s

strain energy. Its rate is given by

_Deff ¼ _D� _R, ð2:3Þ

where _D is the rate of D [ [0, 1], an explicit Kachanov-like

mechanical damage variable, and _R is the rate of R, the

repair or healing term. From a CDM point of view, D may

be associated with the microvoids and small fissures that

appear and extend as damage initiates and evolves. D ¼ 0

corresponds to a compact material with no voids or fissures,

whereas D ¼ 1 is a completely damaged material whose

amount of voids and fissures is such that it can no longer

carry any load. The healing term R represents the reversal

or ‘filling’ of these microvoids and small fissures such that

the original load-carrying capacity of the material is recov-

ered. Then, R ¼ 1 corresponds to a mass deposition

equivalent to the original undamaged material stiffness

and, thus, coincides with a recovery energy eCR ¼ eC0, i.e.

the initial pre-injury strain energy. Hence, the healing term

can be defined in terms of the specific strain energy densities

as R ¼ ð eC� eCiniÞ= eC0.

Ideally, the original properties of the uninjured tissue should

be recovered at the end of the healing process such that the healed

tissue is indistinguishable from the pre-injured tissue. In practice,
some healed tissues are softer than their corresponding healthy

uninjured tissue [1,73,74], whereas others become stiffer, often

loosing functionality. The latter is the case of fibrotic scar tissue

[75–77], which has been associated with pathological conditions

caused by an aberrant ECM production that results from per-

turbed homeostasis in the tissue [55]. In this work, the former

case will be addressed and, thus, R [ [0, 1] is assumed, i.e. at

most, the original properties can be recovered. The full recovery

(R ¼ 1) corresponds to a successful restoration of the tissue’s

homeostatic state.

The evolution of both D and R will be defined in more

detail in §§2.2 and 2.3, respectively. However, because R
will be seen to implicitly depend on the tissue damage, it is

anticipated that Deff [ ½0, 1�.
2.1. Thermodynamic basis and constitutive equation
The Clausius–Duhem inequality in terms of specific free

energy density, considering the simplifying arguments intro-

duced by Simo [78], is ð� _Cþ S: _C=2Þ � 0, where S is the

second Piola–Kirchhoff stress tensor. This expression,

deduced in the framework of classic CDM, does not account

for the energy introduced into the system to allow for the

reversal of damage. To account for the entropy entering the

system, a term analogous to the one described in the free-

energy-based Clausius–Duhem inequality for open systems

proposed by Kuhl & Steinmann [57] is added, resulting in

� _Cþ S:
_C

2
� S0 u � 0: ð2:4Þ

Here, S0 is the density of entropy source and u is the absolute

temperature. We assume the entropy is introduced into

the system exclusively through an internal source, the

system’s metabolism. Hence, the entropy flux r � S defined

by Kuhl & Steinmann [57] is null here.

Introducing now (2.1) and (2.2), and considering that the

inequality must hold true for any strain increment, leads to

the constitutive equation

S ¼ Svol þ ð1�DeffÞeS0 ¼ 2
@Cvol

@C
þ ð1�DeffÞ2

@ eC0

@C
: ð2:5Þ

Thereby, the dissipation inequality

_Deff
eC0 � S0u � 0 ð2:6Þ

must be satisfied. A density of entropy source S0 of the type

typically found in the context of biomechanics [57] is con-

sidered, S0 ¼ � eC0R0=u, with a normalized mass source

R0 ¼ _R. Here, _R is the healing rate introduced in (2.3), i.e.

the normalized rate at which strain energy is introduced

into the system to allow for damage reversal. Then, the

dissipation inequality (2.6) becomes

_Deff
eC0 þ _R eC0 � 0: ð2:7Þ

Introducing (2.3), this expression is reduced to the classic

mechanical dissipation owing to damage, given in the

reference configuration, J
D ¼ _D eC0 � 0, which must be

non-negative at any time.
2.2. Mechanical damage evolution
Following CDM theory, the stress level determines the damage D
in the tissue. The linear and exponential softening laws used in
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the generalized damage model described in Comellas et al. [79]

are considered for the evolution of the variable D:

linear softening D ¼ GðtÞ ¼ 1� t d
0 =t

1þH
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and exponential softening D ¼ GðtÞ ¼ 1� t d
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Here, the initial damage threshold td
0 and the fracture energy

gd
f are material properties per unit spatial volume that can be

identified from passive in vitro tests and t ¼
ffiffiffiffiffiffiffiffiffi
2 eC0

q
denotes

the Simo & Ju energetic norm [70].
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2.3. Healing rate
The evolution of the repair or healing variable R is defined

in accordance with the biochemical and biomechanical

observations of healing soft tissue. It is inferred from the

description of the phases of the healing process that

damage is a trigger of this process, but healing only

occurs when the metabolism allows for it (figure 1). In

addition, in many cases, the mechanical properties of the

completely healed tissue remain inferior to uninjured

tissue [1,73,74]. Based on this experimental evidence, the

healing rate,

_R ¼ _hkDeff � jl, ð2:9Þ

is proposed. Here, k†l represents the Macaulay brackets [80],

_h is a function that regulates how fast healing occurs (intro-

duces a time scale) and j defines the percentage of stiffness

that is not recovered at the end of the healing process. Note

the implicit character of the healing rate, because Deff is a

function of R. In addition, because Deff is also a function

of D, the healing rate is also implicitly dependent on the

mechanical loading of the tissue.

The irreversible stiffness loss parameter j [ [0, 1] is

a given value that dictates the amount of stiffness lost,

with respect to the uninjured tissue’s stiffness, at the end

of the healing process. In other words, j establishes the

remnant effective damage that is not recovered in the

completely healed tissue. For example, j ¼ 0.2 indicates

that, after complete healing, the tissue will have recovered

80% of its original stiffness, namely there will remain a

Deff ¼ 0.2.

The function _h regulates the healing speed, which is

directly related to the system’s metabolism or biological

availability. Here, the biological availability is understood

as the complete set of internal biochemical elements (pro-

teins, enzymes, growth factors, etc.) necessary for healing to

take place [81]. Owing to lack of experimental data and for

the sake of simplicity, a constant healing rate has been

defined, _h ¼ k. The healing rate parameter k is a given

value that determines the healing time scale and is measured

in [time]21.

Thus, the healing rate function _R proposed here complies

with the basic biomechanical conditions that under absence

of injury (Deff ¼ 0) or in the case of no biological availability

(k ¼ 0 days21) healing will not occur.
2.4. Numerical implementation
The proposed HTR constitutive model has been implemented

in the in-house FE software PLCd [59]. The code, developed

in Fortran, uses the direct sparse solver Pardiso [82] and a full

Newton algorithm to solve nonlinear finite strain three-

dimensional solid mechanics problems. The HTR model has

been implemented in a total Lagrangian framework at

Gauss point level of a Q1P0 mixed u/p FE formulation

[83,84]. The Ogden model has been chosen owing to its abil-

ity to reproduce the stress–stretch J-curve characteristic of

soft biological tissues, such that the deviatoric strain energy

reads

~C0 ¼
X3

i¼1

mi

ai
(~l

ai

1 þ ~l
ai

2 þ ~l
ai

3 � 3), ð2:10Þ

where ~li are the principal deviatoric stretches, mi are (con-

stant) shear moduli and ai are dimensionless constants. The

material parameters must satisfy the consistency condition

2m ¼
X3

i¼1

miai with miai . 0 for i ¼ {1, 2, 3}, ð2:11Þ

where m is the referential shear modulus of the material. The

volumetric strain energy,

Cvol ¼
1

2
kðJ � 1Þ2, ð2:12Þ

is used. Here, k is the bulk modulus and J is the Jacobian

determinant of the deformation gradient tensor F. Note that

the bulk modulus acts as a numerical penalizer in the

mixed FE formulation such that J! 1 is satisfied on the

element level.

Consequently, the corresponding volumetric and

deviatoric parts of the second Piola–Kirchhoff stress in (2.5)

read

Svol ¼ �pJC�1,

eS0 ¼
X3

A¼1

X3

i¼1

mi
~l
ai

A �
1

3

X3

p¼1

~l
ai

p

0@ 1AMA,

9>>>=>>>; ð2:13Þ

with the hydrostatic pressure p ¼ �@Cvol=@J, and

MA ¼ l�2
A NA �NA, NA being the eigenvector of the right

Cauchy–Green deformation tensor.

Details regarding the numerical implementation of the

HTR model are schematized in table 1, and the required tan-

gent constitutive tensor is derived in appendix A. The

numerical implementation introduces an auxiliary mechan-

ical damage variable, Dn
aux, to be able to detect the cases in

which there is an (elastic) unloading on the tissue. This

is due to the fact that the mechanical damage variable is

updated at the end of each increment with the computed



Table 1. Numerical implementation at Gauss point level of the constitutive model for homeostatic-driven turnover remodelling in the in-house FE code PLCd [59].

initialization at t ¼ 0 and n ¼ 0

effective damage, D nþ1
eff ¼ D n

eff ¼ 0 and mechanical damage, D n ¼ D n
aux ¼ 0

maximum reached value of the damage threshold stress, tmax ¼ td
0

algorithm at each load increment n

given: deformation gradient tensor F, elemental pressure p and material properties: mi, ai, td
0, gd

f , k and j

determine the right Cauchy – Green tensor C ¼ FT � F, its invariants IC ¼ Cii and IIIC ¼ J2, principal stretches li and its deviatoric parts ~li .

compute the volumetric and deviatoric parts of the predictor hyperelastic stress, Sh ¼ Svol þeS0, from (2.13) and the corresponding tangent constitutive

tensor (see appendix A)

determine the undamaged deviatoric part of the Helmholtz free energy ~C0 from (2.10), and compute the present damage threshold, t ¼
ffiffiffiffiffiffiffiffi
2 eC0

q
[70]

IF t . tmax THEN (damage progresses)

compute the mechanical damage increment, DD ¼ kDnþ1 � Dnl, with Dnþ1 from (2.8). Obtain @D=@t as in appendix A

IF Dnþ1 , Dn
aux THEN (elastic unloading)

@D=@t ¼ 0

END

update auxiliary damage variable from previous step Dn
aux ¼ Dnþ1

ELSE (no further damage)

assign DD ¼ 0 and @D=@t ¼ 0

END

evaluate the effective damage and the derivative of the healing variable:

Dnþ1
eff ¼ ðDn

eff þ DDþ k jDtÞ=ð1þ kDtÞ and @R=@Deff ¼ kDt

IF ðDnþ1
eff � jÞ , 0 THEN (no further healing)

assign Dnþ1
eff ¼ Dn

eff þ DD and @R=@Deff ¼ 0

END

update the maximum reached value of the damage threshold for current Dnþ1
eff : impose GðtÞ ¼ Dnþ1

eff in (2.8) and isolate t ¼ tmax

update the internal variables Dn
eff ¼ Dnþ1

eff and Dn ¼ Dn
eff

compute the stress state for the present load step from (2.5):

S ¼ Svol þ ð1� Dnþ1
eff ÞeS0

compute the corresponding tangent constitutive tensor (see appendix A):

Ctan ¼ Ctan
vol þ ð1� Dnþ1

eff ÞeC0 �
@D
@t

1
t

1þ @R
@Deff

� ��1eS0 �eS0

healthy tissue

healed (scar)
tissue

remodelling
(HTR model)

healing (granulation)
tissue

injured tissue

metabolism

supra-
physiological

load

haemostasis,
inflammation and

proliferation

Figure 1. Interpretation of the healing process in a CDM framework and
contribution of the HTR model in this context. (Online version in colour.)
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effective damage value (Dn ¼ Dn
eff) so that at the end of the

healing process, when Deff ¼ j is recovered, there is no

stored history of accumulated mechanical damage. This is

in accordance with the definition of the HTR model’s internal

variable Deff (2.3) in terms of rates.

It becomes clear from the numerical algorithm that the

computed value of Deff may decrease only when there is

active healing, which occurs for ðDeff � jÞ � 0. Hence, this

variable is automatically bounded from below by

Deff ¼ j [ ½0, 1�, 0 being the lowest possible value that the

effective damage may take. Because _R � 0 (as defined in

(2.9)) and the mechanical damage rate _D is necessarily non-

negative (as deduced from (2.7)), Deff only increases when

the mechanical damage progresses (DD . 0) which, at most,

will produce a value D ¼ 1. As a result, Deff is automatically

bounded from above by 1. Although R is not required,

because Deff is computed in terms of the implicit function

defined for the healing rate _R, it could be calculated at the

end of each load increment as R ¼ Dnþ1 �Dnþ1
eff and,



1 cm

1 cm

1 cm

y

x
u

z

Figure 2. Prescribed displacements applied on an eight-noded hexahedral
linear element with a single pressure integration point (Q1P0) used in the
homogeneous uniaxial tensile test example.

Table 2. Hyperelastic and damage material parameters used in the
homogeneous uniaxial tensile test example. The fracture energy per unit
area is computed as: Gf ¼ gd

f L0, where L0 is the localization or
characteristic length in the reference configuration [85,86].

parameter value

Ogden material behaviour

m1 4 kPa

m2 370 kPa

m3 25 kPa

a1 6.4

a2 1.9

a3 24.2

td
0 1.16 kPa1/2

Gf 20 N cm21

neo-Hookean material behaviour

m1 1.5 MPa

a1 2.0
d 1/2
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considering the aforementioned bounds of Deff and D, it

would be seen to satisfy R [ ½0, 1�.

t0 322.8 kPa

Gf 40 N cm21
3. Validation examples
The main characteristics of the HTR model are illustrated

by means of a simple uniaxial tensile test example. Then,

data on ligament healing taken from the literature are used

to validate the model. Finally, an AAA is numerically repro-

duced under different healing conditions to demonstrate

the applicability of the model in reproducing experimental

set-ups and the capability of the formulation to analyse

geometrically complex models.
3.1. Homogeneous uniaxial tension
An eight-noded cubic element with 1 cm length sides is

subjected to a displacement-driven pure tensile load applied

in steps of 0.1 mm, as shown in figure 2. Each load step

corresponds to a time increment of 0.05 days. Two sets of hyper-

elastic and damage material properties have been considered

(listed in table 2), one reproduces a neo-Hookean-like behaviour

and the other, an Ogden-like one. A penalizer value 109 times

the maximum value of the shear moduli has been considered

for the bulk modulus k in all cases.

In the first set of examples (figure 3), an irreversible

stiffness loss parameter j ¼ 0 has been used, such that the

initial stiffness properties will be completely recovered by

healing. The healing rate parameter k changed between

0 and 1000 days21. A high healing rate (k ¼ 1000 days21 in

figure 3) is undistinguishable from the hyperelastic model,

because healing immediately compensates for the damage

produced. This can be understood as a representation of the

continuous turnover known to occur in living tissues. In

addition, a null healing rate (k ¼ 0 days21 in figure 3) results

in a passive damage response, i.e. accumulation of damage in

an inert material.

The next set of examples (figure 4) show the effect of

varying the parameter j, which dictates the final effective

damage in the completely healed tissue. As expected, for a

value j ¼ 1.0, a behaviour analogous to the passive damage
model is obtained, because no stiffness can be recovered

and damage continuously accumulates.

Finally, a loading–unloading–reloading case is repro-

duced for different values of the healing variables (figure 5)

to illustrate how healing may continue while unloading

takes place, such that damage progression and recovery

(healing) may or may not occur simultaneously.
3.2. Healing ligament
Quantitative experimental data on healing are difficult to find

in the literature and, when available, are not always in a form

that can be readily used and reproduced to validate numeri-

cal models. As one of the rare examples, the experimental

work by Abramowitch et al. [87] on healing medial collateral

ligaments (MCL) in goat knees provides excellent data to vali-

date the HTR model. In their experiments, the MCL is

surgically sectioned, and the free ends of the ligament are rea-

ligned but not sutured, leaving a gap of about 0.5 cm

between the free ends [87,88]. The wound is then closed,

and the animals are allowed to recover for six weeks, after

which they are humanely euthanized and their knees are pre-

pared for testing. Typical tensile stress–strain curves are

provided for the healed ligament and a healthy (uninjured)

ligament used as control (see grey lines in figure 6). Because

there are no specific geometry and boundary conditions

associated with these curves, the data have been used to cali-

brate material properties with the cubic element of the

previous set of examples (figure 2). However, the length of

the element sides has been reduced to 0.5 cm to match the

experimental data provided.

A uniaxial tensile loading is reproduced in order to esti-

mate the Ogden and damage material properties that fit

best the healthy stress–strain curve. These material properties

are then used in a simulation with a forced initial damage
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Deff ¼ 1, in which no load is applied but healing is allowed to

progress for six weeks. An irreversible stiffness loss par-

ameter j ¼ 0.65 has been considered, because MCL scar

tissue is known to regain at most 30–40% of its normal stiff-

ness [73]. The healing rate parameter k is adjusted such that,

after a six week healing period, the stress–strain curve

obtained for uniaxial tensile loading fits the experimental
data. Table 3 summarizes the material parameters used in

this numerical example, and figure 6 compares the numerical

results with the experimental data. The set of parameters

used was achieved by a manual trial and error approach

and is not unique nor satisfies the minimum of an objective

function. A penalizer value k ¼ 106 Pa has been considered

as the bulk modulus.
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Figure 6. Cauchy stress versus engineering strain responses to uniaxial load-
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sectioning. FE results (solid black lines) were obtained using the material
properties given in table 3. The grey curves illustrate the response from
the experimental data in Abramowitch et al. [87].

Table 3. Material parameters, estimated from experimental data [87], used
in the MCL healing example (figure 6). The fracture energy per unit area is
computed as: Gf ¼ gd

f L0, where L0 is the localization or characteristic
length in the reference configuration [85,86].

parameter value

m1 1.3 MPa

m2 50 MPa

m3 22 MPa

a1 13.7

a2 0.7

a3 12.8

td
0 2.43 kPa1/2

Gf 17 N mm21

k 0.01 days21

j 0.65

Table 4. Ogden and damage material parameters, estimated from
experimental data [92], used in the remodelling AAA example. The fracture
energy per unit area is computed as: Gf ¼ gd

f L0, where L0 is the
localization or characteristic length in the reference configuration [85,86].

parameter value

m1 1.0 kPa

m2 2.1 kPa

m3 3.6 kPa

a1 12.3

a2 10.4

a3 10.9

td
0 169.8 Pa1/2

Gf 45 N m21
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3.3. Remodelling abdominal aortic aneurysm
An AAA is a permanent localized dilatation of the abdominal

aorta which, if left untreated, progresses over time and can

eventually rupture, leading to death. AAA rupture is a multi-

factorial process that involves interacting biomechanical,

biochemical, cellular and proteolytic aspects. An irreversible

remodelling is known to occur in the connective tissue of

an aneurysm’s aortic wall, characterized by a progressive

imbalance between the synthesis and degradation of collagen

and elastin in the ECM.

The degradation of elastin is linked to a decreased load-

bearing capacity of the wall tissue, which leads to the initial

arterial dilatation. A compensatory increase in collagen syn-

thesis, associated with the overall hardening of the aortic

tissue, is observed in the latter stages of AAA evolution.

Beyond a certain threshold, however, the aneurysm becomes

at high risk of rupture. It is believed that this final progression

to rupture involves the proteolytic degradation of the tissue’s

collagen fibres. The reader is referred to [6,45,89,90] and refer-

ences therein for further details on the many factors involved

in the progression and rupture of AAAs, some of which are

not completely understood yet.

The proteolytic degradation of elastin described above

may be regarded, from a macroscopic point of view, as a

degradation of the tissue’s properties. Thus, the HTR model

has the potential to characterize this particular factor in the

complex evolution of AAAs, linking the pathological arterial

dilatation observed in the initial stages of AAA formation to

the ‘healing’ capacity of the tissue.

A three-dimensional reconstruction of an AAA was

obtained through segmentation of computer-tomography

images (A4research, VASCOPS GmbH [91]) and meshed

using 4707 hexahedral Q1P0 elements. A single element was

included across the wall thickness with an approximately con-

stant value of 1.5 mm throughout the aneurysm. Therefore,

bending effects are neglected in the simulation. The model is

fully fixed at the top slice and allowed vertical displacements

at the bottom one. A blood pressure of 100 mmHg

(13.33 kPa) is applied in 200 load increments on the inner
surface of the wall by means of a deformation-dependent fol-

lower pressure load on the face of each element. Material

properties were estimated from the experimental tensile test

data available in Gasser [92] using a single element

(figure 2). A penalizer value k ¼ 1012 Pa has been considered

as the bulk modulus. The set of parameters used (listed in

table 4) was achieved by a manual trial and error approach

and is not unique nor satisfies the minimum of an objective

function. The corresponding constitutive response is plotted

in figure 7. The distal and proximal extents of the aneurysm

are excluded from damage evolution, i.e. assigned the purely

hyperelastic response shown in figure 7.

The example was studied with two different values of

the healing rate parameter k, and an irreversible stiffness

loss parameter j ¼ 0 was assumed in both cases. Under

non-pathological conditions, the aortic wall is continuously

remodelling and, thus, for a high healing rate its behaviour

should be that of a healthy tissue. Figure 8 shows the

deformed shape of the same AAA at identical loading and

boundary conditions but considering two different healing

rate parameters: k ¼ 0.01 (high rate) and k ¼ 0.002 years21

(low rate). The high healing rate resulted in deformations

comparable to a sole hyperelastic simulation, because
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damage is healed quasi-simultaneously. However, for the low

healing rate, the simulation failed at a blood pressure of

71.5 mmHg (9.53 kPa). At this loading value, a high damage

concentration localizes in a narrow band of elements

(figure 9), which leads to structural instability and numerical

failure in the following load step.
4. Discussion
The effective damage Deff (2.3) drives healing in the HTR

model. This variable is a direct representation of the tissue’s

state because it dictates the stiffness of the healing tissue,

which can be measured through experimental tests. In con-

trast with previous remodelling models (see §1), the present

description does not attempt to capture the realignment of

collagen or the processes taking place at cellular or
microscopic level. Instead, it is a phenomenological model

that aims to describe the overall change in material behaviour

(stiffness) at tissue level of a healing tissue.

The driving internal variable Deff accounts for both mech-

anical and biological stimuli. Mechanical loading induces

damage in the tissue as D is a function of the stress. The

injury produces a biological response such that, if the metab-

olism allows for it, then healing occurs and the effective

damage in the tissue is reversed (figure 1). The metabolism’s

action is quantified through the two healing parameters, k
and j. Then, a healed tissue that has completely recovered

the original properties is undistinguishable from the original

tissue. The model is able to capture this, as seen in figure 5 for

the uniaxial tensile loading–unloading–reloading case with

k ¼ 1.00 days21; j ¼ 0.0, where the reloading curve is exactly

the same as the first loading curve.

In contrast, when the healed tissue does not recover the

original properties ( j . 0), it is assumed to have a remnant

damage such that it is permanently softer than the initial

pre-injured tissue. This is observed in figure 5 for the cases

with k ¼ 0.25 days21; j ¼ 0.2 and k ¼ 0.25 days21; j ¼ 0.5.

In both cases, the reloading curves have a lower stiffness in

their initial elastic portion than the corresponding portion

in the loading curves. Note how a healed scar tissue that suf-

fers additional injury will heal back to the first scar tissue

properties, i.e. the stiffness loss is not accumulative over

successive injuries in the same tissue.

The issue arises, then, whether this (new) healed material

should maintain the updated damage threshold correspond-

ing to the remnant damage value. An alternative would be to

redefine the healed tissue as a completely new material by

eliminating the remnant damage and affecting the hyperelas-

tic (and, possibly, the damage) material properties instead.

Then, the same effect would be achieved (lower stiffness),

but the material would be considered simply as new and

‘undamaged’. In this case, if j . 0, an additional injury

would result in a further reduction of stiffness in the scar
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tissue. This approach entails certain difficulties, namely the

calculation of the new material properties owing to the non-

linear nature of the Ogden material definition. In addition,

the idea of keeping a remnant damage seems to fit well

with the concept of a healed tissue that has not recovered

completely from injury. That is, the ECM in the healing

tissue tends to reorganize and remodel towards the original

configuration but does not quite achieve it. Hence, the

denomination of the model as homeostatic-driven turnover

remodelling.

The pathological remodelling that is known to result in

fibrotic scars, which are stiffer than the original pre-injured

tissue, could be accounted for by introducing negative

values of the irreversible stiffness loss parameter j. In this

way, the ‘healed’ tissue would have a final negative value

of the effective damage variable, resulting in a final material

behaviour stiffer than the original pre-injured one. The HTR

model would no longer be homeostatic-driven and would

require substantial modifications to ensure that the ‘extra’ stif-

fening only occurs as a result of injury. This could probably

be addressed by defining a variable value of j in terms of

the present damage in the tissue. Furthermore, the fulfilment

of the Clausius–Duhem inequality (2.4) could no longer be

possible, because the energy introduced into the system to

remodel the tissue would be larger than the energy

dissipated owing to damage.

An interesting feature of the HTR model is that there exist

two completely different scales for the generation of the mech-

anical stimulus that produces damage (load step) and the

effectivization of the biochemical part of the healing process

(time step). Hence, the evolution of the mechanical damage

D is dictated solely by the loading pattern imposed in the

numerical simulation. Yet, the healing variable R is driven

by both the load increment and the time step considered for

that load increment. Then, the healing rate can be sped up

or slowed down to match experimental observations indepen-

dently of the loading speed imposed. Owing to this

characteristic, the mechanical damage loses its physical mean-

ing. In particular, a high value of D may be computed for a

given load but, if the healing rate is high enough, the effective

damage Deff could be, in fact, practically null. As a result, a

tissue can be completely healed, even when the value of D is

significant. This ties in well with the fact that, in the HTR

model, Deff is the variable that describes the actual state of

the tissue, as stated at the beginning of this section.

In this regard, a value Deff ¼ 1 corresponds to a newly

formed granulation tissue, whereas Deff ¼ 0 corresponds to

a healed scar tissue that has recovered the properties of the

original uninjured tissue. This is in accordance with the sim-

plifying hypothesis introduced in §2, namely that tissue

behaviour is reproduced with a quasi-incompressible hyper-

elastic model, with damage affecting only the deviatoric

term. The quasi-incompressible behaviour in tissues is attrib-

uted to the high volume fraction of water present in most soft

tissues [22]. For supra-physiological loadings, the injury pro-

duced could potentially introduce changes in the water

content of the tissue, resulting in a compressible material.

In some cases, the adequacy of the quasi-incompressibility

hypothesis in soft tissues subjected to physiological loading

has also been debated [93,94]. The possibility of cavitational

damage arising in soft tissues has also been put forth [95].

Nonetheless, the HTR model accounts for remodelling from

the granulation tissue obtained in the proliferative phase of
the healing process to the scar tissue resulting at the end of

the remodelling phase (figure 1). Hence, a complete

damage Deff ¼ 0 does not correspond to vacuum or inexistent

tissue, but to a newly formed granulation tissue. Albeit the

granulation tissue has barely any resistance to loading, it

may be considered to have a fixed content of water and,

thus, certain quasi-incompressibility. This would correspond

to the volumetric part of the specific strain energy density,

not affected by damage.

Healing is influenced by many factors such as age, sever-

ity of injury and location of the injury, among others [1,4],

and the healing parameters j and k should account for this.

At present, they are constant throughout the healing process

and manually adjusted. It would be interesting to automati-

cally adjust their value at the moment of injury, although

this would require a comprehensive database quantifying

the influence of the above factors on the value of the par-

ameters. Unfortunately, the type of data required to

produce this type of study is not abundant in the literature.

On the other hand, the healing rate function _h ¼ k could be

made variable through the healing process. This would

allow accounting for the regression of the blood vessels, i.e.

the reduction of biological availability, observed in the final

phase of soft tissue healing. For example, the healing rate

function could be coupled to a convection/diffusion system

such that the biochemical contribution to the healing rate

would change as healing occurs, allowing for an adaptive

biological availability distribution.

Further improvements to the HTR model include coup-

ling it to a continuum growth model [96] to account for the

tissue growth seen in hypertrophic scars. This is relatively

straightforward for a volumetric growth model based on

the multiplicative decomposition of the deformation gradient

tensor, F ¼ Fe � Fg. Here, Fe corresponds to the elastic part and

Fg ¼ qI to the incompatible growth part. The evolution of the

growth stretch q may be defined in terms of the mechanical

loading and a function that accounts for the biological avail-

ability [81,97]. Then, the coupling of the HTR model to such a

growth model would simply require determining first the be-

haviour owing to growth and, then, computing the healing

effect on the updated grown configuration.

Nonetheless, the present HTR model is capable of repro-

ducing experimental data on healing (figure 6) and has

potential to reproduce certain characteristics of pathological

remodelling, as has been exemplified in an AAA dilatation

case (figures 8 and 9). This example aims at demonstrating

a possible application of the HTR model to a complex

three-dimensional problem. In this case, the model is

shown to capture the degradation of the aortic wall’s struc-

tural properties owing to the pathological remodelling in

the initial stages of AAA disease.

The low healing rate case in this example reproduces the

abnormal dilatation of an AAA, where the elastin degradation

results in larger deformations and reduced load-bearing

capacity. On the other hand, the results for the high healing

rate case are comparable to a tissue with a higher structural

integrity, more akin to a healthy tissue.

The present model only addresses the dilatation of the

aortic wall, linked to the progressive degradation of elastin

in the ECM. It does not include other known factors that con-

tribute to the evolution and rupture of AAAs such as growth

in the abdominal wall tissue, changes in phenotypes and che-

momechanical responses of the cells composing said tissue,
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or the effect of thrombus development and maturation of the

AAA, among others [45]. Even so, the inclusion of the HTR

model in a general model for AAAs that accounts for the

aforementioned factors could potentially contribute to

better understand the complex processes involved in the

evolution of AAAs.

In particular, the proteolytic degradation of the tissue’s

collagen fibres that has been linked to the final progression

to rupture in AAA disease could be reproduced with the

same HTR model. However, it would require a separate

material characterization and time-scale application than

that of the elastin degradation presented in the example.

Introducing a modification similar to the one previously

proposed for the case of fibrotic scars, the hardening effect

observed in the latter stages of AAA evolution, previous

to the final progression to rupture, might also be captured.

Finally, the structural instability encountered in the low

healing rate case of the AAA example is attributable to the

numerical limitations of the generalized damage model [79].

From a numerical point of view, in problems with negligible

healing effects the HTR model is limited by stress-locking

owing to the smeared approach of the damage formulation.

This has been widely addressed in the literature [83,84], and

a known solution to the problem is to use higher-order FE for-

mulations. Otherwise, the HTR formulation is robust and, in

any case, thermodynamically consistent.
5. Conclusion
A constitutive model for homeostatic-driven turnover remodel-

ling in soft tissues has been presented and discussed. This

model captures the stiffness recovery that occurs as a conse-

quence of the ECM turnover observed in both the last phase

of healing in tissues and the pathological remodelling of certain

tissues. During remodelling, the tissue composition shifts and

reorganizes, approaching the characteristics of the original

undamaged material. Thus, healing is understood as a recovery

or reversal of damage in the tissue, which is driven by both

mechanical and biochemical stimuli. Set in a CDM framework,

the driving internal variable of the HTR model is the effective

damage, whose rate is the sum of a Kachanov-like mechanical

damage rate and a healing rate. The former is purely driven by

mechanical loading, as observed in the proposed damage soft-

ening laws. The latter is defined as an implicit healing rate,

which depends on the effective damage and two healing

material parameters that account for the biochemical aspects

of the healing process. The model is formulated in accordance

with open-system thermodynamics to account for the energy

introduced into the system by the metabolism.

Numerical implementation of the HTR model is straight-

forward and may be particularized for any hyperelastic

model. The formulation is flexible and versatile, because

both the damage softening laws and the healing rate can be

easily changed or modified to fit particular biological obser-

vations. However, the advantage of the phenomenological

evolution laws proposed here is that they require few

(damage and healing) material parameters, which is

especially useful when fitting experimental data. In addition,

a physical meaning can be attributed to these parameters,

conferring a more functional character to the model.

Albeit the HTR model’s simplicity, it has the potential to

represent the active properties of complex tissues. Usage of
this model in conjunction with mixture theory [98] would

allow the inclusion of fibrous components and, in this way,

introduce anisotropy in the overall behaviour of the tissue.

Furthermore, coupling with formulations which model

other biomechanical aspects such as tissue growth and necro-

sis [99] could result in a powerful numerical tool to represent

live soft tissue behaviour.
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tat Politècnica de Catalunya (BarcelonaTECH) through an FPI-UPC
scholarship.

Acknowledgements. We thank the anonymous reviewer whose insightful
comments on an earlier version of the manuscript helped to improve
the arguments, clarity and presentation of our work.
Appendix A. Derivation of the tangent
constitutive tensor
The tangent constitutive tensor, required in the numerical

implementation of the proposed HTR constitutive model, is

given by

Ctan ¼ Ctan
vol þ eCtan ¼ 2

@Svol

@C
þ 2

@eS
@C

: ðA 1Þ

The volumetric part of the tensor, introducing Svol from

(2.13), results in

Ctan
vol ¼ 2p

@ðJ C�1Þ
@C

þ 2 J C�1 � p
@p
@C

, ðA 2Þ

and the deviatoric part, considering (2.5) and (2.13), is

eCtan ¼ ð1�DeffÞeC0 � 2
@Deff

@C
eS0: ðA 3Þ

Here, eC0 corresponds to the material elasticity tensor of the

undamaged material, eC0 ¼ 2@eS0=@C, and the derivative of

Deff is

@Deff

@C
¼ @D
@C
� @R
@C
¼ @D
@t

@t

@C
� @R
@Deff

@Deff

@C
: ðA 4Þ

Rearranging terms and isolating the derivative of Deff,

yields

@Deff

@C
¼ @D
@t

@t

@C
1þ @R

@Deff

� ��1

: ðA 5Þ

Now, considering the Simo & Ju criterion [70] as the ener-

getic norm, t ¼
ffiffiffiffiffiffiffiffiffi
2 eC0

q
, produces

@t

@C
¼ @

@C
ð2 eC0Þ1=2 ¼ 1

2t
2
@ eC0

@C
¼ 1

2t
eS0: ðA 6Þ

http://www.cimne.com/PLCd
http://www.cimne.com/PLCd
http://www.cimne.com/PLCd
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Introducing this expression into (A 5) and, then, into (A 3)

results in

eCtan ¼ ð1�DeffÞeC0 �
@D
@t

1

t
1þ @R

@Deff

� ��1eS0 � eS0: ðA 7Þ
The derivative of the mechanical damage variable with

respect to t for the linear and exponential softening laws

(2.8) considered is [79]
cie
typublishing.org
J.R.Soc.Int
linear softening
@D
@t
¼ td

0

t2(1þH)
with H ¼ �ðt

d
0 Þ

2

2gd
f

,

exponential softening
@D
@t
¼ td

0 þ At

t2
exp A 1� t

td
0

 !" #
with A ¼ gd

f

ðtd
0 Þ

2
� 1

2

" #�1

:

9>>>>>=>>>>>;
ðA 8Þ
erface
13:20151081
The derivative of the healing variable with respect to Deff,

taking into account the healing rate defined in (2.9), is given by

@R
@Deff

¼ @

@Deff

ðt�

0

kkDeff � jl dt, ðA 9Þ

where t* denotes the present time. The Leibniz integral rule

allows introducing the derivative into the integral and,
eliminating the Macaulay brackets, the expression results in

@R
@Deff

¼0 forðDeff�jÞ�0

and
@R
@Deff

¼
ðt�

0

k
@

@Deff
½Deff�j�dt¼k

ðt�

0

dt forðDeff�jÞ.0:

9>>>=>>>;
ðA10Þ
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