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Abstract

Many infectious diseases have seasonal outbreaks, which may be driven by cyclical environmental 

conditions (e.g., an annual rainy season) or human behavior (e.g., school calendars or seasonal 

migration). If a pathogen is only transmissible for a limited period of time each year, then seasonal 

outbreaks could infect fewer individuals than expected given the pathogen’s in-season 

transmissibility. Influenza, with its short serial interval and long season, probably spreads 

throughout a population until a substantial fraction of susceptible individuals are infected. Dengue, 

with a long serial interval and shorter season, may be constrained by its short transmission season 

rather than the depletion of susceptibles. Using mathematical modeling, we show that mass 

vaccination is most efficient, in terms of infections prevented per vaccine administered, at high 

levels of coverage for pathogens that have relatively long epidemic seasons, like influenza, and at 

low levels of coverage for pathogens with short epidemic seasons, like dengue. Therefore, the 

length of a pathogen’s epidemic season may need to be considered when evaluating the costs and 

benefits of vaccination programs.

Key words and phrases

Mathematical model; epidemics; infectious disease; vaccination; seasonality

1. Introduction

Mathematical models can be used to help understand the dynamics of infectious disease 

outbreaks [19, 21, 2]. With an estimate of the transmissibility of a pathogen, often 

summarized as R0, one can use models to gain insight into the relationship between the 

transmissibility of a disease, the fraction of a population it can infect, and the fraction of a 

population that needs to be vaccinated to prevent outbreaks [8, 2, 17, 31]. However, these 

relationships are less straightforward when a pathogen’s transmissibility is not constant over 

time.

Transmission of many pathogens is seasonal, and outbreaks tend to occur during the same 

time each year. Seasonal transmission can be driven by cyclical environmental (e.g., rainfall 

or temperature) or behavioral and demographic (e.g., school calendars or seasonal 

migration) forces [13, 10, 12, 23]. The length of an outbreak might therefore be constrained 

by the length of the season. Previous modeling work has shown that adding seasonality to 
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disease transmission models can improve fits to annual or biennial disease cycles observed 

in surveillance data [27, 18], alter the multi-year dynamics of disease incidence [3, 26, 1, 

15], increase understanding of disease persistence and local extinction [18], and test novel 

intervention strategies that take advantage of timing [30, 1, 15]. Here, we use a simple 

mathematical model to explore the effects that seasonal forcing could have on the 

effectiveness and efficiency of mass vaccination. We hypothesize that the most efficient 

coverage level, defined as the number of infections averted per vaccination, can be affected 

by seasonal forcing.

2. Mathematical model of infectious disease transmission

We model epidemics of infectious disease using a Susceptible–Infectious–Recovered (SIR) 

model [19] with an additional compartment to represent vaccinated individuals. The system 

of ordinary differential equations (ODEs) that describe the model dynamics are:

(1)

(2)

(3)

(4)

where S is the number of individuals who are susceptible to infection, V is the number who 

are vaccinated (and susceptible to infection), I is the number who are currently infected, R is 

the number who are recovered from infection (and immune to future infection), β is the 

transmissibility of the pathogen, γ is the recovery rate of infected individuals, and VE is the 

vaccine efficacy against infection. We focus our attention on epidemics which run their 

course in relatively short time compared to the demographic changes in the population such 

as influenza, cholera and dengue. As a result, a fixed population size and density-dependent 

transmission is assumed. Mass vaccination is modeled by initializing the model with a 

proportion of the population in the vaccinated compartment. Vaccinated individuals are less 

susceptible to infection by a factor of 1 − VE. We assume that vaccine protection is leaky, so 

that vaccinated individuals are not fully protected but instead are infected at a lower rate 

than non-vaccinated individuals.

The basic reproductive number, R0, is the average number of people that a typical infected 

individual infects in a fully susceptible population [2]. For an SIR model, R0 = βN/γ, where 

N is the total population size, which we assume to be constant. The final size p, or the 

fraction of people infected during an epidemic, can be computed using the final size 

expression 1 − p = e−R0p. In our simple model of seasonality, we assume that an epidemic 
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only lasts for t days, then transmission stops, which is equivalent to setting β to 0 at time t. 
We define the size of an epidemic on day t to be the sum I + R at time t.

When a sufficient fraction of a population is vaccinated, an outbreak can not grow in size 

[8]. This critical vaccination threshold is . Here, we assume that protection 

conferred by vaccines is leaky, so vaccinated individuals have a reduced rate of infection but 

may be partially susceptible. When fraction f of a population is vaccinated with a leaky 

vaccine, the effective reproductive number, Rf, is: Rf = (1 − f)R0 + f(1 − VE)R0. The final 

size assuming a leaky vaccine can be found by solving: p = 1 − (1 − f)e−R0p − fe−R0(1−VE)p. 

The derivation of Rf and the final size of a partially vaccinated population can be found in 

[24, Appendix A.3].

3. Results

The pathogen’s transmissibility (which we express in terms of R0, the basic reproductive 

number) and serial interval (the average time between the onset of symptoms in an 

individual and the onset in secondary cases) can be used to compute the speed and 

magnitude of an epidemic.

3.1. Modeling uninterrupted epidemics

When epidemics are allowed to run their course without the effects of seasonality, the 

proportion of the population they infect, the attack rate, does not depend on their speed of 

transmission and can be computed using the final size expressions from Section 2. 

Increasing the serial interval, while keeping R0 constant, simply delays the peak of the 

epidemic but does not change the peak’s height (when the height is defined as the number of 

infected people at a given time rather than the incidence), or the maximum number of 

infected people at the epidemic peak (Figure 1a). The relationship between R0 and the attack 

rate does not depend on the serial interval (Figure 1b, black curve).

We show that when epidemics are not interrupted by seasonality, the attack rate is a concave 

function (the second derivative is negative) of the vaccination coverage up to the critical 

vaccination fraction, i.e., the attack rate of the epidemic drops more and more rapidly with 

increasing coverage until the critical vaccination fraction is reached (Figure 1c).

Theorem 3.1—Assuming that the vaccine is fully protective, the final size of the non-

interrupted epidemic simulated with the model described in Equations 1–4 is a decreasing 

concave function of the vaccination coverage up to the critical vaccination threshold and 

becomes zero afterwards.

Proof: In the model with a perfect vaccine that protects completely, vaccinated and 

recovered individuals are indistinguishable. Vaccinated individuals can therefore be moved 

to the recovered compartment initially, i.e., R(0) > 0 and the total number of cases at the end 

of the epidemic is given by R(∞) − R(0). The simplified model with the vaccinated 

compartment removed is:
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(5)

(6)

(7)

Dividing Equation 5 by Equation 7 implies that . Separating the variables and 

applying the initial conditions it leads to:

(8)

which converted to fractional form ( ) is

(9)

where  is the vaccinated fraction (coverage) while  is the final size, i.e., 

the proportion of the population which becomes infected by the end of the epidemic. Since 

all individuals at the end of the epidemics are vaccinated, recovered or naive susceptibles 

then s(∞) = 1−p−f and therefore . Differentiating twice with respect to p 
gives us:

(10)

(11)

(12)

where .

We consider the function g(x) = 1 − ex + x which appears in the numerator of . We have 

that g′(x) = 1 − ex < 0 and therefore g(x) is decreasing for x > 0. As a result g(x) < 0 for x > 

0 since g(0) = 0. It implies that .
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Similarly, let we consider h(x) = 2+x+ex(−2+x) which appears in the numerator of . We 

have that h′(x) = 1 − ex + xex and h″(x) = xex. Therefore h′(x) is increasing and positive for x 
> 0 since h′ (0) = 0. As a result h(x) is increasing and positive for x > 0 since h(0) = 0. It 

implies that .

Therefore, the vaccine coverage (f) is a decreasing concave function in terms of the final size 

(p) and the critical vaccination threshold is fcr = f(0). Moreover, by Inverse Function 

Theorem, the final size can be expressed as a function of the coverage (p(f)) over the interval 

[0, fcr]. This function is differentiable with respect to f and its derivatives satisfy 

and .

This completes the proof that the final size (p) is a decreasing concave function in term of 

the vaccine coverage (f) up to the critical vaccination threshold (fcr). It is clear that for 

coverage greater than fcr the final size remains zero. This completes the proof of Theorem 

3.1.

3.2. Modeling seasonal epidemics

We model an epidemic season by stopping transmission after a fixed time elapses, 90 days, 

which could correspond to a change in seasons or another external factor that reduces 

transmission. If a pathogen is only transmissible for a limited time, then slower epidemics 

may infect fewer individuals than they would given unlimited time. Figure 1a plots three 

epidemic curves that have the same R0 (and thus the same attack rate) but different serial 

intervals. Here, we emphasize that the attack rate for an epidemic interrupted by seasonal 

forces is usually lower than the final size that one would expect for an uninterrupted 

epidemic. If the epidemic stops on day 90, a rapid epidemic might have already run its 

course, a slower epidemic might be interrupted after it peaks, and an even slower epidemic 

might be interrupted during its exponential growth phase (Figure 1a). The speed of an 

epidemic can therefore affect the relationship between transmissibility and the attack rate 

(Figure 1b). This effect is greatest when the transmissibility of a pathogen is low (R0 is close 

to 1) and the serial interval is long (Figure 1b). Thus, both the transmissibility (R0) and 

serial interval of the pathogen need to be considered when seasonal forces limit the duration 

of epidemics.

If epidemics are interrupted, then the relationship between vaccination coverage and the 

infection attack rate of the epidemic can qualitatively change. As the vaccinated proportion 

of a well-mixed population increases, epidemics become slower and smaller until the critical 
vaccination fraction is reached, at which point, outbreaks do not occur (Figure 1c).

Limiting the time during which a pathogen can be transmitted affects the relationship 

between vaccination coverage and the size of the epidemic. Our analysis suggests that if a 

pathogen’s serial interval is short relative to the length of its season, the relationship between 

vaccination coverage and the epidemic’s attack rate takes a sigmoid shape with an inflection 

point that occurs below the critical vaccination fraction (Figure 1c). With longer serial 

intervals, the effects of interrupting the epidemic are even larger and the attack rate may 
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become a convex function (the second derivative is positive) of vaccination coverage (Figure 

1c). The shape of this curve determines the incremental benefit of vaccinating more 

individuals.

Mass vaccination can become either more or less efficient as vaccination coverage increases, 

depending on the speed of transmission relative to the length of the epidemic season. We 

define the efficiency of mass vaccination to be the number of cases averted per vaccination 

administered. The shape of the curve describing the attack rate vs vaccination coverage 

(Figure 1c) determines the efficiency profile of mass vaccination (Figure 1d), which we 

describe more formally below.

Theorem 3.2—Consider an interrupted epidemic. The efficiency of the vaccination 

measured as the number of infections prevented per vaccination depends on the functional 

expression of the attack rate in terms of the vaccination coverage as follows:

1. If the final epidemic size is a concave function of the vaccination coverage, then 

efficiency improves with increasing vaccination coverage up to the critical 

vaccination threshold and worsens at higher levels.

2. If the final epidemic size is a linear function of the vaccination coverage, then 

efficiency is constant up to the critical vaccination threshold and worsens at higher 

levels.

3. If the final epidemic size is a convex function of the vaccination coverage, then 

efficiency decreases with increasing vaccination coverage.

4. If the final epidemic size is a sigmoid function of the vaccination coverage, then 

efficiency improves with increasing the vaccination coverage up to an \optimal 

value” below the critical vaccination threshold and worsens at higher levels.

Proof: The efficiency of the vaccination E is defined as the number of infections prevented 

divided by number of vaccinations. Therefore,  where f is the vaccination 

coverage while p(f) and p(0) represent the final size of the epidemic with vaccination 

coverage f and without vaccination, respectively. We focus on E up to the critical vaccination 

threshold (fcr). When coverage increases beyond fcr the number of vaccinations increases 

while the number of prevented infections remain unchanged. Therefore E decreases and the 

efficiency of the vaccination always worsens.

For f ∈ (0, fcr) we have:

(13)

By the Mean Value Theorem there exists f̄ < f such that  and .
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1. If p(f) is a concave function then p′(f) is decreasing. As a result  for f < fcr, 

i.e., the efficiency of the vaccination improves with increasing vaccination coverage 

up to the critical vaccination threshold.

2. If p(f) is a linear function then p′(f) is constant. Therefore  and the efficiency 

is constant up to the critical vaccination threshold.

3. If p(f) is a convex function then p′(f) is increasing. As a result  for f < fcr, i.e., 

the efficiency worsens with increasing the vaccination coverage.

4. Suppose p(f) is a concave function for f ∈ (0, f*) and convex function for f ∈ (f*, 

fcr) where f* < f. Therefore  for f < f* and  for f* < f < fcr and E will have 

a maximum at f*. The efficiency of vaccination improves with increasing 

vaccination coverage up to f* and worsens afterwards.

This completes the proof of Theorem 3.2.

For an uninterrupted epidemic, the concave relationship between the attack rate and 

coverage implies that the efficiency of mass vaccination increases as coverage increases 

from zero to the critical vaccination fraction, after which it decreases (Figure 1d). The 

efficiency decreases at high vaccination coverage levels because vaccinating in excess of the 

critical vaccination fraction does not prevent additional infections. Therefore, coverage at 

exactly the critical vaccination fraction is the most efficient.

For interrupted epidemics, the efficiency can initially either increase or decrease with 

increasing coverage. For interrupted epidemics with a sigmoid attack rate vs coverage curve 

(the curve is concave then convex), vaccination efficiency improves with increasing 

vaccination coverage only up to the inflection point, and the most efficient coverage levels 

are below the critical vaccination fraction. When an epidemic is interrupted early, during its 

exponential growth phase (attack rate vs coverage is a convex function), mass vaccination 

becomes less efficient as coverage increases, and there is no optimal coverage to reach. Note 

that the efficiency of mass vaccination at levels below the critical vaccination fraction is 

often better than that predicted for the uninterrupted epidemic. For all scenarios considered, 

efficiency decreases when coverage exceeds the critical vaccination fraction, which is to be 

expected.

We explored how seasonality may regularly interrupt outbreaks of specific pathogens. Using 

the mathematical model, we plot how much of seasonal epidemics with different 

combinations of R0 and serial interval are potentially interrupted when the epidemic season 

is exactly 60 days, 90 days, 120 days, and 150 days (Figures 2a–d). As observed above, 

epidemics with long serial intervals and low values of R0 are the most interrupted by shorter 

seasons, with a nearly linear trade-off between R0 vs serial interval when following the 

isoclines on these plots. Seasonal influenza has a short serial interval (about 3 days [7]) and 

a long season in the temperate northern and southern hemispheres, from the fall through the 

spring (maybe as long as 8 months) [28], so influenza outbreaks are not likely to be 

interrupted by the end of the season (Figure 2d). This implies that the optimal vaccination 

coverage, in terms of infections averted per number of people vaccinated, would be close to 
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the critical vaccination threshold. In contrast, seasonal dengue outbreaks may be limited by 

dengue’s long serial interval (perhaps 20 days [25]) and the limited time during which 

rainfall, high humidity, and high temperatures are optimal for the breeding of its primary 

vector, Aedes aegypti, and the rapid incubation of the virus [16, 29, 20]. Dengue season may 

last for up to 6 months in some regions, but the period of highest transmissibility is likely 

shorter and curtailed by the reduction in temperature and humidity by the end of each rainy 

season [4], so we conservatively assume that high dengue transmission occurs in a 3-month 

window (Figure 2b). If dengue epidemics are greatly curtailed by the short season, then the 

optimal vaccination coverage could be well below the critical vaccination threshold, though 

higher-than-optimal levels of coverage could still be cost-effective.

4. Discussion

Using a mathematical model, we have shown how the interruption of epidemics by seasonal 

external drivers can have large effects on epidemic size and the effectiveness and efficiency 

of mass vaccination. Mass vaccination can be either more or less effective than expected, 

depending on when epidemics are interrupted. When seasonality is not a factor, and an 

epidemic exhausts itself by infecting a sufficient number of susceptibles, then vaccination 

coverage at the level critical vaccination fraction is efficient and averts the most infections 

per dose administered. Influenza, with its long season and short serial interval, might be 

such a pathogen, and influenza seasonality might drive the timing but not the magnitude or 

duration of epidemics. When a pathogen’s season length interrupts its outbreaks, then the 

critical vaccination fraction may not be the most efficient coverage target. We suspect that 

this affects epidemics of some vector-borne diseases, such as dengue, because of the 

relatively short season and the long serial intervals associated with incubation periods in 

both the host and the vector. For epidemics that are interrupted early, during their 

exponential growth phase, low levels of vaccination will avert the most infections per dose. 

For epidemics that are interrupted after their peak, while they are waning, intermediate 

levels of vaccination below the critical vaccination threshold are most efficient. In general, 

transmission of pathogens with relatively low transmissibility, long serial intervals, and short 

seasons are most likely to be affected by seasonal interruptions, and we suggest that this be 

considered when evaluating the effectiveness of mass vaccination or other interventions and 

when estimating transmissibility using the number of annual cases.

The simple mathematical model used here might not be appropriate for all pathogens. 

Pathogens with \long cycle” transmission, like cholera, may be more affected by seasonal 

interruption than predicted from an SIR model, which captures short cycle (person-to-

person) but not long cycle (environmental) transmission. Transmission models that include 

long cycle transmission could be used to study seasonality of enteric pathogens [6, 5, 9], 

while models that explicitly include vectors, such as [22], could be used to study vector-

borne pathogens. However, the SIR model is sufficient for the qualitative analyses presented 

here. Other major simplifying assumptions in our model are the simplified treatment of 

seasonality, in which a pathogen is highly transmissible during its season and not at all 

transmissible outside its season, and the assumption that a population is only seeded with the 

pathogen at the beginning of the season. The magnitude and frequency of seeding might 

play a significant role in seasonal epidemic dynamics, which we did not explore here. For 
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diseases that occur less regularly in time and space, the pathogen might be introduced to a 

population later in the season, which we did not consider in our analyses. In addition, we 

only analyzed the transmission of disease during a single epidemic season. Multi-year 

dynamics of transmission and immunity would require more complicated models possibly 

specific to each pathogen and host population.

Although our results suggest that low levels of vaccination might be most \efficient” for 

some diseases, we do not suggest deliberately limiting vaccination coverage for the sake of 

efficiency. Beyond the ethical arguments that support access to vaccination for everyone 

[11], other public health goals, such as the local elimination of a pathogen or the prevention 

of disease outbreaks or invasion, still require high levels of vaccination coverage. Levels of 

coverage higher than the theoretical \optimal” might be required to prevent outbreaks in the 

real world [14]. However, excessively high coverage levels, well beyond the critical 

vaccination threshold, might not be the best use of resources if these levels are difficult to 

reach [32].
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Figure 1. 
The effects of limiting the duration of an epidemic. We modeled epidemics with an R0 of 2.0 

with serial intervals of 5, 10, or 15 days. The models are initialized with a population of 

1000 individuals, one of whom is initially infected. (a) The number of infected individuals 

over time with when the serial interval is 5 days (blue circles), 10 days (red triangles), and 

15 days (purple xs). The epidemics are stopped at day 90, indicated by the vertical dashed 

line, to represent the end of an epidemic season. Note that the y-axis is the number of 

infected individuals and not infection incidence. (b) The attack rate of an epidemic vs R0. 

The black line shows the effect of increasing R0 on the infection attack rate when outbreaks 

are not interrupted using the final size expression. The same relationship is plotted when the 

epidemics are stopped on day 90 and the serial interval is 5 days (blue circles), 10 days (red 

triangles), and 15 days (purple xs). Other initial conditions were the same as in panel (a). (c) 
The effect of vaccine coverage on the attack rate. Initial conditions were the same as in panel 

(a), and vaccinated individuals are infected at rate 65% less than non-vaccinated 

susceptibles. The final size expression was used to compute the attack rate of uninterrupted 

outbreaks. The critical vaccination threshold is indicated by the vertical dashed gray line. (d) 
The efficiency of mass vaccination vs coverage. We define efficiency to be the number of 

infections averted per vaccination administered, which we would like to maximize. The 

horizontal dotted line represents the simplifying assumption that mass vaccination only 

reduces the risk of infection among vaccinated individuals (by 65%) and not among non-

vaccinated individuals.
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Figure 2. 
The relationship between transmissibility, serial interval, and season length on the 

magnitude of the effect of a limited transmission season. Colors represent the proportion of 

an epidemic interrupted when the season is (a) 60, (b) 90, (c) 120, and (d) 150 days long for 

different values of R0 and the serial interval. Regions in red indicate parameters for which 

epidemics are completely averted by a short season, and dark blue regions correspond to 

parameters for which the epidemic size is not reduced by the season length. The regions of 

parameter space corresponding to dengue and influenza are indicated in panels (b) and (d), 

respectively.
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