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Pelagic ecosystem function is integral to global biogeochemical cycling, and

plays a major role in modulating atmospheric CO2 concentrations ( pCO2).

Uncertainty as to the effects of human activities on marine ecosystem func-

tion hinders projection of future atmospheric pCO2. To this end, events in

the geological past can provide informative case studies in the response

of ecosystem function to environmental and ecological changes. Around

the Cretaceous–Palaeogene (K–Pg) boundary, two such events occurred:

Deccan large igneous province (LIP) eruptions and massive bolide impact

at the Yucatan Peninsula. Both perturbed the environment, but only the

impact coincided with marine mass extinction. As such, we use these

events to directly contrast the response of marine biogeochemical cycling

to environmental perturbation with and without changes in global species

richness. We measure this biogeochemical response using records of deep-

sea carbonate preservation. We find that Late Cretaceous Deccan volcanism

prompted transient deep-sea carbonate dissolution of a larger magnitude

and timescale than predicted by geochemical models. Even so, the effect

of volcanism on carbonate preservation was slight compared with bolide

impact. Empirical records and geochemical models support a pronounced

increase in carbonate saturation state for more than 500 000 years following

the mass extinction of pelagic carbonate producers at the K–Pg boundary.

These examples highlight the importance of pelagic ecosystems in moderating

climate and ocean chemistry.
1. Introduction
Atmospheric CO2 concentrations ( pCO2) are regulated by a complex, intercon-

nected system of sources and sinks, both abiotic and biotic [1–3]. Biological

activity in the surface oceans plays a major role in this via the ‘biological

carbon pump’, whereby pelagic organisms take up carbon in the surface

ocean, die and sink, sequestering carbon in the deep ocean. In addition, pelagic

calcifying organisms (such as coccolithophores and planktonic foraminifera)

export CaCO3 to the deep oceans, sequestering weathering products from

land in sediments (the ‘alkalinity pump’). This balances alkalinity fluxes, pro-

vides a dissolvable carbonate reservoir that buffers the ocean from potentially

harmful pH change, and helps to maintain largely equable climates [4,5].

Together, planktonic foraminifera and coccolithophores account for the vast

majority of the pelagic carbonate flux [6], which in turn accounts for almost

half of total marine carbonate production [7]. As such, pelagic organisms

play an important role in biogeochemical cycling and climate regulation.

Human activities (examples among many include injection of CO2, overfish-

ing, oxygen depletion and habitat destruction) threaten the function of the

pelagic ecosystem [8–10], adding uncertainty to the projection of pCO2 and

climate over the coming centuries [3,11]. In part, this uncertainty stems from
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a lack of available ecological datasets across the spatial and

temporal scales that would be relevant in constraining

model predictions [12]. Most existing ecological time series

are too short to discern trends beyond decadal variation in

the climate system and relatively few studies have addressed

the link between biodiversity and ecosystem function on

geological timescales (see [13] in this issue for an exception).

The microfossil record can be a useful resource in addressing

these knowledge gaps [14], and placing constraints on the

response of the pelagic ecosystem to environmental pertur-

bations and their effect on biogeochemical cycles. During

an approximately 1 million year (Myr) interval surrounding

the Cretaceous–Palaeogene (K–Pg) boundary 66.04 Myr

ago, two very different disturbances are recorded in the

marine fossil record. These events provide case studies on

the interplay between environmental change, biodiversity

and ecosystem function under similar background conditions.

Our study thereby begins to address a gap in our current

understanding of the relationship between biodiversity and

ecosystem function [13,15].

The onset of vast flood basalt volcanism (the Deccan

Large Igneous Province, LIP) in the latest Cretaceous resulted

in the release of 15 000–35 000 Gt CO2 and 6400–17 000 Gt

SO2 over a relatively long (more than 100 000 year) timescale

[16,17]. In contrast, the impact of an approximately 10 km

wide bolide at Chicxulub at the K–Pg boundary [18] led to

instantaneous release of SOx, NOx and CO2([19] and refer-

ences within), and rapid and transient (probably less than

5 year) acidification of the surface ocean [20,21]. Besides the

very different timescales of these environmental pertur-

bations, a critical difference is that the Chicxulub impact

coincides with a major mass extinction and Late Cretaceous

Deccan volcanism does not [19]. Species loss in the open

ocean following the bolide impact, while variable between

groups [22], was particularly high in the calcareous plankton

(approx. 95% and 90% in planktonic foraminifera and calcar-

eous nannofossils, respectively [23,24]). In contrast, during

Late Cretaceous Deccan trap volcanism, biotic disturbance

in the open ocean was largely limited to changes in biogeo-

graphic ranges [25,26]. Together, these events allow us to

contrast the impact of environmental changes on ecosystem

function with and without associated loss of pelagic biodiver-

sity. Here, we use carbonate preservation indices to gain a

fuller understanding of changes in biogeochemical ecosystem

function across this interval, combining new and previously

published records of carbonate preservation from geographi-

cally disparate deep-sea sites with new insights from ocean

carbon cycle modelling.
2. Methods: carbonate preservation
Change in deep-ocean carbonate saturation state (VCaCO3) is

an indicator of broader carbon cycle disturbance that can be

readily discerned in the geological record using records of

deep-sea carbonate preservation [27]. New and previously

published records of a number of different CaCO3 preserva-

tional indices are compiled here from globally distributed

deep-sea drill core sediments over a 3.7 Myr interval sur-

rounding the K–Pg boundary, 66.04 million years ago

(Ma). Each CaCO3 preservation metric has associated

strengths and limitations, which we discuss at length in the

electronic supplementary material. Where possible, our new
records of deep-sea preservation use counts of planktonic for-

aminiferal fragmentation (as in [28,29]). This metric relies on

the observation that with decreasing deep-ocean VCaCO3

microfossils progressively dissolve and fragment [30] (see

electronic supplementary material, figure S1). New fragmen-

tation data were generated from Shatsky Rise in the Pacific

(ocean drilling programme (ODP) site 1209) and Walvis

Ridge in the South Atlantic (ODP site 1267). Meaningful frag-

mentation counts from the Newfoundland Sediment Drifts

site in the North Atlantic (International Ocean Drilling Pro-

gramme (IODP) site U1403) were not attainable owing to

extensive dissolution prior to the K–Pg boundary (see elec-

tronic supplementary material, figure S2). At this site,

weight per cent (wt.%) coarse fraction (greater than 38 mm)

was used as a carbonate preservation indicator (though

important caveats to this production-sensitive metric are dis-

cussed in the electronic supplementary material). Sediment

samples were dried and weighed before being disaggregated

in de-ionized water on an orbital shaker and washed through

a 63 mm (Walvis Ridge, site 1267 and Shatsky Rise, site 1209)

or 38 mm (Newfoundland, site U1403) sieve with de-ionized

water. Both the greater-than-63 mm/greater-than-38 mm

coarse fraction and the fine fraction were then dried at

approximately 458C and the coarse fraction weighed to calcu-

late wt.% coarse fraction. For Walvis Ridge (site 1267) and

Shatsky Rise (site 1209), the relative abundance of ‘complete’

tests (i.e. whole tests that show no signs of any breakage or

dissolution of chambers) was counted from a representative

split (200–400 fossils) of the greater-than-125 mm size frac-

tion. Full details of the methods used to construct age

models for each site (including the construction of new age

models for previously published data) are given in the

electronic supplementary material.
3. Methods: carbon cycle modelling
The geochemical box model Long-term Ocean Sediment

CArbon Reservoir (LOSCAR) v. 2.0.4 [31] was employed to

simulate the impacts of volcanic degassing and calcifier

extinction on the global carbon cycle, with some modifi-

cations. Importantly, to better account for the very different

[Ca2þ] and [Mg2þ] in the K–Pg ocean [32], updated carbon-

ate chemical equilibrium constants from the MyAMI model

[33] were substituted into the model, using a [Ca2þ] of 42

and [Mg2þ] of 20 mmol kg21. All plotted model runs

(figure 3 and electronic supplementary material, S5–11)

were initiated at a steady state pCO2 of 600 ppm (in agree-

ment with palaeosol carbonate measurements ([34,35], and

references therein)), and assume a climate sensitivity of 38C
per doubling of pCO2. This climate sensitivity is in the

middle of the range (2.2–4.88C) of observed climate sensi-

tivity over the past 65 Myr [36]. However, a range of other

starting atmospheric CO2 concentrations (400–1000 ppm)

and climate sensitivities (0–58C per doubling) were also

explored, with results listed in electronic supplementary

material, table S1 (see also electronic supplementary material,

Discussion). Our primary experiments (figure 3) also assume

a stronger-than-modern silicate weathering feedback to

account for a greater abundance of exposed fresh Deccan

basalt at low latitudes (see electronic supplementary material

for more details), although model runs at a range of feedback
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strengths were also tested (see electronic supplementary

material, table S1 and figure S10).

For simulations of Deccan degassing, minimum and

maximum emission scenarios (total CO2 ¼ 4090 or 9500 Gt

C; total SO2 ¼ 3200 or 8500 Gt S [16]) were partitioned into

two discrete pulses, in accordance with the proposed

second and third stages of volcanism from [37], and the erup-

tive volumes of [38]. 86.5% of degassing was input over an

approximately 140 Kyr interval beginning at the C30n/C29r

magnetochron reversal, approximately 360 Kyr before the

K–Pg boundary. This corresponds to an observed interval

of decreasing seawater 187Os/188Os (which indicates elevated

basalt weathering) [39]. The remaining 13.5% of the volcanic

emissions was then released in models at the end of magne-

tochron C29r in the Danian (250 kyr after the K–Pg

boundary). Most other estimates of CO2 release for the

Deccan traps [38,40–42] fall within the range of emissions

tested here [16]. To better discern the effects of each gas, scen-

arios for CO2 and SO2 release were also tested in isolation

(figure 3). As in [21], SO2 release and rain-out were simulated

by reducing alkalinity in the surface ocean box (see electronic

supplementary material for more details). A wide range of

possible timescales and modes of degassing were also

tested (see electronic supplementary material, table S1).

For simulations of the biogeochemical consequences of

the K–Pg mass extinction, a range of carbonate flux

reductions were tested, ranging from 10% up to 75%. We

tested two types of scenarios: (i) reductions in CaCO3 flux

with no change in the organic carbon flux (i.e. a change

in the CCaCO3 : Corg flux ratio); and (ii) reductions in overall

efficiency of the biological carbon and alkalinity pump

(i.e. reducing both CCaCO3 and Corg fluxes). For each simu-

lation, changes in fluxes were imposed for 200 Kyr

following the K–Pg boundary and then tapered back to

pre-event values over a further 200 Kyr to simulate the gra-

dual recovery of early Palaeocene pelagic ecosystems. For

further details and discussion about modelling approaches,

see electronic supplementary material.
4. Deccan volcanism, global warming and
carbonate dissolution

The main phase of Deccan volcanism [37] is recorded in deep-

sea sediments by a global decline in 187Os/188Os [39] just

after the C30n/C29r magnetochron reversal [17] at

66.398 Ma (figure 1a). The onset of volcanism and associated

release of CO2 coincides with evidence for a transient

warming event (figure 1b) in both geochemical [43–46] and

palaeoecological data [25,52,53]. Our data show a

pronounced increase in deep-sea carbonate dissolution in

several ocean basins at this time, in response to this volcan-

ism (figure 1c–h). Dissolution is particularly pronounced in

the Southern Ocean (ODP site 690 [39,47,48] and figure 1c)

and North Atlantic (IODP site U1403 [49] and figure 1d ),

with wt.% carbonate falling by approximately 20% and

approximately 40%, respectively. This result is consistent

with enhanced dissolution in high-latitude sediments closest

to sites of deep water formation [54], where the impact of

increased CO2 emissions will first be felt. At lower latitudes,

increased foraminiferal fragmentation seen at Walvis Ridge

(ODP site 1267, figure 1e (this study); DSDP site 527,

figure 1f [50]) and Shatsky Rise (ODP site 1209, figure 1g
(this study)) is indicative of a shoaling of the lysocline (i.e.

the depth at which substantial carbonate dissolution

occurs). Reduced planktonic foraminiferal preservation else-

where on Shatsky Rise (DSDP site 577 [51]; figure 1h), and

selective preservation of dissolution-resistant coccolitho-

phores in the Indian Ocean [47] (electronic supplementary

material, figure S4) corroborate this observation.

In all cases, records of increased dissolution return to

roughly pre-event values before the K–Pg boundary

(figure 1), restricting the main degassing phase of Deccan vol-

canism to a distinct less than 200 Kyr interval beginning at

the onset of magnetochron C29r, around 66.398 Ma. This sup-

ports previous inferences for only transient ocean acidification

based on Ir accumulation [39], and suggests Deccan degassing

played no direct role in K–Pg mass extinction. New absolute

age constraints for the Deccan eruptions [17] have been cited

as evidence of a Deccan role in the K–Pg extinction through

ocean acidification [55]. Our data (and modelling below and

electronic supplementary material, figures S5 and S6) suggest

that even these new timescales for eruption are still long

enough for surface ocean carbonate saturation to be main-

tained via carbonate compensation and silicate weathering

(see also [56]).
5. Bolide impact and mass extinction
at the K – Pg

In the aftermath of the K–Pg, sediment records from the Paci-

fic and Atlantic (figure 2) show a pronounced rise in wt.%

coarse fraction as a result of both decreased calcareous plank-

ton production and enhanced foraminiferal preservation.

Simultaneously, fragmentation of planktonic foraminifera at

both Walvis Ridge [59] and Shatsky Rise [28] declines

(figure 2), even to essentially no fragmentation at Shatsky

Rise. Because some foraminiferal fragmentation is normally

expected during sinking and sedimentation even above the

lysocline [62,63] (see electronic supplementary material,

figure S1), this lack of discernible fragmentation at Shatsky

Rise indicates very high [CO3
22] throughout the water

column. Rapid and pronounced deepening of the lysocline

owing to this enhanced [CO3
22] is evidenced at the Newfound-

land Sediment Drift in the North Atlantic (IODP site U1403),

where we observed a step-change across the K–Pg from

Maastrichtian sediments barren of any planktonic foraminifera

to post-boundary sediments in which Danian planktonic

foraminiferal species are excellently preserved (electronic

supplementary material, figure S2) up until around magneto-

chron C28r (figure 2). Similarly, in the South Pacific (IODP

site U1370, 5076 m depth) [64], the only carbonate preserved

over the last 75 Myr is in the immediate aftermath of the

K–Pg boundary, within nannofossil zones NP1 and NP2 [64].

Elsewhere, at the Ontong–Java plateau (ODP site 803,

3410 m depth), carbonate is preserved for a brief interval (less

than 1 m, within biozone NP1) around the K–Pg boun-

dary, but is absent above and below [65]. Additional lines of

evidence for a rise in oceanic VCaCO3 are also discussed in the

electronic supplement material (§6d). These lines of sedimento-

logical evidence all support the predictions of earlier work

[66,67] that reduced pelagic carbonate production owing to

extinction of calcareous plankton following the K–Pg bolide

impact [68,69] profoundly impaired the marine alkalinity

pump (a key pelagic ecosystem function) and prompted a
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period of alkalinity build-up, deepening of the lysocline, and

ocean pH rise.

6. Comparison with carbonate system models
Using the LOSCAR carbon cycle model [31], we attempt to

reproduce observed patterns of environmental change and

deep-sea carbonate preservation. For pre-boundary volcan-

ism, we find that only high-end Deccan CO2 emission

scenarios can produce the widely observed late Maastrichtian

warming of approximately 2–38C at mid-range climate sensi-

tivity (38C/CO2 doubling), for an initial atmospheric pCO2 of
600 ppm [34] and an eruptive duration of 140 Kyr. Moreover,

with this forcing, only high-strength silicate weathering feed-

backs (see electronic supplementary material, Discussion)

could draw down CO2 and temperature within only several

hundred thousand years, consistent with observations

(figure 1b). For lower CO2 emission scenarios, either high-

end late Cretaceous climate sensitivity (greater than 38C per

CO2 doubling) or lower initial pCO2 are required to produce

observed warming (see electronic supplementary material,

table S1).

In terms of carbonate cycle perturbation, LOSCAR pre-

dicts at most only fleeting reductions (less than 40 Kyr) in
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either surface or deep-ocean VCaCO3 for an eruptive duration

of 140 Kyr (figure 3 and electronic supplementary material,

figure S5), although an approximately 0.5 Myr reduction in

surface ocean pH of up to 0.19 is predicted (electronic sup-

plementary material, figure S5). For even the largest

estimates of SO2 and CO2 release, LOSCAR suggests that

eruptive timescales of less than 100 Kyr are required to

produce pronounced lysocline shoaling (electronic sup-

plementary material, figure S6), and even then this shoaling

would be briefer (less than 50 Kyr) than indicated in the sedi-

mentary record (approx. 150–200 Kyr, figure 1c–h). Instead,

the dominant long-term signal predicted for Deccan CO2

release under any modelled emissions scenario is elevated

weathering fluxes, a rise in oceanic carbonate saturation,

and a deepening of the lysocline (figure 3). We observe

little evidence for this enhanced preservation (or ‘carbo-

nate overshoot’) following the initial dissolution pulse of

Deccan volcanism (figure 1c–h). The brevity of dissolution

relative to preservation records and the existence of a pro-

nounced carbonate overshoot are consistent in all modelled

scenarios, despite different timescales for release, total emis-

sions, starting pCO2, equilibrium constants and weathering

feedbacks (see electronic supplementary material, Discussion

and table S1).

There are multiple possible explanations for this mismatch

between empirical observations and model predictions (dis-

cussed in depth in the electronic supplementary material),

including an overestimation of the duration of the Cretaceous

portion of magnetochron C29r (as suggested by recent U–Pb

dating; [17]), changes in circulation or productivity, elevated

CaCO3 deposition in shelf settings (see electronic supplemen-

tary material, figure S9) or the influence of processes not

accounted for in LOSCAR. Another possible explanation is

that Deccan-induced warming resulted in a more stratified

ocean with more oligotrophic surface waters [26,52,53]. In

the modern ocean, oligotrophy favours ecosystems more
heavily dominated by coccolithophore production when

compared with siliceous and organic-walled primary produ-

cers [70]. If this was similar in the Cretaceous ocean, and

Deccan warming did indeed result in enhanced stratification

and more oligotrophic oceans, it is possible that CaCO3 pro-

duction and export rose. A modelled increase in CaCO3 :

Corg ratio of 30% during simulated warming succeeds in

extending the timescales of deep-ocean carbonate dissolu-

tion to approximate agreement with sedimentary records,

amplifying atmospheric CO2 rise, and dampening subsequent

carbonate saturation increase (electronic supplementary

material, figure S8). This emphasizes the potential importance

of accounting for biotic, ecological feedbacks when considering

the ocean’s response to greenhouse gas forcings.

We also simulate the effects of an extinction of pelagic car-

bonate producers at the K–Pg boundary (figure 3 and

electronic supplementary material, figures S5 and S11).

Although the bolide impact [20,21] and a brief reduction in

photosynthetic carbon uptake [59] could have induced acidifi-

cation of surface waters and released CO2 from the oceans on

timescales of less than 10 Kyr [67] (figure 3), the more signifi-

cant long-term impact on the carbon cycle comes about from

the major extinction in both main groups of pelagic calcifiers.

This extinction, and loss of abundance, caused changes in car-

bonate saturation state that persisted for more than 1 Myr

(figure 2). We demonstrate that even a conservative 30%

reduction of CaCO3 export flux results in a deepening of the

Atlantic carbonate compensation depth (CCD) by 2 km, an

increase in surface VCalcite from 6.6 to 10 (electronic sup-

plementary material, figure S11) and a drop in atmospheric

CO2 of approximately 100 ppm (figure 3), consistent with

modelled findings of earlier studies [66,67]. This elevation of

ocean alkalinity in response to mass extinction could provide

a mechanism for low atmospheric pCO2 estimated for the

early Danian [71]. Our modelling suggests a 30% drop in

CaCO3 export would also lower the modelled Pacific CCD
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Figure 3. LOSCAR [31] simulations of Deccan degassing release and K – Pg reduction in CaCO3 flux. Simulations of atmospheric pCO2 (a) and deep-water calcite
saturation state (b) response to simulated perturbations. Maximum and minimum CO2 and SO2 efflux estimates for Deccan eruptions are from ref. [16], partitioned
into a main eruptive phase (‘phase II’) beginning at the onset of C29r (86.5%) and a later one (13.5%) at the close of C29r in the Danian (‘phase III’) [39]. CaCO3

flux changes impact the CaCO3 : Corg ratio assuming no change in organic flux. Reduction in biological pump efficiency reduces the efficiency of the biological pump
in using the parametrized nutrient pool (see electronic supplementary material, Discussion for more details). Model outputs are plotted against simulated model
years, relative to the simulated K – Pg boundary.
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to approximately 4200 m—enough to bring the CCD below

the South Pacific Gyre IODP site U1370 but above site

U1365, consistent with sedimentary observations [64]. Deep-

sea sediment cores, though, suggest a much greater reduction

in pelagic CaCO3 production and delivery ([59] and references

within). In our model runs, a reduction in CaCO3 production

by more than 50% would produce sufficiently high supersa-

turation to initiate abiotic precipitation of CaCO3 in surface

waters (electronic supplementary material, figure S10)—a pro-

cess which today is not known beyond tropical shelf settings

such as the Bahamas or Persian Gulf. While there is perhaps

some evidence for this [72], it is also possible that other syn-

chronous changes may have occurred to avoid critical

supersaturation. Increased burial of carbonate on shelves to

compensate for less deep-ocean burial could have played

a role [67] (see also electronic supplementary material,

figure S9), although evidence for such an increase is, at best,

scant (see electronic supplementary material, Discussion).
7. Volcanism, impact and the carbon cycle:
implications for biodiversity and ecosystem
function

Environmental forcing imposed by Deccan emplacement and

K–Pg bolide impact produced very different recorded

changes in ecosystem function (figures 1 and 2), primarily

as a result of very different patterns of ecological response.

There is little evidence for loss of species or population abun-

dance in the open ocean plankton during Late Cretaceous

Deccan volcanism. The approximately 2–38C warming

associated with Deccan CO2 release resulted in range expan-

sions [25,26,52], dwarfing of some planktonic foraminiferal

species [73] and regional assemblage changes [74], but there

was no elevation in extinction rates of functionally important
marine calcifier species (planktonic foraminifera and cocco-

lithophores) at this time [69,75]. This retention of biodiversity

and redundancy among calcifiers, we suggest, was probably

important in maintaining the resilience of the pelagic ecosys-

tem (and its associated biogeochemical functions) [15,76].

Consequently, the marine carbonate cycle, coupled with

global silicate weathering feedbacks [1], could assimilate

Deccan-derived CO2 over these timescales without drastic,

long-lasting effects on surface ocean VCaCO3 (only very

modest lysocline shallowing and some reduction in surface

ocean pH—see electronic supplementary material, figure

S5—are indicated). This role of pelagic calcifiers in mitigating

the impact of CO2 emissions is underscored by considering

similar volcanic episodes before the evolution of pelagic calci-

fiers [4,5]. Two of these earlier episodes, the end-Triassic

Central Atlantic Magmatic Province [77] and Permo-Triassic

Siberian Traps [78] volcanism, had profound environmental

impacts and resulted in two of the largest mass extinctions

in the history of life [5].

The more profound and long-lasting perturbation of sur-

face ocean carbonate saturation we observe over the K–Pg

transition arises from mass extinction following the Chicxu-

lub bolide impact. The near-complete loss of the clades

responsible for the vast majority of pelagic carbonate cycling

(planktonic foraminifera and coccolithophores [68,69])

resulted in a build-up of alkalinity in the Earth’s ocean (as

evidenced by improved deep-ocean carbonate preservation;

figure 2). This, in turn, may have also drawn down atmos-

pheric CO2 and prompted climatic changes ([66], this

study). While some evidence suggests export of organic

carbon to the deep ocean had largely recovered within a

few hundred thousand years [79,80], carbonate preservation

(figure 2) suggests recovery of full pre-event biogeochemical

function in pelagic ecosystems took more than a million

years, coinciding with restoration of micro- and nannofossil

biodiversity [81]—an example of the close link between



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

371:20150510

7
biosphere and geosphere dynamics in the aftermath of mass

extinction (see also [82]).

Current global change is altering pelagic ecosystems, but

the extent of this alteration in biodiversity [9] and ecosystem

structure [83] and its ultimate biogeochemical significance,

remains unclear [2,3]. In the case of the K–Pg boundary,

the extinction was particularly selective against pelagic calci-

fiers, and post-extinction ecosystems lacked both the diversity

and abundance of pre-extinction oceans. Although it is the

decline in calcifier abundance that directly accounts for the

decline in ecosystem function, it remains an open question

how important standing richness, within and across calcifier

clades, is in determining calcifier abundance across the event.

It is noteworthy in this context that post-extinction biogeo-

chemical function (and by inference the abundance of

calcifiers) recovers long in advance of the full recovery of

pre-event levels of calcifier diversity (figure 2 and also

[58]). This observation suggests that while functional redun-

dancy among latest Cretaceous calcareous plankton may

have helped to confer resilience on carbonate export [76] in

the face of volcanic CO2 and SOx emissions and global warm-

ing, a much lower standing diversity can still support a

comparable carbonate alkalinity pump. For the oceans

today, it is crucial to determine where tipping points may

lie with regards to shifting the abundance of marine organ-

isms, as it is the aggregate effect of many, many billions

that account for pelagic ecosystem function. As we show
here, pelagic ecosystem change, particularly in pelagic calci-

fiers, can profoundly influence the long-term evolution of

the Earth system.
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Goddéris Y. 2015 Geochemical consequences of
intense pulse-like degassing during the onset of the
Central Atlantic Magmatic Province. Palaeogeogr.
Palaeoclimatol. Palaeoecol. (doi:10.1016/j.palaeo.
2015.04.011)

78. Campbell IH, Czamanske GK, Fedorenko VA, Hill RI,
Stepanov V. 1992 Synchronism of the siberian traps
and the Permian – Triassic boundary. Science 258,
1760 – 1763. (doi:10.1126/science.258.5089.1760)

79. Birch H, Coxall HK, Pearson PN, Kroon D, Schmidt
DN. 2016 Partial collapse of the marine biological
pump at the Cretaceous – Paleogene boundary.
Geology, G37581 – 1.
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