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Most research on the effects of environmental change in freshwaters has

focused on incremental changes in average conditions, rather than fluctu-

ations or extreme events such as heatwaves, cold snaps, droughts, floods

or wildfires, which may have even more profound consequences. Such

events are commonly predicted to increase in frequency, intensity and dur-

ation with global climate change, with many systems being exposed to

conditions with no recent historical precedent. We propose a mechanistic

framework for predicting potential impacts of environmental fluctuations

on running-water ecosystems by scaling up effects of fluctuations from indi-

viduals to entire ecosystems. This framework requires integration of four key

components: effects of the environment on individual metabolism, meta-

bolic and biomechanical constraints on fluctuating species interactions,

assembly dynamics of local food webs, and mapping the dynamics of the

meta-community onto ecosystem function. We illustrate the framework by

developing a mathematical model of environmental fluctuations on dynami-

cally assembling food webs. We highlight (currently limited) empirical

evidence for emerging insights and theoretical predictions. For example,

widely supported predictions about the effects of environmental fluctuations

are: high vulnerability of species with high per capita metabolic demands

such as large-bodied ones at the top of food webs; simplification of food

web network structure and impaired energetic transfer efficiency; and

reduced resilience and top-down relative to bottom-up regulation of food

web and ecosystem processes. We conclude by identifying key questions

and challenges that need to be addressed to develop more accurate and pre-

dictive bio-assessments of the effects of fluctuations, and implications of

fluctuations for management practices in an increasingly uncertain world.
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Figure 1. A conceptual framework for studying the effects of environmental fluctuations on running water ecosystems. ‘2D’ and ‘3D’ refer to two and three spatial
dimensions, respectively. Both, temperature and hydrological fluctuations affect individuals, which are then propagated through species interactions to higher levels
of organization. Species interactions are likely to be disrupted also due to inter-specific mismatches arising from the differing tolerances, physiologies or biome-
chanics of predator and prey. Note also that ectotherm thermal performance curves are typically asymmetric (as shown)—i.e. heat waves are likely to have far
stronger impacts than cold spells on species and interactions.
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1. Introduction
Although climate change is a natural part of the Earth system,

the rates predicted over the next century far exceed those of

recent decades [1,2]. A common prediction is for a general

trend of future warming overlain with increasingly frequent

and more intense fluctuations and extreme events [1,2].

Examples of the latter include meteorological events such as

heatwaves and physical phenomena such as floods. Such

environmental fluctuations can have profound effects on fresh-

water ecosystems, yet they are rarely studied via explicit

integration of theoretical and empirical approaches [3]. Run-

ning waters supply many ecosystem goods and services

that are especially vulnerable to climate change (e.g. flood pre-

vention, potable water and irrigation for agriculture), because

they are relatively small and fragmented in the landscape [1,2,4].

Although we have ever-more sophisticated climatic models

to project future changes, the effects of climatic fluctuations

on multi-species, complex ecosystems remain poorly under-

stood, both empirically and theoretically [5,6], over 40 years

after the first theoretical explorations of how environmental

stochasticity affects food web dynamics [7,8]. The problem is

empirical as much as theoretical—for example, the apparently

general theoretical prediction that environmental fluctuations

shorten food chains remains largely untested (but see

[6,9,10]). The effects of environmental fluctuations, through

food web dynamics, on ecosystem properties, are even less

well understood, especially in running waters, which are inher-

ently dynamic, both physically and biologically [11–15]. For

example, running water ecosystems are constantly perturbed

by changes in catchment geomorphology and land-use, local

physico-chemical parameters, and changes in timings of

extreme events relative to the normal seasonal cycle [16,17].

Furthermore, although extreme events may be viewed simply

as one end of a gradient of fluctuations, anthropogenic influ-

ences are increasingly altering their intensity, frequency and

duration, with potentially dramatic consequences for running

waters [15]. Separating the biological effects of extreme

events from the effects of inherent and chronic background
fluctuations in running waters is an additional and important

challenge.

Indeed, the susceptibility of target species will depend

upon the context, magnitude, extent and timing of environ-

mental fluctuations: extreme climatic events do not always

have extreme ecological consequences, and multiple events

(e.g. a wildfire followed by a flood) that are not necessarily

individually extreme can have extreme biological impacts

when combined [18,19]. In addition, climatic fluctuations

are themselves often components of a general underlying

(e.g. warming) trend, in which both average conditions and

variability change over time. Jentsch et al. [20] refer to ‘trend

effects’ and ‘event effects’, with the latter often superimposed

over the former [15,21].

Here, we propose a new mechanistic framework for tack-

ling the challenge of developing a better, more predictive

understanding of the effects of environmental fluctuations

and extreme events on running-water ecosystems. This necess-

arily involves linking theoretical and empirical research from

individual metabolism and biomechanics to whole ecosystems,

as well as a consideration of thresholds of disturbance that

change key food web and ecosystem properties.

We mainly focus on temperature and hydrological

fluctuations as the sources of environmental fluctuations

associated with climate change for two reasons. First, effects

of climatic fluctuations are primarily manifested in running

waters via abnormal temperature and/or hydrological regimes

[15,22]. Second, these perturbations have mechanistically

understandable and predictable effects on individual physi-

ology (e.g. increasing metabolic rate with warming; [23,24])

and species interactions (e.g. increased predator–prey encoun-

ter rates in hydrological refugia [25–27]). Indeed, we argue

that effects of environmental fluctuations will remain difficult

to predict unless we focus more carefully on mechanisms

at lower levels of organization (individuals, interactions;

figure 1), because this is where fluctuations in temperature

and hydrology will have relatively predictable consequences.

The timing or characteristic frequency of environmental

fluctuations is also important, as it determines the severity of
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disruptions to the natural phenology of rates and traits within

species (e.g. oviposition, emergence, pupation, diapause) as

well as species interactions [28,29]. Our framework therefore

requires the combination of metabolic constraints and timescales

with the temporal scaling of the relevant perturbations.

The type of event and connectivity within and among

running-water ecosystems also determines population recruit-

ment and the buffering capacity of refugia. For example, floods

expand and homogenize riverine habitats (e.g. [17]), whereas

droughts constrain and fragment them (e.g. [30]). This has

important implications for the recovery or assembly of local

communities by the re-establishment of existing interactions

as well as stabilization of novel interactions over time: studying

how fluctuations affect dynamically assembling ecosystems is

therefore an integral part of our framework.

To illustrate our framework, we develop a mathematical

model that maps environmental fluctuations, as well as

extreme events, onto individual populations in dynamically

assembling food webs. The results demonstrate how food

webs might respond to increasing intensity of disturbances,

and provide both heuristic and testable predictions, many

of which are broadly consistent with the currently available

(but still limited) empirical evidence. Our framework and

preliminary theoretical explorations also highlight the poten-

tial for developing more objective ways of defining ‘extreme

events’ based upon the changes they bring about in ecosys-

tem properties, and for disentangling the effects of chronic

fluctuations from those of extreme events in running waters.

In the following sections, we outline our conceptual and

theoretical framework for studying the effects of fluctuations

and extreme events on ecosystems, and develop a stochastic

food web model that illustrates this framework. We then consider

data and case studies that both summarize our current empirical

knowledge about effects of fluctuations, and provide evidence

(or lack thereof) for some of the key predictions of the model.

Finally, we review current understanding of the effects of

environmental fluctuations on ecosystem services and impli-

cations for potential management and mitigation strategies to

cope with future extreme events, and end by identifying a suite

of potential new empirical and theoretical avenues for research.
2. A conceptual and theoretical framework
We propose that developing a mechanistic understanding for

running-water ecosystems requires empirical data and theor-

etical models for four key components (figure 1): (i) effects of

fluctuations on individual metabolism and biomechanics;

(ii) effects of fluctuations on species interactions; (iii) commu-

nity assembly/re-assembly dynamics; and (iv) quantification

of ecosystem functioning. We argue that these components

are key to understanding how fluctuations and extreme

events can have direct effects on individual fitness and popu-

lation abundance as well as indirect effects that propagate

through the food web [27,31,32]. These components and

how they integrate are illustrated in figure 1.

(a) Setting the scene: effects of environmental
fluctuations on individual metabolism and
performance traits

Environmental fluctuations first and foremost affect individual

metabolism, which then determines performance traits (e.g.
movement and dispersal through the landscape) [23,24,27,33].

A simple yet powerful model that captures dominant, inherent

constraints on whole-individual metabolic rate P (J s–1) is

P ¼ P0 mbexp � E
kT

� �
lðTÞ, ð2:1Þ

where P0 is a taxon- and metabolic state-dependent normaliza-

tion constant; m is body mass (kg); b is a scaling exponent

(dimensionless); E is thermal sensitivity and includes the emer-

gent effect of the activation energies (eV) of rate-limiting steps

in underlying biochemical reactions (1 eV¼ 96.49 kJ mol–1); k
is the Boltzmann constant (8.62� 10–5 eV K–1); T is body temp-

erature (in kelvin); and l(T ) is a function that capturesthe decrease

in metabolic rates at higher-than-optimal temperatures [23,27,34],

relevant when thermal fluctuations are extreme. The size-scaling

component of metabolic rate in equation (2.1), when measured

across species, is allometric with b � 0.75 for multicellular eukar-

yotes, but may be more variable across other domains of life (e.g.

b . 0.75 or even . 1 in unicellular protists and prokaryotes)

[24,35,36]. This scaling of metabolic rate with body size is a pri-

mary reason why size is such a good proxy for a wide range of

organism- and population-level properties, from fecundity and

dispersal ability to trophic position and population density, all

of which determine organismal and population resistance or resi-

lience to extreme events. Body size is also important because it

strongly determines an individual’s effective temporal and

spatial scales of operation (e.g. generation times scale positively

and intrinsic growth rates scale negatively with body size

[24,37]), and thus determines which temporal and spatial scale

of fluctuations have the strongest effect.

We emphasize that equation (2.1) captures only the dominant
inherent constraints of body size and temperature on the meta-

bolic rate of an individual organism. Indeed, equation (2.1) has

often been used to parametrize models of ecosystems in stable

environments [28,37–40]. However, as such, it cannot capture

the effects of environmental fluctuations other than environ-

ment-driven changes in body temperature, T. For example,

hydrological extremes alter, in both time and space, the Eucli-

dean dimensions within which organisms of particular body

sizes interact with the physical medium and with each other.

In order to model the effects of environmental fluctuations,

such as changes in spatial dimensionality or complexity

(figure 1) and nutrient concentration, equation (2.1) necessarily

needs to be extended to include the effects of environment-

driven fluctuations in the metabolic cost of locomotion or

nutrient uptake on metabolic rate, P. Tackling this issue is one

of the fundamental future challenges in research on running-

water ecosystems. Effects of extreme flows may well be quantifi-

able in a manner analogous to thermal performance curves. The

empirical characterization of LIFE scores of invertebrate

responses to flows (e.g. relevant to drought or flood conditions)

represents an important first step in this direction [41].

(b) Effects of environmental fluctuations on species
interactions

Through the effects of temperature and hydrological fluctu-

ations in running-water systems on individual metabolism

and performance, the rate of interactions between species as

well as between species and their abiotic resources (at lower

trophic levels) can be altered [26,27,42]. For example, hydrologi-

cal fluctuations often perturb the dynamics of interacting species

by depressing population sizes (e.g. through washout during
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floods). New theoretical and empirical studies are currently

developing models analogous to equation (2.1) for pairs of inter-

acting species [26,27,43,44]. These interaction models are

necessary for scaling up the effects of metabolic fluctuations to

the food web and ecosystem levels of organization (figure 1).

A general formulation of per capita biomass consumption rate c
(mass.time–1) resulting from a trophic interaction is [27,43]

c ¼ aAfðxRÞ: ð2:2Þ

Here, xR is resource biomass density (mass area–1 or volume–1),

a is search rate (area or volume time– 1), A is probability

of attack success (conditional on attack), and f(xR) is the

prey risk function that determines the shape of the consumer’s

functional response. Metabolically and biomechanically

constrained equations for the parameters in the right-hand

side of equation (2.2) allow both temperature fluctuations

and size effects to be mapped onto species interaction rates

[26,27,40,43,45].

Considering interactions in a mechanistic way allows a

better understanding of how mismatches in physiology or

other functional traits between interacting species (e.g. differ-

ences in body size or thermal sensitivity, E) can either amplify

or dampen the effects of fluctuations on consumer–resource

and food web dynamics [26,27,46]. Such mismatches are impor-

tant because hydrological fluctuations in running-water

systems often bring new species into contact (e.g. by aggregat-

ing in flow refugia, or homogenization of lentic and lotic

habitats during floods; [30,47]), and also change the phenology

of life history (e.g. egg-laying) and performance traits (e.g. diel

activity pattern) [48–50]. Mechanistic models for the com-

ponents of interaction rate (equation (2.2)) have recently been

derived which demonstrate that consumption rate depends

upon the differences in body sizes and thermal sensitivities

(E) of the interacting species [26,27,46], and greater mismatches

can destabilize consumer–resource dynamics. Below, we make

the first theoretical exploration of the potential effect of such

mismatches at the food web level when environments fluctuate

(electronic supplementary material, appendix 1 and figure S2).
(c) Community assembly and re-assembly dynamics
Theory and data on community assembly rates and rules are

particularly necessary in running waters, because they are

inherently subjected to multiple disturbances over both space

and time in addition to those exerted by more extreme climatic

events. This requires the study of both ecological resistance (sys-

tem’s ability to remain unchanged in the face of a perturbation)

and resilience (system’s ability to rebound or return to a stable

state after a perturbation). Theoretically, this involves the study

of open, dynamically assembled (and constantly re-assembled)

local communities. A general mathematical model that allows

the first two components of our framework to be embedded

into an S-species consumer–resource (including inorganic

substrate) food web system is

dxi

dt
¼ gið�Þþ xi

X
k[res(i)

ekiakifkið�Þxk�
X

j[con(i)

aijxjfijð�Þ� aiixi� zi

2
4

3
5,

i¼ 1, 2, . . . , S:

ð2:3Þ

Here, xi is the ith species biomass density (mass area–1 or

volume–1), function gi(.) is biomass production rate (mass �
time–1 � area–1 or �volume–1), res(i) and con(i) are sets of its

resources and consumers, respectively, aii is a coefficient

(volume �mass–1 � time–1) for biomass loss rate due to intra-

specific interference, aij is the rate at which habitat volume is

cleared by consumer j (volume�mass–1 � time–1) (the

‘search rate’), zi (time–1) is intrinsic (density-independent)

biomass loss rate due to respiration, mortality or outflow, eij

(a proportion) is conversion efficiency of resource to consumer

biomass, and f(.) (dimensionless) determines the shape of the

resource uptake rate function (the functional response).

Equation (2.3) is a general model because different specifica-

tions of its parameters yield particular models, including

Lotka–Volterra (for g(.) ¼ rmax xi and f(.)¼ 1) [7,38,51,52],

Rosenzweig–MacArthur (g(.) ¼ rmax xi, aii ¼ 0 and f(.)¼ Type

II functional response) [43,46,53], ‘bio-energetic’ models ( f(.) ¼
multi-species functional response) [40,54] or Monod-like

(g(.) ¼ dilution rate-dependent substrate flux, aii ¼ 0 and f(.) ¼
saturating uptake function) [55]. Below we use a Lotka–Volterra

specification of equation (2.3) to illustrate our framework

and make a preliminary theoretical exploration into the

effects of fluctuations on running-water ecosystems (electronic

supplementary material, appendix S1).

(d) Quantifying ecosystem functioning
The final component of the mechanistic framework is the chal-

lenge of quantifying ecosystem functioning among multiple

(potentially intermittently) connected local communities in a

running-water landscape. This necessarily requires develop-

ment of quantitative measures of how ecosystem functioning

or services relate to the underlying components of individual

metabolism, interactions, mismatches and assembly dynamics

(figure 1). For example, gross primary production (GPP) and

ecosystem respiration (ER) are key ecosystem functions that

determine the capacity of ecosystems to sequester CO2. These

are empirically measureable at high spatial and temporal resol-

ution [56], but linking ecosystem functioning to the parameters

or state variables of models of the underlying levels (equations

(2.1)–(2.3)) is a new and exciting challenge that remains largely

open. A starting point could be to find simple measures that

link net productivity of all autotrophs in the system (equation

(2.3)) (effective production minus losses due to respiration

e.g., sums of all autotroph level xi(aii xi þ zi) terms in equation

(2.3)). The sum of the biomasses across the S populations of all

organisms (autotrophs þ heterotrophs) in the ecosystem may

also be another meaningful measure. Our mechanistic frame-

work potentially allows measures of ecosystem functioning

to be linked explicitly to particular individual or interaction

parameters under a given regime of environmental fluctu-

ations. For example, rates of ecosystem functioning may

decline with increasing levels of physiological mismatches

between species.

(e) Putting it together: a mathematical model
We now illustrate how the components of our mechanistic fra-

mework can be integrated into a single model of ecosystem

dynamics. Because running waters also experience consider-

able fluctuations in nutrient inputs due to hydrological

changes, we consider both climate-driven metabolic fluctu-

ations as well as changes in carrying capacity such as those

arising from hydrological fluctuations. The details of the

model are given in the electronic supplementary material,

appendix S1. As required by our framework, this model
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explicitly incorporates assembly dynamics, rather than the

more traditional stability analyses of fixed-size food web sys-

tems (electronic supplementary material, appendix S1). Our

modelling stops short of mapping local food web properties

onto the ecosystem of such meta-communities (the fourth com-

ponent, figure 1). This is one of the key areas for future work.

Some key results from the modelling are shown in figure 2

(also see the electronic supplementary material, figures S1–S4),

and summarized in the electronic supplementary material,

table S1. Several key insights emerge from this model:

(i) Whether a certain regime of fluctuations (the environ-

mental variance s2) is extreme (i.e. whether it causes a

qualitative change it the system’s dynamical behaviour

or structural properties) depends upon the carrying
capacity. Thus, for example, a hydrological fluctua-

tion resulting in a change in nutrient availability can

either amplify or dampen the effects of temperature

fluctuations in a predictable way.

(ii) Environmental fluctuations can ‘select’ for particular

properties of size distributions and the related intrinsic

growth rates of species (because growth rates scale

negatively with size).

(iii) Certain ecosystem properties such as species’

body distributions change non-monotonically with

increasing fluctuations.

(iv) Mismatches or differences among species in how they

experience environmental fluctuations can qualitat-

ively change resilience to environmental fluctuations

(electronic supplementary material, figure S2), with
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the results suggesting that ecosystem resilience to fluc-

tuations could be negatively correlated with the level

of mismatches between species.

Furthermore, we note that the theoretical framework and the

model developed here potentially allow the effects of

extreme events to be separated from those of the chronic ‘back-

ground’ fluctuations typical of running-water ecosystems.

For example, comparing food webs assembled under extreme

events without background fluctuations versus those with

background chronic perturbations only would be an

important step towards disentangling the effects of the two

types of perturbations (electronic supplementary material,

figure S5). We now consider empirical evidence (or lack

thereof) within the context of our integrative framework, and

consider various directions in which the framework would

need to be extended to capture realistically complex scenarios

of fluctuations arising from climatic temperature, hydrology,

as well as combinations of these two.
 50274
3. Current empirical knowledge and links
to theoretical predictions

(a) Thermal fluctuations and extremes
Heatwaves are spikes of abnormally hot weather, and although

relatively few studies have explicitly investigated their effects

in rivers, experimentally increasing the frequency, intensity

and duration of warming can alter the rates of emergence of

aquatic insects and community composition [57]. For instance,

the 2003 European heatwave caused high mortality among

riverine benthic invertebrates in France and major shifts in

community structure that lasted for almost a decade [21,58].

During a heatwave, individuals may be pushed outside their

optimal envelope within their thermal performance curve

(individual level panel in figure 1). Smaller organisms tend to

be favoured under warmer conditions ([59], but see [57]), and

this should also extend to heat waves due to the allometric scal-

ing of metabolism—and hence many physiological and

ecological processes—with body mass. As each individual

must meet its metabolic demands, larger organisms will

suffer disproportionately under rising temperatures because

of their higher per capita metabolic rate [24]. The consequences

for individuals will ultimately ramify through to the commu-

nity they comprise, the interactions they have within the food

web, and the ecosystem processes they generate en masse.

Larger, longer-lived organisms with slower life cycles are

most likely to face local extinction, because such acute effects

are the strongest when manifested within a single generation,

whereas smaller species at the lower trophic levels may benefit

from reduced top-down control, particularly if indirect food

web effects outweigh the direct metabolic costs. Some of

these effects are apparent in our theoretical results, with size

distributions of dynamically assembled food webs in fluctuat-

ing environments tending towards smaller species on average,

and become more skewed towards smaller organisms (figure 2;

electronic supplementary material, figure S3 and table S1).

Different ecosystem processes have distinct thermal

sensitivities—e.g. photosynthesis, respiration and different

nutrient cycles do not change at the same rate per degree of

warming [57,60], yet individual processes can be relatively
consistent over multiple scales and organizational levels. This

is the case for respiration, for instance, which hints at a

highly conserved and therefore predictable mechanistic basis

[61–63]. Recent laboratory experiments across steep thermal

gradients using riverine invertebrates have also shown that

decomposition rates are determined primarily by the metabolic

capacity of the assemblage, rather than species richness

[22,64,65]. In subsequent experiments, greater levels of bio-

diversity were required to preserve overall functioning of

multiple processes across a thermal gradient. However,

performance curves differed among species and processes

[65], implying that scope for insurance against climate

change may be less than previously assumed.

Although warming is the dominant projection for future

climate change, extreme cold spells are often predicted

to increase in certain regions within this global trend

(e.g. [66,67]). Unless they can hibernate, or move away,

endotherms, which are already relatively scarce in fresh

waters, will suffer disproportionately due to their need to

maintain a higher mass-specific metabolic rate (figure 3).

This is especially pronounced for riverine birds and bats,

which have very high metabolic demands for their size

(e.g. [65]), but even ectotherms, such as salmonid fishes,

can suffer high mortality during cold spells [13]. Future

modelling efforts therefore need to consider the effects of

low-temperature extreme events as well. As many fish-

eating birds and mammals also tend to be apex predators,

extreme cold events will once again have skewed impacts

within food webs, especially as the high metabolic costs of

thermoregulation will be exacerbated when surface waters

freeze, preventing access to prey. For example, the extremely

cold winter of 1963 in the UK led to exceptionally high mor-

tality among riverine birds, with widespread crashes in grey

heron populations at the top of the food web due to star-

vation (figure 4): nearly half the national population was

lost and it took many years to recover [68,69].
(b) Hydrological fluctuations and extremes
Floods and droughts alter the distribution of water in the

landscape through both time and space, and by extension

how organisms interact with the environment and each other.

In general, droughts have much stronger ecological impacts

than floods, which is perhaps unsurprising given that a surfeit

of water seems less likely to be a problem than is a deficit for

aquatic organisms [70–72]. A few riverine taxa, however,

thrive under drought conditions, at least in the initial phases,

as interactions with larger (predatory) species are weakened

[14]. Some of the more r-selected taxa, such as certain chirono-

mid species (figure 5), benefit from drought relative to the

larger taxa higher in the food web [14,73]. This highlights

that high dispersal ability, short generation times and large

(meta-) population sizes, which are all linked to body size,

can confer resilience [14]. Although our model does not capture

all these traits or points of impact on food webs, because

smaller organisms have higher recovery rates (high rmax)

from perturbation-induced rarity due to their mass-specific

metabolic rates, the frequently observed pattern of selection

of r-selected species is also seen in our model food webs,

especially in nutrient-poor conditions (figure 2; electronic

supplementary material, table S1 and figure S3).

Availability of physical refuges for organisms is also

linked to body size, and we might expect a bimodal



diatoms
8

6

4

2

0

–2

–4

–6

–8 –6 –4 –2 0
log M (mg)

lo
g 

N
 (

no
.m

–2
)

2 4 6 8 10

inverts

cold spell + flood

heatwave + fire +
drought

fishes

mammals

birds

Figure 3. Conceptual diagram of shifts in body mass and abundance under two scenarios of combined extreme events (cf. figure 1). The white squares represent
taxa associated with more lentic conditions, the coloured circles represent taxa associated with more lotic conditions. Green nodes represent producers, while red
nodes represent consumers. The red boxes represent endotherms; the blue boxes ectotherms. Note, responses can be multifaceted and include species loss
(especially among the higher trophic levels and endotherms), population declines (or occasionally increases, if predator release occurs), as well as changes in
links and higher-level properties related to system complexity and energy flux.

14 000

census of UK 1928–2009
grey heron

12 000

10 000

br
ee

di
ng

 p
ai

rs

8000

1940 1960 1980
year

2000

Figure 4. Fluctuations in abundance of an apex predator in a riverine ecosystem
in response to environmental fluctuations and extreme events. The black line
shows counts of grey heron breeding pairs in the UK 1928 – 2012. Red line is
a LOWESS smoother. Note the particularly sharp drop following the exceptionally
severe winter in 1963, which led to extensive and protracted freezing of inland
waters (source: BTO).

year
1986 1988 1990 1992 1994 1996 1998

chironomids

crustaceans

6

5

4

3

2

1

4

5

3

2

1

lo
g 10

 (a
bu

nd
an

ce
)

Figure 5. The correlated abundance of two trophic levels over 13 years
following an extreme event in the Glenfinish River in Ireland. Abundance
(number m22) is in log10 scale. Significant break points in time series
trend determined through circular binary segmentation analysis are shown
by the red horizontal lines; the mean of all time series is shown by the
black horizontal line. The grey line corresponds to a LOWESS smoothing.
The vertical blue line indicates the catastrophic flood event in 1986 (adapted
from [29]).

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

371:20150274

7

relationship between size and vulnerability to flood events, as

small organisms can access interstitial refugia [74], whereas

large powerful swimmers, such as adult salmonids may be

able to withstand the flood or, as in the case of avian preda-

tors, avoid it by leaving the system entirely (figure 6).

Intermediate-size organisms might suffer disproportionately,

however, if they are too large to exploit small refugia or if

they lack the physical or behavioural attributes or metabolic

reserves to withstand the high flows during the flood’s

peak, and they are physically locked into the system (e.g.

Gammarus shrimps versus chironomid midges; figure 5).

Thus, larval fishes and the larger macroinvertebrates may

be especially vulnerable, particularly those normally
associated with more lentic habitats (e.g. many coarse

fishes) in the lower reaches (figure 6). Again, some of these

body size-driven effects are captured in our theoretical results

(figure 2; electronic supplementary material, table S1 and

appendix S1), but future work needs to explicitly account

mechanistically for the effects of hydrological fluctuations

on species interactions (figure 1).

At its most intense, drought leads to habitat loss and per-

iodic drying of sediments, and field experiments have shown

how effects can ripple through the food web [14,75,76], with

density-dependent responses reflecting changes in the
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availability of wet refugia [30]. At larger scales, as the

Murray–Darling River Basin (MDB) dried and became

increasingly fragmented during the Big Dry, the ‘stream’

fauna became dominated by species with good dispersal abil-

ities that were more typical of standing waters [77,78]. The

effects of hydrological extremes and subsequent recovery

are thus dependent upon the connectedness of suitable habi-

tats and the food webs or ‘meta-networks’ they contain

[47,79,80]. This spatial–temporal variation in food web

structure is illustrated conceptually in figure 6.

Riverine communities are generally relatively resilient to

flood events [17,81,82] as their invertebrate assemblages are

typically dominated by highly mobile insects that can recolo-

nize quickly. Many taxa have life history and/or behavioural

responses cued to respond to particular precipitation patterns,

including floods and high rainfall [83–87]. In addition, absol-

ute flow size, timing of extreme events and flashiness are

also key hydrological drivers of biotic impacts [88], probably

exacerbated by habitat fragmentation [17,89].

Increases in the magnitude and flashiness of the largest

floods, the areal extent of flooding and the frequency of

high-flow events are widely predicted by many climate

models [90,91]. This pattern appears to be supported by

recent data [2,17], but relatively few small-scale experiments

(less than 3 m2) have been conducted on the biotic effects

of disturbance intensity, areal extent and their interaction

[92–94], and large-scale replicated field experiments are still

lacking [95–97]. There is evidence, however, that losses of

in-stream flow refugia for the more lentic taxa may skew

recovery rates [98–100]. A 1-in-100 year flood event in

Alaska triggered severe declines in salmonids after
overwintering eggs were washed out, although recovery

was rapid [13]; whereas George et al. [28] showed a similarly

extreme flood outside the spawning period during summer

had no such effects. A rare example of long-term empirical

data that captured a catastrophic summer flood in an Irish

river [29,101] showed that most taxa took 4–10 years to

recover, with the larger and less mobile species being

the least resilient, in contrast to the small, abundant and

aerial-dispersing chironomid midges, which were largely

unaffected (figure 5).

(c) Compound thermal and hydrological fluctuations
and extreme events

Both droughts and floods can occur within the same system,

and this may be repeated over a protracted period, as in the

case of the MDB, whose naturally variable flow regime has

become increasingly characterized by frequent droughts

and floods. The decade-long ‘Big Dry’ (1997–2010) affected

the entire basin [102]: its impacts included declines in fish

and bird species at the higher trophic levels, as well as indir-

ect changes in the food web due to release from predation

[103,104]. The drought was finally broken by extensive flood-

ing, which initially caused widespread fish mortality

[105,106], although the return of a more normal flooding

regime eventually led to increased zooplankton richness

[107] and elevated fish spawning relative to the previous

decade of drought [108].

Heatwaves, droughts and lightning storms can, when

combined, trigger wildfires. These are extreme disturbances

in their own right and are widely predicted to increase
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under future climate change [15,109–111] as temperatures

rise [112]. The direct effects of wildfires on riverine ecosys-

tems include increased water temperature and inputs of

nutrients, charcoal and ash [18,113], with smaller headwaters

being particularly susceptible. Biotic responses are often

muted until the first flushing flows arrive (e.g. [111,112]),

when indirect food web effects can become especially impor-

tant [114,115]. Significant reductions in macroinvertebrate

richness and density ([111,116; but see [113]) and the local

extinction of fish populations are common responses [117].

Trophic generality typically increases following fires [118],

even if the total numbers of species and links in the food

web declines. Our theoretical predictions provide some

insights into this—dynamically assembled food webs with

low-nutrient inputs can respond to fluctuations very differ-

ently than those with nutrient subsidies (figure 2; electronic

supplementary material, table S1 and appendix S1).

Invertebrates or amphibians may exhibit top-down

release to become the dominant predators in the absence of

fishes [119]. Burning can thus change the trophic basis of

the food web, with detritus increasing in importance relative

to algae [19,120]. Many of these shifts should be evident in

transient responses in mass-abundance scaling within the

food web, as larger taxa are lost and the effects of subsidies

are reduced, with the scaling exponent steepening.

Consumers that are active dispersers are typically also fast

recolonizers, whereas slow-dispersers, such as herbivorous

snails, may take several years to recover despite being pre-

viously abundant [121]. Despite the protracted absence of

certain nodes in the food web, most of the major trophic

groups may return even within a matter of weeks, with the

more resilient, small r-selected taxa (e.g. Chironomidae) often

becoming dominant in this phase [115,122]. Our theoretical

results are consistent with these patterns (figure 2; electronic

supplementary material, table S1 and appendix S1), though

we also find an interesting non-monotonicity (e.g. decrease

and then increase in mean rmax) in the response of population

growth rates to environmental fluctuations, particularly at high

carrying capacities. This suggests that nutrient subsidies can

reverse or balance the trend towards r-selected organisms in

dynamically assembling running-water food webs. These

taxa are often dietary generalists that exert relatively weak

top-down control, so algal blooms could potentially be trig-

gered indirectly via the food web due to reduced grazing

pressure in the absence of larger specialist herbivores. Essen-

tially, as with drought and heatwaves, we should expect to

see a general shift towards more bottom-up food webs domi-

nated by short food chains and small species, as opposed to

top-down, driven food webs (figure 2).
4. Discussion
Arguably, a mechanistic, metabolic approach is necessary

for constructing a general framework to predict the effects

of climatically driven environmental fluctuations in

running-water ecosystems. Because, the system’s responses

at lower (individuals, interactions) levels of organization are

easier to anticipate from ‘first’, mechanistic principles, we

have presented and illustrated a framework that takes this

relative predictability and scales it up to the dynamics of

the whole ecosystem through a series of steps. By doing so,

we may be better able to understand why ecosystem-level
properties seem to be more resilient (and resistant) than

those of local community food webs, not just in running

waters, but in aquatic ecosystems in general. This has often

been ascribed to the redundancy of species or individuals

within interaction networks [29,123,124]. However, our pre-

dictive capacity at the community level is particularly

limited when we seek to predict which species are affected,

leading many ecologists to abandon the Latin binomial, and

to focus on other community-level properties that are pre-

dictable (e.g. species–area relationships, mass-abundance

allometries) and based on general ecological theory, while

avoiding many of the complicating effects of taxonomic and

biogeographic differences among systems (figures 1, 3 and 6).

Within riverine food webs, energy typically flows along

a series of food chains from small, abundant invertebrate

primary consumers to larger, rarer vertebrate predators (e.g.

[14,125,126]) and such mass-abundance scaling can be

explored using size-spectra, individual-size distributions and

trivariate food web approaches. Deviations from the normal

(or predicted) state should become larger as an event becomes

more extreme and the typical scaling rules are distorted by

external transient stressors (by changes in size distributions;

figures 2 and 3). Such approaches have been used recently to

gauge the impacts of various perturbations in freshwaters,

including both warming [57,127] and drought [76]. In the

latter case, as predicted, drought altered stream food webs pri-

marily via the loss of large and/or rare species and especially

those that were rare for their size—i.e. those below the commu-

nity-wide mass-abundance regression line may have already

been in suboptimal niche space prior to their extirpation from

the food web by drought [76].

These approaches can help to connect higher-level struc-

tural and functional responses of relevance to extreme events,

such as changes in network complexity (e.g. species and/or

link richness) and whole-system metabolism [60,127,128]. At

the ecosystem level, much of the taxonomic complexity at the

community level becomes extraneous as an explanatory vari-

able, and simpler rules may apply. Consistent responses in

ER, for instance, to temperature change [60,62,129], despite

huge levels of taxonomic turnover, are suggestive of prevalent

functional redundancy. This implies that at least some ecosys-

tem processes might be underpinned by relatively simple

physiological and metabolic constraints [56], which offers

cause for optimism for predicting responses to extreme events.

We emphasize that the baseline physical and biotic varia-

bility of these highly dynamic systems needs to be quantified

to gauge their stability. However, this can vary across organiz-

ational levels: communities or food webs may be resilient, even

if some of their constituent populations or pairwise interactions

are not. A considerable body of theory has developed around

the idea that running waters are inherently dynamic systems

(e.g. the flood pulse concept [130], patch dynamics and flow

refugia [131], etc.) yet this aspect of disturbance ecology has

developed unconnected to any explicit consideration of the

role of metabolic constraints, species interactions and food

web dynamics, which we now know are also important filters

that mould riverine ecosystems and their responses to stressors

(e.g. [119,121]). The impacts of fluctuations on running waters

can therefore be better viewed by combining disturbance ecol-

ogy, which provides an important conceptual and empirical

context, and food web ecology, which recognizes the complex

and multiple dimensions of biodiversity. Many of the aspects

of disturbance ecology as applied to running waters are
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conceptual and phenomenological models, rooted to varying

degrees in empirical data, whereas more formal mathematical

approaches based on first principles remain scarce. Both

approaches have merit, but by blending them we argue important

new insights are likely to emerge, as well as greater predictive

power for dealing with future events that are increasingly likely

to be outside what previous data have captured.
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(a) Future empirical and theoretical directions
Although many organismal traits (e.g. high dispersal ability,

short generation time) and higher level attributes (e.g. large

population size) that confer resilience to extreme events are

related to body size, others might not be obviously size-

dependent. The relative importance of these different traits

could, in theory, be measured as the deviation from a general

size–metabolism relationship (e.g. figure 3), which could

then be used to assemble indices of sensitivity to extreme

events. Traits that are independent of body size (e.g. bio-

chemical adaptations that prevent body fluids from

freezing) should have the largest residuals relative to the gen-

eral mass–metabolism relationship, so such approaches

could help to identify the number of dimensions involved

in trait space as well as important exceptions to the general

rules, to simplify the numbers of drivers and responses that

need to be considered [76]. In addition, we also need better

and more extensive data on the thermal physiology of river-

ine organisms. Along with data and models for the effect of

size on individual physiology and performance, data and

models for thermal performance curves are necessary for

accurately scaling up metabolic constraints, and for account-

ing for factors particularly relevant to riverine systems, such

as patterns of physiological mismatches [27] (figure 1).

Another aspect that has been largely overlooked is the

altered dimensionality of the habitat that will occur under

extreme events relative to baseline conditions, as the system

becomes essentially more 2D (droughts) versus 3D (floods),

and this will alter the strength of species interactions ([43];

figure 1). In addition, ice formation can reorganize the phys-

ical habitat of the river bed during extreme cold spells

[132,133], and the wider ramifications of this potential inter-

play between physical habitat change and the concomitant

metabolic costs remains unknown. We also need to be

able to look beyond the river’s banks and to address how

extreme events might alter terrestrial–aquatic linkages in

the landscape—for instance, following a wildfire the first

post-fire storm often triggers sediment erosion and mobiliz-

ation, which can lead to the loss of catchment vegetation

[113,134]. This can also change stream thermal regimes, par-

ticularly in forested systems, so there may be metabolic

consequences that persist long after the fire has passed

[135,136]. When a wildfire removes the riparian vegetation,

the food web undergoes dramatic restructuring: invertebrate

shredders decrease and collector-gatherers, predators and

scrapers increase following the loss of predatory fishes

[137]. Fish (re)colonization is commonly constrained by

dispersal barriers rather than food resources, and many are

very sensitive to fire [136], but for those that survive, their

trophic interactions will shift depending on whether riparian

vegetation remains intact or not. If it is completely burnt,

aquatic invertebrates become more prevalent prey items as

terrestrial invertebrates decline [138,139]. This could intensify

in-stream predation temporarily, but at longer time scales
top-down pressure should ultimately fall if terrestrial subsi-

dies cannot maintain fish populations at their previous

(elevated) levels [140].

Metabolic approaches could therefore also be useful in deal-

ing with impact on the relative importance of terrestrial

subsidies of food and/or habitat, as these will elevate the reci-

pient population densities such that they will sit above the

general mass–abundance scaling relationship. As these links

become impaired, so the affected species should become more

tightly coupled to the general relationship that describes the

solely aquatic system. New generations of models based on

first principles will also be needed if we are to anticipate and

respond to future scenarios, especially as many of those

phenomena and the novel communities they will produce

have not yet been seen: today’s extremes may very well be

tomorrow’s means, as our baselines continue to shift ever

further from what we have known in the past. Extreme events

are difficult and expensive to mimic in large-scale field exper-

iments, so empirical multi-species studies are still scarce and

small in scale [129,141], yet models and mesocosm studies

could help bridge the data–theory gap in the interim until

more realistic larger-scale manipulations are feasible [142].
(b) Ecosystem services, synergies and interactions with
other anthropogenic impacts: the real-world
context of environmental fluctuations

As we now move from our more mechanistic considerations

into the realm of ecosystem services, our current lack of

knowledge becomes ever-more apparent, although we can

still generate some plausible hypotheses for future testing.

This is important because extreme events can have devastat-

ing socioeconomic costs. For instance, the MDB is Australia’s

largest river system, it produces over 70% of the country’s

irrigated crops, supports over 2 million people and contains

internationally significant freshwater ecosystems [143],

and the Big Dry has been estimated to have cost more than

810 million USD [144]. As the threat of climate events

grows, social systems will aim to alter catchment properties

to mitigate the impacts (e.g. larger storm events tend to

increase use of drains, whereas droughts increase the adop-

tion of irrigation). Consequently, responses to climate

events ultimately lead to changes in land use practices that

can amplify (or dampen) the effects on water flows and qual-

ity in riverine landscapes. These climate-related stressors also

need to be set in the wider context of how they will interact

with the many other existing and emerging stressors in the

world’s running waters [145–147], whose combinations are

unlikely to act additively [148]. The extensive modification

of river channels for drainage, irrigation, flood protection

and urban development means that pristine waterbodies

are increasingly hard to find and extreme events are likely

to further amplify the total amount of stress imposed on a

given system [149–152].

More severe floods are likely to trigger further mani-

pulations of river geomorphology to protect humans and

infrastructure, which could accelerate reductions in habitat het-

erogeneity and quality [17,153]. Whether the communities in

these highly modified habitats respond to extreme events in

ways comparable to more pristine communities remains a

moot point [17,96], and the need to develop approaches based
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on first principles, rather than (unknown) phenomenological

conditions, is once again highlighted.

Land use and human actions at the larger, catchment

scale filters local in-stream biota and its responses to extreme

events. The use of freshwaters for drinking water, industry

and irrigation has already altered the hydrology of most of

the world’s river systems [146], and overabstraction is a grow-

ing problem that often exacerbates the effects of extreme

events—e.g. human use for crops and industry during pro-

tracted summer droughts can lower the water table by

several metres. Chemical stressors may also be influenced

by extreme events, as temperature affects thermodynamics,

and fluxes or concentrations of solutes are determined hydro-

logically; storm events exacerbate acid pulses in base-poor

upland streams [154], which can alter the food web and eco-

system processes [155,156] and may even be hindering

biological recovery in the face of several decades of reduced

acidifying emissions [157].

Centuries of anthropogenic impacts have almost certainly

compromised the ability of riverine communities to absorb

the additional impacts of extreme events [158–160], and

freshwater ecologists are focusing on how to manage ecosys-

tem processes and services more sustainably in the future.

Because ecosystem resilience is determined by both the sensi-

tivity of the system to disturbance and its buffering capacity,

identifying stabilizing mechanisms will improve future risk

management strategies for coping with extreme events.

Catchment management has mostly been geared towards

delivering services with high market value, such as food and

fibre [161], although the floodplain’s role for absorbing flood-

waters and how in-stream habitat heterogeneity can improve

fish production are now being recognized [162]. These chan-

ging perceptions might help to reintroduce some of the lost

resilience of these systems [17]: restoring riparian vegetation

could create thermal refugia [163,164] to help offset the rising

threat of future heatwaves. Such restorative management has

potential for protecting multiple components of the food web

and associated ecosystem processes [81,165,166]. In many

regions, environmental water reserves are already being allo-

cated to provide sustaining flows [167] that could help buffer

extreme events by providing refugia in the coming decades

[168,169]. Climate change and extreme events will probably

have dramatic effects on the extent and connectivity of
freshwater habitats (figure 6), which could be managed at

landscape scales through the provision of environmental

flows or through protection of existing, or construction of

new, refugial habitats. The next step is to be able to identify

suitable systems and scales in time and space [170].

In conclusion, it is clear that environmental fluctuations and

extreme events have long been overlooked in the context of

climate change, relative to other stressors, in running waters.

The gaps in our understanding are still multifaceted and

serious, especially as most of the world’s population lives on

floodplains. However, even though sustained long-term and

large-scale monitoring is still the exception rather than the

rule, much progress can still be made by combining space-for-

time substitutions, modelling, and experimental approaches

to push the field forward. Indeed, we are now at an unprece-

dented juncture in the broader field of ecology, where

theoretical and empirical advances are making it possible to

develop a mechanistic yet general model of ecosystem

dynamics and confront these with empirical data. Running

waters, owing to their dynamic nature, offer a substantially

more complex empirical and theoretical challenge in this

regard. We hope this paper and the conceptual framework

that we have developed stimulates better-coordinated and

focused theoretical and empirical efforts to tackle this challenge.
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121. Vila-Escalé M. 2009 Efectes d’un incendi forestal en
una riera mediterrania (Sant Llorenç del Munt,
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