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Abstract

Purpose of review—Many studies have reported that individuals with autism spectrum disorder 

(ASD) have different brain connectivity patterns compared to typically developing individuals. 

However, the results of more recent studies do not unanimously support the traditional view in 

which individuals with ASD have lower connectivity between distal brain regions and increased 

connectivity within proximal brain regions. In this review, we discuss different methods for 

measuring brain connectivity and how the use of different metrics may contribute to the lack of 

convergence of investigations of connectivity in ASD.

Recent findings—The discrepancy in brain connectivity results across studies may be due to 

important methodological factors such as the connectivity measure applied, the age of patients 

studied, the brain region(s) examined, and the time interval and frequency band(s) in which 

connectivity was analyzed.

Summary—We conclude that more sophisticated EEG analytic approaches should be utilized to 

more accurately infer causation and directionality of information transfer between brain regions, 

which may show dynamic changes of functional connectivity in the brain. Moreover, further 

investigations of connectivity with respect to behavior and clinical phenotype are needed to probe 

underlying brain networks implicated in core deficits of ASD.
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2. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder featuring deficits in 

social communication and language acquisition, as well as restricted interests and repetitive 

behaviors [1]. Much research has attempted to understand the neural underpinnings of ASD 

by the identification of biomarkers (i.e., objectively measured biological markers that 

indicate risk for autism [2]) that relate to its core deficits. Measures of brain connectivity are 
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promising ASD biomarkers [3], yet a plethora of methods for extracting and delineating 

brain networks from recordings of functional brain activity exist.

Why connectivity? Brain connectivity measures infer which brain regions are physically or 

functionally connected to form brain networks that subserve either cognitive/behavioral task 

performance or the brain’s resting/default state [12]. While hundreds of genes convey risk 

for ASD [4], many of these genes notably converge on synaptic pathways [5–10]. On a 

microscopic level, this convergence underscores synaptic connectivity as a potential 

neurobiological mechanism of ASD; however, on a macroscopic level, it points towards 

axonal or functional connectivity patterns as a plausible biomarker for ASD. The number of 

publications with the keywords ‘brain connectivity’ has grown exponentially over the past 

30 years (1985 – 2015, Fig. 1) [13], whereas the number of publications for ‘brain imaging’ 

has grown almost linearly over the same period. The exponential explosion in brain 

connectivity publications underscores the importance of this new field in understanding the 

brain as an integrated system.

Published studies on brain connectivity in ASD yield inconsistent results, not only because 

of the use of different imaging modalities and techniques for (re)constructing brain networks 

but also because of the challenges inherent in the selection of appropriate methods for 

delineating brain networks to test a given hypothesis. Additionally, choosing a proper 

neuroimaging technique that suits a clinical cohort may avoid detrimental filtration of the 

sample, i.e., omitting low functioning individuals with severe cognitively impairments who 

yield noisy data or outliers for a given brain connectivity technique. For example, in cohorts 

with ASD, motor stereotypies and cognitive level must be taken into account when 

considering imaging techniques that are sensitive to motion artifacts or require the 

participant to lie motionless for a long period of time.

This following is not meant to be an exhaustive review on the literature; rather, we provide a 

critical review of the specific methods used to capture brain connectivity, methods that 

quantify the delicate balance between functional segregation and integration of neuronal 

circuits. We discuss how different brain connectivity approaches can lead to divergent results

—even when applied to the same data. We conclude with general recommendations for 

connectivity measures that are most promising—in terms of feasibility, robustness, and 

sensitivity—for studying individuals with ASD.

3. Overview of brain connectivity approaches

Brain connectivity approaches can be categorized as structural or functional. Within 

functional connectivity, methods that infer causality and directionality of information 

transfer are considered effective connectivity.

1. In structural brain connectivity approaches, regions of the brain are considered to 

be connected if there are anatomical (white matter) connections between distinct 

brain regions. Structural connectivity may vary across development and can be used 

as an index of brain plasticity.
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2. In functional connectivity approaches, the interdependency among activities of 

different brain areas is measured using statistical methods such as correlation, 

covariance, phase coherence, and phase locking. These methods characterize the 

strength of the relationship (e.g., correlation) but not the direction of information 

flow or causality. Functional connectivity can illustrate the integration and 

segregation of brain networks in much finer temporal resolution than structural 

connectivity methods.

3. Effective connectivity examines interactions—inferred to be casual—between 

nodes of brain networks while showing directionality of information transfer. 

Common approaches to measure effective connectivity are Granger Causality and 

its derivatives, as well as Phase Slope Index.

Diffusion MRI and diffusion tensor imaging (DTI) represent methods for mapping structural 

connectivity that characterize anatomical fibers within brain networks. Both methods are 

sensitive to the diffusion of water molecules along axon fibers [14]. Delineation of 

functional brain networks is arguably less straightforward than that of structural brain 

networks, as statistical dependencies are far less concrete than anatomical fibers. Functional 

networks may be obtained by utilizing hemodynamic imaging techniques such as functional 

magnetic resonance imaging (fMRI) or other measures of brain activity such as 

electroencephalography (EEG) and magnetoencephalography (MEG). EEG and MEG 

signals reflect approximate measures of postsynaptic pyramidal cell activity with 

millisecond temporal resolution ideal for describing brain dynamics. However, the spatial 

resolution of both methods is poor compared to MRI, even though this limitation can be 

partially compensated using advanced signal processing analytic techniques. The spatial 

resolution of MEG exceeds that of EEG owing to the fact that magnetic fields are less 

distorted by the skull and scalp than electric fields [15].

3-1. Brain imaging techniques for Connectivity Analysis

Choice of an appropriate non-invasive in vivo neuroimaging technique for delineating brain 

networks depends on the clinical population of interest and the type of connectivity to be 

analyzed. In the context of neurodevelopmental disorders such as ASD, the developmental 

level of the individual is also an important consideration.

Although many studies use fMRI to study task-related and resting state functional 

connectivity, EEG/MEG are preferable for describing functional and effective connectivity 

due to their rich temporal dynamics. Both fMRI [16] and MEG [17] are highly sensitive to 

motion artifacts, making both techniques largely impractical for young children and/or 

children with repetitive, stereotyped behaviors. Other MRI techniques used for mapping 

structural connectivity, such as diffusion MRI and DTI, share this limitation.

3-2. Characterizing the brain network’s nodes and edges

One of the most commonly used approaches for characterizing a network and its 

components is graph theory. In the parlance of graph theory, brain regions or recording 

sensors (e.g., voxels or electrodes) are treated as the network’s nodes and the connections 

between those nodes are the edges of the network. The most straightforward approach to 
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choosing network nodes is to use sensor location as nodes. However, signals in sensor-space 

may exhibit spurious functional and effective connectivity due to volume conduction. 

Volume conduction is a phenomenon whereby electrical signals are spread out widely as 

they travel through brain tissue and spatially smeared by the skull, like a narrow point of 

light viewed through frosted glass. As a result of volume conduction, spatial relationships 

measured from the scalp may not represent true neural connectivity but rather artifacts of 

volume conduction. Spatial filters [18] such as current source density (CSD)—the second 

spatial derivative (Laplacian transformation) of sensor-space recordings [19]—have been 

introduced by researchers to deal with the volume conductance issue (Fig. 2). Alternatively, 

by using an inverse model approach such as such standardized low resolution brain 

electromagnetic tomography (sLORETA), beamforming, and independent components 

analysis (ICA) for dipole localization, spatial locations of “cortical activity” sources can be 

estimated and considered as the nodes of the network [22].

3-3. Choosing Network Edges - Measures of Connectivity

The existence or strength of a network’s edges is an important factor when studying brain 

connectivity. Here, we discuss different methods to quantify edges commonly used in 

functional and effective connectivity approaches:

1. Time-Lag measures: The simplest time-lagged measure is cross-correlation, which 

is the degree of similarity between activation of one brain region with a shifted 

(time-lagged) activation of another region. This measure can estimate the neural 

processing delay between two regions. For example, when measuring cross-

correlation between brain areas A and B, if the time lag is 500 ms, the cross 

correlation will represent the degree of similarity between activity in area A at 0 ms 

and activity in area B 500 ms later.

2. Coherence: This is a measure of synchronization between two signals of the same 

frequency, and it quantifies the extent to which they share a constant oscillating 

frequency and phase difference. For instance, two signals that are oscillating at the 

same frequency f0 may have a phase difference value ranging anywhere from zero 

(in-phase) to 180 degrees (anti-phase). In this case, they have a magnitude 
coherence value of 1 because they share the same oscillation frequency f0; however, 

their phase coherence value may vary from 0 to 1 for anti-phase to in-phase, 

respectively (Fig. 3). In theory, neuronal ensembles oscillate coherently to share 

information [20].

3. Causality: While true causal relationships cannot be extracted from EEG or MEG 

recordings without applying electrical or magnetic stimulation [12], Granger 

Causality (GC) is a weaker notion of causality: at frequency f0, if past values of one 

brain recording ‘A’ help to predict future values of brain recording ‘B’ beyond 

what can be inferred from past values of recording B alone, then (according to GC), 

‘A’ has a Granger causal effect on ‘B’. While not true causality, GC is useful for 

inferring directionality of neural information transfer [19].

The methods mentioned above can be applied to data from many neuroimaging modalities 

including fMRI, MEG, and EEG. However, it should be noted that the accuracy of 
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determining coherence or GC at frequency f0 depends on the length of data. For example, to 

investigate low frequencies, longer recording time is required. Therefore, choice of 

frequency band plays a critical role in the interpretation of connectivity data, as will be 

discussed in later sections.

3-4. Graph theory measures

How does one summarize connectivity in a network with hundreds to thousands of edges? 

Edges weaker than a certain threshold strength are often eliminated to create a pruned 

network/graph. Next, the architecture of the network is described using graph theory 

measures, several of which are described below and illustrated in Figure 4.

Small-worldness—This refers to the property by which any two nodes in a network are 

connected by a small number of steps or ‘hops’ (Fig. 4). For instance, consider a global 

network of airports where any given city can be reached by three or fewer connecting flights. 

Such a network has small-world properties. As a result, within the brain’s small-world 

network, the information flow is highly efficient with minimal serial-synaptic conduction 

delay. Small-world networks are also more robust to deletion of random nodes or damage to 

the network.

Path length—The efficiency of a network is related to the path length, or the average 

number of edges between any two nodes, which is minimal for small-world networks (Fig. 

4). For instance, social networks are said to have a path length of 6, meaning any two people 

in the world know each other through 6 series of acquaintances.

Modularity—Also relevant to efficiency and small-worldness, this term describes the 

tendency for nodes to form hierarchical and recursive clusters within clusters (Fig. 4). 

Closely related is the clustering coefficient, a measure of local interconnectedness or 

“cliquishness,” which reflects the degree to which clustering occurs around an average node.

4. Brain connectivity findings in Autism Spectrum Disorders

Considering the growing interest in brain connectivity in ASD (Fig. 1), a reasonable skeptic 

might ask if many of these studies are largely the product of a bandwagon effect. However, 

given the growing insights gained from autism genetics, with many pathways converging on 

synaptic function and structure, efforts to characterize connectivity in ASD hold biological 

validity. ASD can be better understood through the lens of network science, which may 

elucidate the role of genetic factors, clinical characteristics, and phenotypic heterogeneity.

4-1. Brain Connectivity and Genetics in ASD

Many potential autism risk genes regulate synaptic connectivity, with mutations leading to 

microscopic neuronal dysconnectivity [5–10]. The concordance rate for ASD between 

monozygotic twins is 77% for male twins and 50% for female twins [21], suggesting genetic 

risk patterns with strong but not absolute penetrance. Intermediate phenotypes of ASD 

should show similar levels of heritability and genetic influence. An analysis of small-world 

resting-state electroencephalogram (EEG) functional networks from twins and siblings 
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computed with synchronization likelihood (a method which can deal with non-stationary 

dynamics of EEG data) has found that 37–62% of differences in path length are heritable 

[22]. Clustering coefficient showed similar genetic influence, with 46–89% of individual 

differences found to be heritable. The high heritability of these small-world parameters 

opens them to future consideration as ASD or ASD-risk endophenotypes. However, it should 

also be noted that many inherited and de novo ASD risk genes converge on synapses 

[4,8,23–26]. Thus, heritable brain networks—while promising as risk biomarkers—are 

incomplete endophenotypes of ASD risk and, moreover, agnostic with respect to specific 

genetic factors.

4-2. Long range vs. short range connectivity in adults with ASD

Results from studies of connectivity in ASD are variable, largely due to discrepancies in (1) 

the experiment and its cognitive or behavioral components, (2) the type of functional brain 

data (e.g., EEG, MEG, or fMRI), (3) the age of patients examined, (4) the anatomical 

region(s) examined, and (5) the time interval and frequency band(s) in which connectivity 

was analyzed. Considerable focus has been placed on long vs. short range connectivity 

patterns. Several fMRI studies support the prevailing notion that individuals with ASD have 

lower connectivity (or hypo-connectivity) between distant brain regions (such as the frontal 

and parietal lobes) and increased connectivity (or hyper-connectivity) between local brain 

regions (such as within the frontal lobe) [27–29]. Contrary to these findings, recent studies 

of neural connectivity with higher temporal resolution using EEG/MEG do not support this 

notion. For example, Khan et al [30] examined event-related MEG recordings from male 

young adults and adolescents with ASD and an age-matched control group of TD 

individuals during a face-viewing task. Source-localized signals in fusiform face area (FFA) 

were used as a seed-region, with local connectivity measured by phase-amplitude coupling

—the strength of the relationship between the phase of oscillations in the alpha band (i.e., 8 

to 12Hz) and the amplitude of oscillations in the gamma band (above 40Hz)—and long-

range connectivity measured as coherence between FFA and other regions. Contrary to prior 

findings [27–29], Khan et al found significantly reduced local and long-range connectivity in 

cohort with ASD as compared with controls. For long-range connectivity, this difference was 

significant in alpha band coherence. Not only did participants with ASD feature hypo—

rather than hyper—connectivity at the local scale, but moreover, reduced local connectivity 

correlated with the social component of the autism diagnostic observation schedule (ADOS) 

in this cohort.

In addition to alpha band coherence, differences in functional connectivity between ASD 

and TD controls have been found in other frequency bands. For example, a study by 

Barttfeld et al [31] supported the traditional view of local hyper-connectivity in ASD during 

resting-state EEG recordings from high functioning adults with ASD. Specifically, they 

found enhanced local, lateral frontal connections accompanied by reduced long range 

fronto-frontal and fronto-occipital connections as measured with delta (0.5 – 3.5 Hz) band 

synchronization likelihood. Furthermore, Barttfeld et al demonstrated that EEG networks 

from cohort with ASD featured lower clustering coefficient and higher path length as 

compared with an age- and gender- matched TD cohort. While this study only examined the 

delta band, the functional and/or mechanistic significance of delta oscillations in ASD 
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remains unclear a priori, though delta band coherence abnormalities have also been found in 

REM sleep EEG recordings from young adults with ASD [32].

It is important to note that analyzing low frequency oscillations—such as delta oscillations 

or default mode network (DMN)—requires longer temporal segments of EEG recordings (at 

least twice the duration of the period of the slowest oscillation). This caveat alone may lead 

to inaccuracy of connectivity estimation due to the non-stationarity, i.e., the fact that 

statistical properties of the signal (such as its mean and variance) change over the temporal 

interval of one segment (Fig. 5).

Thus, studying connectivity mediated by relatively fast oscillations may be more accurate. 

For example, alpha oscillations, which are associated with restful focus and may relate to the 

ability of an individual to concentrate his or her focus while habituating to distracting stimuli 

[33,34], may be an ideal frequency band for computing functional connectivity. It has been 

shown that the coherence at alpha oscillations measured over right centro-parietal regions is 

inversely related to the tendency for adults with ASD to notice and process details [35]. 

Furthermore, in resting-state eyes-closed recordings, adults with ASD also have globally 

reduced alpha coherence in frontal networks as compared to TD adults [36]. Interestingly, 

the same study showed that the coherence of theta oscillations—which play a similar role as 

alpha in executive function and working memory [34,37]—are locally enhanced in left 

frontal and temporal regions in adults with ASD [36]. Thus, proper frequency ranges should 

be chosen while studying short or long range brain connectivity patterns.

4-3. Relating connectivity to clinical phenotypes and circuit dysfunction

Ultimately, future work along these lines relating connectivity differences to clinical 

phenotypes rather than broad diagnosis may be beneficial for stratifying this very 

heterogeneous disorder into more homogeneous subpopulations. Very few studies have 

correlated EEG or MEG connectivity metrics with behavioral symptoms or clinical 

phenotypes in ASD. In addition to the previously mentioned Khan et al study which 

correlated ADOS scores with local connectivity from a face processing task [30], Grice et al 

used evoked (for early sensory processing and local feature processing) and induced (for 

later configurational feature and top-down processing) gamma band coherence from EEG 

recording in adults with ASD to compare frontal connectivity in a face processing paradigm 

using upright faces and inverted faces as stimuli [38]. No significant change in induced/

evoked gamma band coherence between frontal electrodes was reported for cohort with 

ASD, whereas TD adults showed greater induced gamma coherence for upright faces. In 

addition, they found no modulation of the gamma response compared to controls when the 

faces were inverted. This lack of sensitivity to the face inversion in the ASD group may 

represent deficits in the integration and information binding of local features during face 

processing. Similar work in the future may be beneficial for probing neural circuits 

implicated in core behaviors implicated in ASD. Therefore, choice of experimental task, 

latency of specific sensory/cognitive processes, frequencies of interest, and network features 

(nodes and edges) are important factors in quantifying and interpreting brain connectivity 

patterns and, consequently, classifying ASD into biologically relevant subgroups.
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4-4. Connectivity as an ASD risk marker in early and middle development stages

Brain connectivity may have potential as a risk marker for ASD in early and development 

stages. Of paramount interest to clinicians are connectivity measures that can (1) identify 

ASD risk early in development prior to diagnosis or (2) inform prognosis of children with 

ASD. Given our understanding of the convergence of genetic risk factors on synaptic 

pathways, one could postulate that aberrant neuronal connectivity should be able to be 

quantified in early infancy. Recently, Orekhova et. al [39] analyzed functional brain 

connectivity by phase lag index in 14-month-old infants at high and low risk for ASD using 

EEG while infants attended to videos. At 36 months, the high-risk infants were assessed for 

symptoms of ASD. High-risk infants who were later diagnosed with ASD featured higher 

functional connectivity as compared to both low-risk infants and high-risk infants who did 

not meet criteria for ASD. The degree of hyper-connectivity in frontal regions at 14 months 

strongly correlated with the severity of restricted and repetitive behaviors in participants 

later diagnosed with ASD at 3 years. Another large study of sleep EEG recorded from 106 

children with ASD and 70 TD controls ages 2 – 6 years identified distinct differences in 

coherence across different frequency bands in slow wave sleep [40].

A smaller study of 20 older children with ASD (ages 6 – 11 years) and 20 controls matched 

for age, IQ, and gender[41] identified distinct patterns of EEG coherence across multiple 

frequency bands in eyes-closed resting recordings, both within and between hemispheres. 

Relative to controls, children with ASD exhibited a pattern of hypo-connectivity, which 

included decreased intrahemispheric delta and theta coherences across short to long inter-

electrode distances. Additionally, delta and theta coherences in the ASD group were low 

across the frontal region, interhemispherically.

However, these studies did not explicitly address concerns regarding multiple comparisons, 

spurious connectivity due to volume conductance, or non-stationarity in long EEG recording 

segments. Collectively, these studies suggest that brain connectivity may index risk for ASD 

diagnosis or altered developmental trajectory. However, careful consideration should be 

given to the selection of the appropriate brain connectivity method and important 

methodological factors that may confound results.

5. Conclusion

While many studies have identified differences in functional connectivity with EEG/MEG 

between individuals with ASD and TD individuals, more studies that investigate and identify 

such differences in early development as markers of ASD risk are greatly needed. There are 

few longitudinal studies of EEG/MEG connectivity in infants or young children with ASD. 

Moreover, further investigations of connectivity with respect to behavior and clinical 

phenotype are needed to probe underlying brain networks implicated in core deficits of 

ASD. Considering that the theoretical basis for studying connectivity in ASD is rooted in 

ASD risk genes pointing towards synaptic dysfunction [5–10], we recommend investigations 

of EEG functional connectivity in relation to single nucleotide polymorphisms (SNPs), copy 

number variants (CNVs), or other genotypic measures.
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The vast majority of studies reviewed here have relied on coherence to measure EEG 

functional connectivity. Coherence is a linear measure of connectivity that is based on 

similarity of activations in different regions while not taking into account non-stationarity or 

directionality of information transfer. Additionally, volume conductance, especially between 

spatially adjacent recording electrodes, may lead to spurious connectivity and 

misinterpretation of results. For these reasons, we recommend that future studies compare 

cross-correlation or coherence to more sophisticated measures of connectivity, such as 

synchronization likelihood, which takes into account non-stationarity [42–44], or effective 

connectivity measures such as Granger Causality [45,46], which infers causation and 

directionality of information transfer. In addition, the above methods can be applied to data 

obtained from source localization methods rather than channel space data to eliminate the 

volume conductance problem [22]. In Table 1, we summarize and compare some frequently 

used functional/effective connectivity methods.

Finally, dynamic changes in functional connectivity patterns have yet to be deeply 

investigated. The tendency of the brain to become “stuck” (versus flexibly adaptive) in a 

redundant pattern of functional connectivity may relate to motor and cognitive systems [50] 

in ASD which are also “stuck” in a series of repetitive behaviors or restricted interests, 

respectively. In this way, cortical and sub-cortical dynamics of coordinated activity lead to 

generation of inflexible brain connectivity patterns which may relate to core deficits of ASD 

such as repetitive behaviors [51]. In conclusion, cutting-edge methodologies sensitive to 

nonlinear and/or causal relationships drawn from multiple recording modalities may be 

fruitful for discovering risk and outcome markers of ASD.
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Key Points

• Individuals with autism spectrum disorder (ASD) have different brain 

connectivity patterns compared to typically developing individuals.

• There are discrepancies in brain connectivity results across studies that may be 

due to important methodological factors such as the type of connectivity 

measure used, the age of patients studied, the brain region(s) examined, and the 

time interval and frequency band(s) in which connectivity was analyzed.

• We recommend that future studies compare cross-correlation or coherence to 

sophisticated measures of connectivity to determine whether the results 

converge.
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Figure 1. Exponential growth of Scopus hits for brain connectivity
Comparison of hits for “brain connectivity” (red) and “brain imaging” (blue) by year 

(abscissa) for 1970 – 2014 from academic search engine Scopus (date of search 11/06/15). 

Number of papers (ordinate) is normalized showing both traces on the same scale, thus 

emphasizing style of growth rather than raw number of papers. Both fields of research show 

approximately constant publication output until 1985, after which publications for brain 

connectivity show exponential growth as compared with almost linear growth for brain 

imaging publications. One can attribute the exponential growth in brain connectivity 
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publications as a push against the functional segregation approach of traditional brain 

imaging, replacing such approaches with an integrated understanding of the brain as a 

distributed network.
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Figure 2. Example of volume conductance of a dipolar cortical source
A neural generator modeled as a dipolar source in the cortex (A) and its back projection onto 

the scalp (B). Because of the volume conductance issue, one may incorrectly conclude that 

the polarity in the frontal and occipital regions in the scalp map are from different dipolar 

sources if only the scalp potential map is being used.
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Figure 3. Magnitude versus Phase coherence
The magnitude (or power) value (bottom left) and phase value (bottom right) of coherence 

for two artificial signals (top) x(t) = sin(Ωt) and y(t)= sin(Ωt+45°) where Ω=2πf and f=10Hz. 

The peak can be seen at 10Hz for the magnitude values and at 45° for phase value of 

coherence.
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Figure 4. Examples of three network architectures described by graph theory
(A) An inefficient network with large path length and small clustering coefficient. Note that 

a metaphorical walk from one arbitrary node to another will take many more steps than the 

network in (B) owing to the lack of hub nodes in (A), i.e., nodes connected to many 

neighbors that facilitate quick trips across the network. (B) A small-world network with 

small path length and small clustering coefficient. Hub nodes (blue) greatly reduce the path 

length and increase the efficiency of the network, such that all nodes are connected by a 

small number of steps. (C) A highly modular small-world network with small path length 

and large clustering coefficient. Like (B), this network is highly efficient, but also more 

integrated owing to the larger proportion of realized edges (i.e., higher clustering coefficient) 

creating densely interconnected modules or sub-networks linked by a central hub node 

(blue).
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Figure 5. Stationarity versus Non-stationary EEG signals
A stationary process is one whose statistical properties (such as its average, standard 

deviation, etc.) do not change over different time windows. For example, in panel A, the 

average oscillation frequency and standard deviation values are the same for both time 

windows 1 and 2. However, it is obvious these values are not the same for panel B in time 

windows 1 and 2.
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Table 1

Summary of functional and effective connectivity measures

Methods Pros Cons Recommended
applications

Relevant
findings

Cross-correlation - Easy to 
compute

- Time-lags 
account for 
volume 
conduction and 
neural delay

- Only sensitive 
to linear 
relationships

- Difficult to 
choose 
appropriate lag

- Does not 
account for non-
stationarity in 
neuroimaging 
data

- Exploratory 
analysis

- fMRI 
recordings from 
young children 
and/or low-
functioning 
individuals with 
ASD

Several fMRI
studies support
the notion that
individuals with
ASD have lower
connectivity
between distal
brain regions and
increased
connectivity
within proximal
brain regions
(such as within the
frontal lobe) [27–
29]

Coherence - Easy to 
compute

- Theoretical 
basis in neural 
information 
transfer [20]

- Complimentary 
to Fourier 
analysis

- Only sensitive 
to linear 
relationships

- Sensitive to 
volume 
conduction

- Works best with 
signals of 
narrow 
bandwidth (e.g., 
delta, theta, or 
alpha 
oscillations)

- Non-stationarity 
limitation for 
lower 
frequencies 
(such as delta) 
because it needs 
large data 
segment 
(approximately 
3 seconds)

- correlational, 
not causal

- Short, 
approximately 
stationary 
segments of 
EEG recordings

- Tests 
hypotheses of 
neural 
communication, 
between 
spatially distant 
regions in 
children or 
adults (e.g., 
lesser 
communication 
between frontal 
and temporal 
circuits in 
ASD)

- Many 
findings in 
EEG and 
MEG, 
including 
relevance to 
detail 
processing 
[35], face 
processing 
[30,38], 
sleep 
[32,40], and 
resting-state 
[41] 
connectivity 
in ASD

Granger causality (GC) and 
Directed Transfer Function 
(DTF) methods

- Infers causality

- Infers 
directionality 
of information 
transfer

- Accuracy of 
these methods 
depends on data 
segment length, 
model order 
selection and 
windowing

- Computationally 
intensive

- Best used in 
conjunction 
with source-
localization to 
test circuit-
specific 
hypotheses 
(e.g., influence 
of frontal 
cortex over 
language areas 
in ASD)

- Replicates 
findings 
from 
structural 
brain 
networks in 
ASD better 
than 
coherence 
[19]

- 87.5% 
machine 
learning 
classification 
in small 
sample of 
young adults 
with and 
without 
ASD [47]
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Methods Pros Cons Recommended
applications

Relevant
findings

Synchronization likelihood (SL) - Accounts for 
non-
stationarity

- Measures 
nonlinear 
relationships

- Computationally 
intensive

- Requires long, 
continuous 
segments of 
EEG/MEG 
recordings; thus 
low temporal 
resolution

- Appropriate for 
long recordings 
of clean 
EEG/MEG data 
from adults, 
high 
functioning 
individuals with 
ASD

- Small-world 
EEG 
networks 
computed 
from SL are 
heritable 
[22]

- Long range 
hypo-
connectivity 
and short 
range hyper-
connectivity 
in resting-
state delta 
band [31]

Phase-amplitude coupling(PAC) - Allow 
measurements 
of cross-
frequency 
connectivity

- Allows 
measurements 
of connectivity 
within a single 
node

- Directed 
measure (e.g., 
thalamic alpha 
modulates 
cortical 
gamma)

- Difficult to 
interpret 
intraregional 
connectivity

- Fundamentally 
different from 
undirected 
measures of 
connectivity 
within the same 
frequency band

- Tests 
hypothesis that 
one region 
regulates the 
excitability of 
another

- Tests 
hypothesis of 
intraregional 
connectivity

- Reductions 
of alpha-
gamma PAC 
in FFA of 
men with 
ASD during 
face-
processing 
task 
correlate 
with ADOS 
scores [30]

Phase lag index (PLI) - the PLI is an 
index of the 
asymmetry in 
the distribution 
of phase 
differences 
calculated from 
the 
instantaneous 
phases of two 
time-series 
[48]

- can 
differentiate 
channel pairs 
with coupling 
(PLI>0) and 
without 
coupling 
(PLI~0)

- less affected by 
the influence of 
common 
sources and 
active 
reference 
electrode [49]

- sensitive to 
noisy data and 
phase estimation 
method

- Non-stationarity 
issue for large 
data segments

- Not many 
research studies 
have been done 
by 
implementing 
this method

- Sensitive to new 
data cleaning 
approaches 
using blind 
source 
separation 
methods such as 
independent 
component 
analysis

- for EEG it can 
be used to find 
bridges 
between 
electrodes as 
well as 
connectivity 
between 
channel pairs

Early hyper-
connectivity in the
alpha frequency
range has been
observed using PLI
which can be an
important feature
of the ASD
neurophysiological
phenotype [39]
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