Europe PMC Funders Group Author Manuscript *Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub.* Author manuscript; available in PMC 2016 April 25.

Published in final edited form as:

Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015 March ; 159(1): 60–66. doi:10.5507/bp. 2014.052.

Selected ⁶⁸Ga-siderophores versus ⁶⁸Ga-colloid and ⁶⁸Ga-citrate: biodistribution and small animal imaging in mice

Milos Petrik^a, Adela VIckova^a, Zbynek Novy^a, Lubor Urbanek^b, Hubertus Haas^c, and Clemens Decristoforo^d

^aInstitute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic

^bLaboratory of Growth Regulators, Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR and Palacky University Olomouc

^cDivision of Molecular Biology/Biocenter, Innsbruck Medical University, Innsbruck, Austria

^dClinical Department of Nuclear Medicine, Innsbruck Medical University, Innsbruck, Austria

Abstract

Background—⁶⁸Ga-triacetylfusarinine C (TAFC) and ⁶⁸Ga-ferrioxamine E (FOXE) show great potential to be used as highly sensitive and selective tracers for *Aspergillus* infection imaging. Here we report on a comparison of the *ex vivo* biodistribution and small animal imaging of ⁶⁸Ga-TAFC and ⁶⁸Ga-FOXE versus ⁶⁸Ga-colloid and ⁶⁸Ga-citrate as unspecific control in mice.

Methods—The radiochemical purity of tested ⁶⁸Ga labelled tracers was determined by RP-HPLC or ITLC-SG. *Ex vivo* biodistribution was studied in normal DBA/2 mice 30 min and 90 min p.i. Static and dynamic imaging were performed using μ PET/CT.

Results—⁶⁸Ga-TAFC and ⁶⁸Ga-FOXE showed rapid renal excretion and low blood values even 90 min p.i. ⁶⁸Ga-TAFC showed almost no retention in other organs while ⁶⁸Ga-FOXE displayed some uptake in gastrointestinal tract. ⁶⁸Ga-colloid and ⁶⁸Ga-citrate revealed significantly different *ex vivo* biodistribution. ⁶⁸Ga-colloid showed pronounced radioactivity retention in the liver, while ⁶⁸Ga-citrate displayed high blood values and significant retention of radioactivity in highly perfused organs.

Conclusions—From the results, both ⁶⁸Ga-TAFC and ⁶⁸Ga-FOXE have excellent and significantly different *in vivo* behaviour compared to ⁶⁸Ga-colloid and ⁶⁸Ga-citrate. ⁶⁸Ga-TAFC in particular confirmed its great potential use as a specific tracer for *Aspergillus* infection imaging.

Keywords

gallium-68; siderophores; colloid; citrate; µPET imaging; aspergillosis

Corresponding author: Milos Petrik, e-mail: milospetrik@seznam.cz.

Authorship contributions: MP, HH, CD: study design; MP, CD: manuscript writing; MP, AV: literature search; AV, MP, ZN: data collection; MP, LU: quality control; AV, MP, ZN: data analysis; MP, CD, HH, LU: data interpretation; AV, MP: figures, tables. Conflict of interest statement: The authors state that there are no conflicts of interest regarding the publication of this article.

INTRODUCTION

Triacetylfusarinine C (TAFC) and ferrioxamine E (FOXE) are common trihydroxamate-type siderophores. Siderophores are relatively low molecular weight compounds produced by bacteria, fungi and some plants for scavenging iron from the environment to make this vital mineral available to the microbial cell^{1,2}. It has recently been recognised that iron plays a fundamental role in infection in general³ and in fungal infections in particular. Schrettl et al.⁴ reported that the siderophore system is essential for the virulence of *Aspergillus fumigatus*, which is the main pathogen responsible for invasive aspergillosis (IA) complications.

IA is a life-threatening infection, hazardous especially for haematopoietic stem cell and solid organ transplant recipients, as well as for patients with solid tumours and haematological malignancies^{5,6}. Early and accurate diagnosis of IA is crucial for the survival of such affected patients⁷. Unfortunately, currently available methods for the diagnosis of IA lack sufficient specificity and/or sensitivity.

We have recently shown that various siderophores can be labelled with generator produced ⁶⁸Ga (ref.⁸), based on the similarities between iron (III) and gallium (III). Gallium-68 is a positron emitter that has recently attracted great interest for molecular imaging applications using positron emission tomography (PET) (ref.^{9–11}). It can be produced from a long shelf-life and cost-effective generator system. The physical half-life of ⁶⁸Ga (67.7 min) permits production and application of most low molecular weight radiopharmaceuticals such as peptides, oligonucleotides, antibody fragments and potentially also siderophores.

⁶⁸Ga labelled TAFC and FOXE show great promise as highly selective, highly sensitive tracers for *Aspergillus* infection imaging^{12,13}. This could prove indispensable in the early, accurate diagnosis of IA. For translation into clinical practice more data on the pharmacokinetics and biodistribution of these promising new tracers are warranted. Here we report on a comparison of *in vivo* biodistribution and small animal imaging of selected ⁶⁸Ga-siderophores (⁶⁸Ga-TAFC and ⁶⁸Ga-FOXE) versus radiochemical impurities, which can develop during ⁶⁸Ga labelling (⁶⁸Ga-colloid and ⁶⁸Ga-acetate) and a representative of infection imaging agents (⁶⁸Ga-citrate) as unspecific control in mice.

MATERIALS AND METHODS

Reagents

All chemicals obtained commercially were of the highest available purity and were used without further purification. TAFC and FOXE were gained from EMC microcollections GmbH (Tuebingen, Germany) and ⁶⁸Ge/⁶⁸Ga generator from Eckert & Ziegler Eurotope GmbH (Berlin, Germany).

Radiolabelling

⁶⁸GaCl₃ was obtained from the ⁶⁸Ge/⁶⁸Ga generator using 0.1N HCl as eluent. 300 μL of the fractionated generator eluate (20-80 MBq of ⁶⁸GaCl₃) was added to a mixture of 10 μL of TAFC (10 μg in water) or 20 μL of FOXE (20 μg in 10% ethanol) and 30 μL of 1.1M sodium acetate solution. After 15 min at room temperature (TAFC) or 20 min at 80°C (FOXE), 100 μL of 1.1M sodium acetate solution were added to increase the pH to 6-7.

 68 Ga-acetate/colloid was prepared using excess (150 µL) of 1.1M sodium acetate solution mixed with the fractionated 68 Ge/ 68 Ga generator eluate (300 µL) to reach a reaction pH of 6-7 for 15 min at room temperature.

 68 Ga-colloid was prepared by mixing a 'Monday' fractionated 68 Ge/ 68 Ga generator eluate (300 μ L) with 0.5M sodium hydroxide (55 μ L). The reaction mixture was incubated for 15 min at room temperature.

Fractionated $^{68}\text{Ge}/^{68}\text{Ga}$ generator eluate (300 μL) was mixed with 0.5M sodium citrate pH ~ 5 (80 μL) for the preparation of ^{68}Ga -citrate. The reaction mixture was incubated for 15 min at room temperature.

Quality control

The radiochemical purity of the ⁶⁸Ga labelled tracers was determined using reversed-phase high-performance liquid chromatography (RP-HPLC) and/or instant thin layer chromatography on silica gel impregnated glass fiber sheets (ITLC-SG). Dionex UltiMate 3000 (Thermo Scientific, Waltham, MA, USA) and GABI Star (Raytest, Straubenhardt, Germany) radiometric detector were used for RP-HPLC analysis of ⁶⁸Ga-siderophores. A Nucleosil 120-5 C18 250 × 40 mm column (WATREX, Prague, Czech Republic) with a flow rate of 1 mL/min was used with the following gradient: acetonitrile (ACN)/0.1% trifluoracetic acid (TFA)/H₂O: 0-2 min, 0% ACN; 2-15 min, 0-36% ACN; 15-18 min, 36-60% ACN; 18-19.5 min, 60% ACN; 19.5-20 min, 60-0% ACN; 20-24 min, 0% ACN.

ITLC-SG (Varian, Lake Forest, CA, USA) was used for ⁶⁸Ga-citrate, ⁶⁸Ga-acetate/colloid and ⁶⁸Ga-colloid quality control. The radiochemical purity of ⁶⁸Ga-citrate was determined by ITLC-SG using methanol/glacial acetic acid (9:1) as mobile phase (free ⁶⁸Ga, $R_f = 0$ and ⁶⁸Gacitrate, $R_f = 1$) (ref.¹⁴). Two methods were used for the assessment of ⁶⁸Ga-acetate/ colloid and ⁶⁸Ga-colloid using ITLC-SG as previously described¹⁵. The distribution of radioactivity along the ITLC-SG strips was measured on a Cyclone Plus Storage Phosphor system (PerkinElemer, Waltham, MA, USA).

Animal experiments

All animal experiments were conducted in accordance with regulations and guidelines of the Czech Animal Protection Act (No. 246/1992) with the approval of the Czech Ministry of Education Youth and Sports (MSMT-18933/2013-1), and the institutional Animal Welfare Committee of the Faculty of Medicine and Dentistry of Palacky University in Olomouc. The studies were performed using DBA/2 mice (Anlab, Prague, Czech Republic).

Biodistribution in mice

Normal DBA/2 mice (female) were retro-orbitally (r.o.) injected with a dose of 1-2 MBq per mouse of the ⁶⁸Ga labelled tracer. Animals were sacrificed by cervical dislocation 30 min and 90 min postinjection (p.i.). The organs (blood, spleen, pancreas, stomach, intestine, kidneys, liver, heart, lung, muscle and femur) were removed and radioactivity was measured in an automatic gamma counter (Wizard², PerkinElmer, Waltham, MA, USA). The results are expressed as percentage of injected dose per gram organ (%ID/g).

Animal imaging

The positron emission tomography (PET) and computed tomography (CT) images were acquired with an Albira PET/SPECT/CT small animal imaging system (Bruker Biospin Corporation, Woodbridge, CT, USA) (ref.¹⁶). Radiolabelled tracers were administered retroorbitally into DBA/2 mice in a dose of 5-10 MBq per mouse. Mice were subsequently anaesthetized with isoflurane (FORANE, Abbott Laboratories, Abbott Park, IL, USA) (2% flow rate) and were kept under anaesthesia during the imaging. Static PET/CT imaging was carried out 5 min, 30 min and 90 min p.i. A 5-min PET scan (axial FOV 148 mm) was performed, followed by a CT scan (axial FOV 65 mm, 45 kVp, 400 µA, at 600 projections). Dynamic imaging was carried out immediately after the injection of ⁶⁸Ga labelled tracer for 90 min (5-min PET scan per frame). Scans were reconstructed with the Albira software (Bruker Biospin Corporation, Woodbridge, CT, USA) using maximum likelihood expectation maximization (MLEM) and filtered backprojection (FBP) algorithms^{16,17}. After reconstruction, the acquired data were viewed and analyzed with PMOD software (PMOD Technologies Ltd., Zurich, Switzerland). The 3D images were obtained using VolView software (Kitware, Clifton Park, NY, USA).

RESULTS

Radiolabelling and analytics

Both ⁶⁸Ga labelled siderophores displayed high radiochemical purity (98%) and *in vitro* stability as previously described⁸. Fig. 1 shows the proposed chemical structures and radiochromatograms of ⁶⁸Ga-TAFC and ⁶⁸Ga-FOXE, with a single main peak for both ⁶⁸Ga-siderophores (⁶⁸Ga-TAFC retention time = 15.8 min and ⁶⁸Ga-FOXE retention time = 13.6 min). Free ⁶⁸Ga analyzed using RP-HPLC showed a single peak at the retention time (Rt) of 3 min as presented in Fig. 1. ⁶⁸Ga-citrate, ⁶⁸Ga-acetate/colloid and ⁶⁸Ga-colloid were determined using ITLC-SG methods. ⁶⁸Ga-acetate/colloid mixture contained 75% of ⁶⁸Ga-acetate.

Ex vivo biodistribution

In normal DBA/2 mice (Table 1), both ⁶⁸Ga-TAFC and ⁶⁸Ga-FOXE showed rapid renal excretion with highest activity retained in kidneys (1.88 ± 0.53 %ID/g for ⁶⁸Ga-TAFC and 0.75 ± 0.24 %ID/g for ⁶⁸Ga-FOXE) and low blood values (0.24 ± 0.10 %ID/g for ⁶⁸Ga-TAFC and 0.04 ± 0.01 %ID/g for ⁶⁸Ga-FOXE) at 90 min after application. ⁶⁸Ga-TAFC showed almost no retention in other organs, while ⁶⁸Ga-FOXE displayed some uptake (0.92

 \pm 0.09 %ID/g (30 min p.i.) and 0.84 \pm 0.05 %ID/g (90 min p.i.)) in the gastrointestinal tract, which was confirmed by µPET imaging. ⁶⁸Ga-acetate/colloid, ⁶⁸Ga-colloid and ⁶⁸Ga-citrate revealed significantly different *ex vivo* biodistribution compared to ⁶⁸Ga-siderophores (see Table 1). High blood values (17.0 \pm 1.0 %ID/g at 90 min p.i.) and pronounced retention of radioactivity in highly perfused organs (4.1 \pm 1.1 %ID/g for spleen, 4.3 \pm 0.5 %ID/g for liver, 5.2 \pm 1.2 %ID/g for heart, 7.2 \pm 0.7 %ID/g for lung at 90 min p.i.) were found in mice injected with ⁶⁸Ga-acetate/colloid. ⁶⁸Ga-citrate showed comparable *in vivo* behaviour as ⁶⁸Ga-acetate/colloid. The highest level of radioactivity was found in the blood (19.9 \pm 1.5 %ID/g at 90 min p.i.) and highly perfused organs revealed significant levels of retained activity (5.9 \pm 2.7 %ID/g for spleen, 3.8 \pm 0.3 %ID/g for liver, 9.0 \pm 0.7 %ID/g for heart, 10.9 \pm 1.4 %ID/g for lung at 90 min p.i.).

Animal imaging

µPET imaging of normal DBA/2 mice confirmed rapid renal excretion of ⁶⁸Ga-TAFC showing almost all injected activity in bladder at 45 min p.i. (Fig. 2 A and 3 A). ⁶⁸Ga-FOXE revealed similar biodistribution compared to ⁶⁸Ga-TAFC. The only relevant exception was an evident uptake of ⁶⁸Ga-FOXE in gastrointestinal tract, conspicuous from 50 min frame of dynamic imaging (Fig. 2 B and 3 B). In contrast, both ⁶⁸Ga-acetate/colloid and ⁶⁸Gacitrate showed very slow *in vivo* kinetics with high retention of radioactivity in the blood pool (Fig. 2 C and E). ⁶⁸Ga-colloid displayed rapid liver uptake slowly increasing over time (Fig. 2 D). Static imaging (Fig. 4) confirmed and supported the results gained from *ex vivo* biodistribution and dynamic imaging.

DISCUSSION

The development of ⁶⁸Ga-radiopharmaceuticals has increased enormously in the last five years. The renewed popularity of ⁶⁸Ga was initiated mainly by the development of new, simple to use ⁶⁸Ge/⁶⁸Ga generator systems, by the fact that positron emission tomography (PET) has become a routine clinical and preclinical imaging modality and owing to the favourable chemical properties of ⁶⁸Ga and developed ⁶⁸Ga labelling strategies including automation^{11,18}.

The commercially available ${}^{68}\text{Ge}/{}^{68}\text{Ga}$ generator from Eckert & Ziegler Eurotope GmbH (Berlin, Germany) used for our study provides ${}^{68}\text{Ga}$ in its ionic form as ${}^{68}\text{Ga}{}^{3+}$. Elution is performed using hydrochloric acid solution, since acidic conditions are required to inhibit hydrolysis of the ${}^{68}\text{Ga}{}^{3+}$ ion (pH < 3), which is a requirement for chemical processing and successful radiolabelling 10 .

The in-house accessibility, favourable radiochemical properties of ⁶⁸Ga³⁺ and chemical similarities with Fe³⁺, which is chelated by siderophores, led us to attempt ⁶⁸Ga labelling of selected siderophores. These attempts were successful and we have shown that various siderophores can be labelled with ⁶⁸Ga (ref.⁸). Moreover, we have demonstrated that ⁶⁸Ga-TAFC and ⁶⁸Ga-FOXE are highly selectively accumulated in the infected tissue in *Aspergillus fumigatus* rat infection model^{12,13} and ⁶⁸Ga-TAFC revealed high *in vitro*

specificity towards *Aspergillus fumigatus*¹⁹. Our studies showed, that ⁶⁸Ga-TAFC in particular appears to be promising candidate for the noninvasive detection of *Aspergillus* infections by PET.

In this work, we studied *in vivo* kinetics and biodistribution of different ⁶⁸Ga labelled tracers: ⁶⁸Ga-siderophores (TAFC and FOXE), ⁶⁸Ga-citrate, ⁶⁸Ga-colloid and ⁶⁸Ga-acetate/ colloid. ⁶⁸Ga-citrate was chosen as a representative of infection imaging tracer due to successful application of ⁶⁷Ga-citrate for SPECT imaging in the past²⁰ and recent reports on the clinical use of ⁶⁸Ga-Citrate²¹. ⁶⁸Ga-colloid is a radiochemical impurity, which can occur during ⁶⁸Ga labelling at higher pH and could influence the biodistribution of improperly prepared ⁶⁸Ga-siderophores. ⁶⁸Ga-acetate/colloid mixture was studied to compare the *in vivo* behaviour of ⁶⁸Ga-TAFC and ⁶⁸Ga-FOXE versus reaction mixture used for ⁶⁸Ga labelling of these siderophores.

⁶⁸Ga-TAFC and ⁶⁸Ga-FOXE showed high radiochemical purity and similar retention times using previously described RP-HPLC method¹², while ⁶⁸Ga-citrate, ⁶⁸Ga-colloid and ⁶⁸Gaacetate/colloid displayed completely different analytical behaviour using ITLC-SG. Subsequent in vivo small animal imaging showed rapid elimination of both ⁶⁸Gasiderophores mainly via kidneys. This supports the findings of high in vivo stability of these complexes with only intact ⁶⁸Ga-TAFC and ⁶⁸Ga-FOXE found as urinary excretion products¹². The only significant difference in the biodistribution of ⁶⁸Ga-TAFC and ⁶⁸Ga-FOXE was found in certain uptake of ⁶⁸Ga-FOXE in gastrointestinal tract in later time points, which could be caused by the binding of ⁶⁸Ga-FOXE to intestinal microflora. This hypothesis is supported by our previous study, testing of uptake specificity of ⁶⁸Ga-TAFC and ⁶⁸Ga-FOXE in various microorganisms¹⁹, which showed clear uptake of ⁶⁸Ga-FOXE not only in Aspergillus fumigatus, but also in another tested fungal and bacterial species, indicating higher specificity of ⁶⁸Ga-TAFC for imaging Aspergillus fumigatus infections. µPET/CT imaging of ⁶⁸Ga-citrate in mice revealed slow excretion of the radioactivity with high blood pool values, which is in accordance with the investigations of Kumar et al.²², who have studied ⁶⁸Ga-citrate for diagnostic imaging of infection in rats. ⁶⁸Ga-acetate/ colloid displayed comparable in vivo behaviour to ⁶⁸Ga-citrate. Both citrate and acetate are weak chelators *in vivo*. ⁶⁸Ga is rapidly released from the weak complex and bound to transferrin, ferritin and other iron-binding proteins²³, which explain the high blood pool values for both tracers. The *in vivo* imaging of ⁶⁸Ga-colloid showed clear rapid liver uptake slowly increasing in time. The ex vivo biodistribution data showed perfect correlation with in vivo dynamic and static imaging.

CONCLUSIONS

Both studied ⁶⁸Ga labelled siderophores displayed excellent and significantly different *in vivo* behaviour compared to ⁶⁸Ga-citrate, ⁶⁸Ga-colloid and ⁶⁸Ga-acetate/colloid, and especially ⁶⁸Ga-TAFC confirmed its great potential to be used as specific tracer for *Aspergillus* infection imaging. These data on normal biodistribution and pharmacokinetics of ⁶⁸Ga-TAFC and ⁶⁸Ga-FOXE are essential for further translation of these promising compounds into the clinic.

ACKNOWLEDGMENTS

We would like to thank the staff of the Animal Facilities of Institute of Molecular and Translational Medicine of Faculty of Medicine and Dentistry of Palacky University in Olomouc. We gratefully acknowledge the financial support of Biomedreg project CZ.1.05/2.1.00/01.0030, National Programme of Sustainability LO1304 and the Austrian Science Foundation (FWF; grant L676-B18 to C.D. and I1346-B2 to H.H.).

References

- 1. Neilands JB. Siderophores: structure and function of microbial iron transport compounds. J Biol Chem. 1995; 270:26723–6. [PubMed: 7592901]
- 2. Hider RC, Kong X. Chemistry and biology of siderophores. Nat Prod Rep. 2010; 27:637–57. [PubMed: 20376388]
- 3. Weiss G. Iron and immunity: a double-edged sword. Eur J Clin Invest. 2002; 32:70–8. [PubMed: 11886435]
- Schrettl M, Beckmann N, Varga J, Heinekamp T, Jacobsen ID, Jöchl C, Moussa TA, Wang S, Gsaller F, Blatzer M, Werner ER, et al. HapX-mediated adaption to iron starvation is crucial for virulence of Aspergillus fumigatus. PLoSPathog. 2010; 6(9):e1001124.doi: 10.1371/journal.ppat. 1001124
- Baddley JW, Andes DR, Marr KA, Kontoyiannis DP, Alexander BD, Kauffman CA, et al. Factors associated with mortality in transplant patients with invasive aspergillosis. Clin Infect Dis. 2010; 50:1559–67. [PubMed: 20450350]
- Pagano L, Akova M, Dimopoulos G, Herbrecht R, Drgona L, Blijlevens N. Risk assessment and prognostic factors for mouldrelated diseases in immunocompromised patients. J Antimicrob Chemother. 2011; 66:i5–14. [PubMed: 21177404]
- Reichenberger F, Habicht JM, Gratwohl A, Tamm M. Diagnosis and treatment of invasive pulmonary aspergillosis in neutropenic patients. Eur Respir J. 2002; 19:743–55. [PubMed: 11999005]
- Petrik M, Haas H, Schrettl M, Helbok A, Blatzer M, Decristoforo C. In vitro and in vivo evaluation of selected ⁶⁸Ga-siderophores for infection imaging. Nucl Med Biol. 2012; 39:361–9. [PubMed: 22172389]
- Fani M, André JP, Maecke HR. 68Ga-PET: a powerful generator based alternative to cyclotronbased PET radiopharmaceuticals. Contrast Media Mol Imaging. 2008; 3:53–63. [PubMed: 18383455]
- Decristoforo C. Gallium-68 a new opportunity for PET available from a long shelf-life generator – automation and applications. Curr Radiopharm. 2012; 5:212–20. [PubMed: 22642389]
- Velikyan I. Prospective of ⁶⁸Ga-radiopharmaceutical development. Theranostics. 2014; 4:47–80. [PubMed: 24396515]
- Petrik M, Haas H, Dobrozemsky G, Lass-Flörl C, Helbok A, Blatzer M, Dietrich H, Decristoforo C. ⁶⁸Ga-Siderophores for PET imaging of invasive pulmonary aspergillosis: proof of principle. J Nucl Med. 2010; 51:639–45. [PubMed: 20351354]
- Petrik M, Franssen GM, Haas H, Laverman P, Hörtnagl C, Schrettl M, Helbok A, Lass-Flörl C, Decristoforo C. Preclinical evaluation of two ⁶⁸Ga-siderophores as potential radiopharmaceuticals for *Aspergillus fumigatus* infection imaging. Eur J Nucl Med Mol Imaging. 2012; 39:1175–83. [PubMed: 22526953]
- 14. Rizzello A, Di Pierro D, Lodi F, Trespidi S, Cicoria G, Pancaldi D, Nanni C, Marengo M, Marzola MC, Al-Nahhas A, Rubello D, et al. Synthesis and quality control of 68Ga citrate for routine clinical PET. Nucl Med Comm. 2009; 30:542–5.
- Ocak M, Antretter M, Knopp R, Kunkel F, Petrik M, Bergisadi N, Decristoforo C. Full automation of ⁶⁸Ga labelling of DOTA-peptides including cation exchange prepurification. Appl Radiat Isot. 2010; 68:297–302. [PubMed: 19906533]

- Sánchez F, Orero A, Soriano A, Correcher C, Conde P, González A, Hernández L, Moliner L, Rodríguez-Alvarez MJ, Vidal LF, Benlloch JM, et al. ALBIRA: a small animal PET/SPECT/CT imaging system. Med Phys. 2013; 40:051906. [PubMed: 23635276]
- Sanchez F, Moliner L, Correcher C, Gonzalez A, Orero A, Carles M, Soriano A, Rodriguez-Alvarez MJ, Medina LA, Mora F, Benlloch JM. Small animal PET scanner based on monolithic LYSO crystals: performance evaluation. Med Phys. 2012; 39:643–53. [PubMed: 22320773]
- Rösch F. Past, present and future of ⁶⁸Ge/⁶⁸Ga generators. Appl Radiat Isot. 2013; 76:24–30. [PubMed: 23245638]
- Petrik M, Haas H, Laverman P, Schrettl M, Franssen GM, Blatzer M, Decristoforo C. ⁶⁸Ga-Triacetylfusarinine C and ⁶⁸Ga-Ferrioxamine E for *Aspergillus* infection imaging: uptake specificity in various microorganisms. Mol Imaging Biol. 2014; 16:102–8. [PubMed: 23818006]
- 20. Hughes DK. Nuclear medicine and infection detection: the relative effectiveness of imaging with ¹¹¹In-oxine-, ^{99m}Tc-HMPAO-, and ^{99m}Tc-stannous fluoride colloid-labeled leukocytes and with ⁶⁷Ga-citrate. J Nucl Med Technol. 2003; 31:196–201. [PubMed: 14657285]
- Nanni C, Errani C, Boriani L, Fantini L, Ambrosini V, Boschi S, Rubello D, Pettinato C, Mercuri M, Gasbarrini A, Fanti S. ⁶⁸Ga-citrate PET/CT for evaluating patients with infections of the bone: preliminary results. J Nucl Med. 2010; 51:1932–6. [PubMed: 21078801]
- Kumar V, Boddeti DK, Evans SG, Angelides S. ⁶⁸Ga-Citrate-PET for diagnostic imaging of infection in rats and for intra-abdominal infection in a patient. Curr Radiopharm. 2012; 5:71–5. [PubMed: 22074481]
- Silvola JM, Laitinen I, Sipilä HJ, Laine VJ, Leppänen P, Ylä-Herttuala S, Knuuti J, Roivainen A. Uptake of 68gallium in atherosclerotic plaques in LDLR-/-ApoB100/100 mice. EJNMMI Res. 2011; 1(1):14.doi: 10.1186/2191-219X-1-14 [PubMed: 22214258]

Fig. 1.

Proposed chemical structures of ⁶⁸Ga-TAFC (A) and ⁶⁸Ga-FOXE (B) and HPLCradiochromatograms of ⁶⁸Ga-TAFC, ⁶⁸Ga-FOXE and free ⁶⁸Ga (C).

Fig. 2.

Dynamic µPET imaging of ⁶⁸Ga-TAFC (A), ⁶⁸Ga-FOXE (B), ⁶⁸Ga-acetate/colloid (C), ⁶⁸Ga-colloid (D) and ⁶⁸Ga-citrate (E) up to 90 min p.i. (sagittal slices; injected dose: 5-10MBq; anaesthesia: 2% isoflurane; scan duration: 5-minute PET scan per frame (18 frames); B – bladder, E – eye, G – gastrointectinal tract, H – heart, K – kidney, L - liver).

Fig. 3.

Time activity curves of selected regions of interest (heart, kidneys, bladder) of 68 Ga-TAFC (A) and 68 Ga-FOXE (B).

Fig. 4.

Static μ PET/CT imaging of ⁶⁸Ga-TAFC (A), ⁶⁸Ga-FOXE (B), ⁶⁸Ga-acetate/colloid (C), ⁶⁸Ga-colloid (D) and ⁶⁸Ga-citrate (E) 5 min, 30 min and 90 min p.i. (supine position; injected dose 5-10MBq; anaesthesia: 2% isoflurane; scan duration: 5-minute PET scan followed by 15-minute CT scan).

Table 1.

Biodistribution of ⁶⁸Ga-TAFC, ⁶⁸Ga-FOXE, ⁶⁸Ga-acetate/colloid, ⁶⁸Ga-colloid and ⁶⁸Ga-citrate in normal DBA/2 mice 30 min and 90 min p.i.

Organ	⁶⁸ Ga-TAFC		⁶⁸ Ga-FOXE		⁶⁸ Ga-acetate/colloid		⁶⁸ Ga-colloid		⁶⁸ Ga-citrate	
	30 min	90 min	30 min	90 min	30 min	90 min	30 min	90 min	30 min	90 min
Blood	2.92 ± 1.48	0.24 ± 0.09	1.04 ± 0.10	0.04 ± 0.01	21.7 ± 2.64	17.0 ± 1.00	10.8 ± 0.32	8.40 ± 1.04	20.8 ± 2.60	19.9 ± 1.53
Spleen	0.68 ± 0.12	0.09 ± 0.04	0.35 ± 0.13	0.05 ± 0.01	5.01 ± 0.06	4.05 ± 1.08	9.72 ± 2.68	5.91 ± 2.67	3.49 ± 0.70	4.16 ± 0.64
Pancreas	1.04 ± 0.39	0.13 ± 0.01	0.52 ± 0.23	0.06 ± 0.02	3.54 ± 0.45	2.57 ± 0.47	1.85 ± 0.42	1.51 ± 0.30	4.16 ± 0.16	3.70 ± 0.28
Stomach	1.64 ± 0.48	0.35 ± 0.41	0.63 ± 0.16	0.06 ± 0.01	2.35 ± 0.21	2.84 ± 0.45	1.38 ± 0.13	1.32 ± 0.01	3.21 ± 0.54	3.62 ± 0.29
Intestine	1.37 ± 0.35	0.49 ± 0.25	0.92 ± 0.09	0.84 ± 0.05	2.78 ± 0.42	3.85 ± 0.30	1.29 ± 0.15	1.55 ± 0.07	3.30 ± 0.38	4.29 ± 0.23
Kidneys	11.8 ± 3.60	1.88 ± 0.53	3.12 ± 0.29	0.75 ± 0.24	5.59 ± 0.27	4.44 ± 0.31	2.46 ± 0.63	2.73 ± 0.53	5.46 ± 1.40	5.79 ± 0.32
Liver	0.79 ± 0.30	0.11 ± 0.02	0.86 ± 0.02	0.13 ± 0.01	4.84 ± 0.85	4.34 ± 0.49	36.7 ± 5.92	36.2 ± 2.67	3.38 ± 0.34	3.86 ± 0.35
Heart	1.10 ± 0.36	0.08 ± 0.02	0.46 ± 0.12	0.05 ± 0.01	7.06 ± 0.71	5.25 ± 1.16	3.35 ± 0.31	2.65 ± 0.50	8.12 ± 1.28	9.05 ± 0.77
Lung	2.51 ± 0.97	0.27 ± 0.12	0.95 ± 0.15	0.10 ± 0.01	8.45 ± 0.33	7.24 ± 0.66	4.76 ± 0.89	5.57 ± 1.25	10.6 ± 3.76	10.9 ± 1.46
Muscle	0.65 ± 0.31	0.35 ± 0.15	0.22 ± 0.06	0.06 ± 0.03	1.22 ± 0.23	1.51 ± 0.51	0.68 ± 0.10	0.63 ± 0.06	1.79 ± 0.23	1.93 ± 0.19
Femur	0.55 ± 0.06	0.76 ± 0.49	0.15 ± 0.05	0.12 ± 0.09	1.64 ± 0.32	1.84 ± 0.24	1.20 ± 0.05	1.17 ± 0.07	2.51 ± 0.37	2.81 ± 0.50

Data are presented as % injected dose per gram organ (%ID/g \pm Sd) (n = 3).