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Abstract

The strength of synaptic connections fundamentally determines how neurons influence each 

other’s firing. Excitatory connection amplitudes between pairs of cortical neurons vary over two 

orders of magnitude, comprising only very few strong connections among many weaker ones1–9. 

Although this highly skewed distribution of connection strengths is observed in diverse cortical 

areas1–9, its functional significance remains unknown: it is not clear how connection strength 

relates to neuronal response properties, nor how strong and weak inputs contribute to information 

processing in local microcircuits. Here we reveal that the strength of connections between layer 

2/3 (L2/3) pyramidal neurons in mouse primary visual cortex (V1) obeys a simple rule—the few 

strong connections occur between neurons with most correlated responses, while only weak 

connections link neurons with uncorrelated responses. Moreover, we show that strong and 

reciprocal connections occur between cells with similar spatial receptive field structure. Although 

weak connections far outnumber strong connections, each neuron receives the majority of its local 

excitation from a small number of strong inputs provided by the few neurons with similar 

responses to visual features. By dominating recurrent excitation, these infrequent yet powerful 

inputs disproportionately contribute to feature preference and selectivity. Therefore, our results 

show that the apparently complex organization of excitatory connection strength reflects the 
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similarity of neuronal responses, and suggest that rare, strong connections mediate stimulus-

specific response amplification in cortical microcircuits.

To determine the relationship between connection strength and neuronal responses, we used 

a combination of two-photon calcium imaging in vivo and whole-cell recordings in vitro in 

L2/3 of mouse V110 (Fig. 1). We first examined how connection strength relates to the 

degree of correlated firing between pairs of neurons. We obtained pairwise correlation 

coefficients of responses to a sequence of static natural images (see Methods) from L2/3 

neurons labelled with the calcium-sensitive indicator OGB-1 (ref. 11; imaged volumes ~260 

× 260 × 56 μm; Fig. 1a, b). The distribution of pairwise response correlations was highly 

skewed: correlations were generally low, and only a small fraction of pairs were highly 

correlated during visual stimulation (median correlation coefficient: 0.012; mean correlation 

coefficient ± s.d.: 0.021 ± 0.051; range: −0.12 to 0.67; Fig. 1c; Extended Data Fig. 1).

We next identified the same OGB-1-filled neurons in acute slices (Fig. 1e), and targeted up 

to six neurons for simultaneous whole-cell recording to assess their synaptic connectivity 

(Fig. 1e, f; see Methods). A total of 203 pyramidal cells (across 17 mice) recorded in the 

slice were identified in the in vivo image stacks, and the overall connection rate was 75/520 

(0.14). Consistent with previous reports1–9, the distribution of excitatory postsynaptic 

potential (EPSP) amplitudes was highly skewed (median EPSP amplitude: 0.19 mV; mean 

EPSP amplitude ± s.d.: 0.45 ± 0.68 mV; Fig. 1d).

Neurons with more similar responses were much more likely to connect (P = 8.2 × 10−8, 

Cochran–Armitage test for trend; Fig. 1g, h), consistent with previous observations10. 

Importantly, response correlation was closely related to EPSP amplitude: the strongest 

connections were found between neuronal pairs with the highest response correlations (Fig. 

1g, i; Extended Data Fig. 2a), while neurons with negatively correlated responses tended not 

to connect or formed only weak connections (response correlation > 0.2, median amplitude 

of connected pairs: 1.38 mV, n = 10; response correlation < 0, median amplitude: 0.12 mV, n 
= 16; P = 6.8 × 10−4, Wilcoxon rank-sum test; Fig. 1g). The close correspondence between 

response correlation and mean connection amplitude was apparent both when including 

(Fig. 1i) or excluding unconnected pairs (Extended Data Fig. 2a). Indeed, the majority of 

total synaptic weight was concentrated in the minority of connections between highly 

correlated pairs (7% most correlated pairs accounted for 50% of the total synaptic weight; 

Fig. 1j), further emphasizing the highly non-random arrangement of connection amplitudes. 

Together, these data suggest that the long-tailed distribution of cortical connection weights 

arises from a simple rule: neurons with highly correlated responses form strong connections, 

and neurons with uncorrelated responses connect rarely, and only weakly.

In visual cortex, strong response correlations may be explained by one of several shared 

visual response properties. To understand how connection strength relates to visual feature 

preference, we characterized the spatial linear receptive field (RF) structure for each neuron 

in the imaged populations (Fig. 2a; see Methods). The linear RF describes the relative 

position of ON (response to light increments) and OFF (response to light decrements) 

subfields in visual space, and thus provides information about visual features to which a 

neuron is most sensitive, including their orientation, phase, spatial frequency and size. RFs 
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of nearby cortical neurons were highly diverse within each imaged population in L2/312–15 

(example region in Fig. 2b). We quantified RF similarity as the pixel-to-pixel correlation 

coefficient between pairs of RF maps. RF correlations were close to zero for the majority of 

pairs, and only a small fraction of neurons exhibited highly similar or highly dissimilar RFs 

(Fig. 2c).

By assessing connectivity between neurons with linear RFs (Fig. 2d–f), we found that 

connections between neuronal pairs with more similar RF structure were stronger (Fig. 2g, i; 

Extended Data Fig. 2b) and much more frequent (Fig. 2h) than connections between pairs 

with uncorrelated or negatively correlated RFs. The minority of connections observed 

between neurons with the most similar RFs accounted for a large fraction of the total 

synaptic weight (50% of total synaptic weight between 12% of pairs with the most 

correlated RFs; Fig. 2j). RF correlation was closely related to the degree of ON and OFF 

subfield overlap (R = 0.79, P < 1 × 10−10; Extended Data Fig. 3a), and both connection 

strength and connection probability increased with larger ON and OFF overlap (Extended 

Data Fig. 3b–d). Indeed, these measures of RF similarity predicted connection strength 

much better than cortical distance and even the difference in orientation preference (Fig. 2k; 

Extended Data Fig. 4; see Methods). Nonetheless, pairwise response correlation was the best 

predictor of connection strength (Fig. 2k); this is not surprising as pairwise response 

correlation includes additional information about shared response properties not captured by 

the linear RF16.

The preferential, strong connectivity between correlated neurons was further emphasized 

when considering the reciprocity of connections (Figs 1g and 2g, Extended Data Fig. 5). 

Connections between bidirectionally connected pairs generated larger EPSPs than 

unidirectionally connected pairs, consistent with previous reports3,4,17, and the RF maps of 

bidirectionally connected neurons were significantly more correlated than RFs of 

unidirectionally connected or unconnected pairs (Extended Data Fig. 5).

Only a small fraction of neuronal pairs in the local V1 network shared a similar RF structure 

(7.5% of pairs with RF correlation > 0.4; Fig. 2j). Thus, connections between neurons with 

non-matching RFs (RF correlation < 0.4, 61/75 or 81% of all measured connections) greatly 

outnumbered the connections between neurons with similar RFs (RF correlation > 0.4, 14/75 

or 19% of all measured connections). Given this large RF diversity of local inputs, we next 

sought to estimate the combined visual feature preference of the net synaptic excitation an 

individual neuron receives from the L2/3 network. We combined data from all pairs of 

connected neurons after rotating, translating and scaling each postsynaptic RF to match a 

normalized RF structure18 (Extended Data Fig. 6a; see Methods). The same transformation 

was applied to the RFs of the presynaptic neurons (Extended Data Fig. 6b), and we 

considered the sum of these transformed presynaptic RFs, weighted by the amplitude of the 

connections, to indicate net synaptic input. The structure of this weighted presynaptic RF 

sum closely resembled the structure of the normalized postsynaptic RF (correlation between 

presynaptic RF sum and postsynaptic RF sum: R = 0.73, n = 45 pairs; Fig. 3a, top row; 

Extended Data Fig. 7). This input specificity did not result from a bias in the structure of 

RFs in the local population because the RF sum of the unconnected neurons was very 

different (R = −0.38, n = 227; Fig. 3a, bottom row; Extended Data Fig. 8). Therefore, despite 
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the majority of inputs arising from neurons with mismatched RFs, the combined local 

excitatory drive onto pyramidal cells in L2/3 has a RF structure that closely matches that of 

the receiving neuron.

How do connections of different strengths contribute to this feature-specific excitation from 

the local network? The RFs of the strongest 25% of inputs (n = 11), which accounted for 

78% of the overall synaptic weight, were highly similar to the postsynaptic RF (correlation 

of weighted RF sums, pre- versus postsynaptic, R = 0.67; Fig. 3b). Further, the ON and OFF 

subfields of the strongest inputs closely matched the ON and OFF subfields of the 

postsynaptic RF, with very few mismatches (Fig. 3c, top row). Both the similarity between 

summed pre- and postsynaptic RFs (Fig. 3b), as well as the ON and OFF subfield overlap 

(Fig. 3c, middle rows), progressively decreased for weaker connections, and there was little 

common structure to the input from the weakest 25% of connections (Fig. 3c, bottom row). 

This indicates that feature-matched excitation from the local L2/3 network is dominated by 

only a small fraction of strong inputs that a pyramidal neuron receives.

We next sought to understand how local excitatory inputs contribute to the response and 

stimulus selectivity of a neuron’s membrane potential in L2/3. In mouse V1, a simple cell’s 

subthreshold response to drifting grating stimuli19–23 is characterized by two components 

that are determined by the angle and phase of the grating in relation to its RF (Fig. 4a). 

Namely, a large amplitude depolarization evoked at all orientations (F0 component, Fig. 4a–

d), and an orientation-tuned membrane potential modulation locked to the grating phase (F1 

component). The F1 component contributes directly to the firing response of a neuron, since 

spikes occur at the peaks of the large modulation (Fig. 4b). To estimate the contribution of 

local inputs to the F0 and F1 components, we generated a model informed by the 

experimentally measured RF properties and connectivity within L2/3 (see Methods). In the 

model network, a single neuron received input from all others in the population, and the 

input connection strength was drawn from the experimentally determined distribution 

relating RF correlation to connection strength (Fig. 4e, f). Despite receiving no direct 

feedforward input, simulated neurons displayed qualitatively similar membrane potential 

responses to L2/3 neurons recorded in vivo (Fig. 4g, compare to Fig. 4c), including a large 

depolarization (F0) at all stimulus orientations (Fig. 4g, h), and a highly modulated 

membrane potential response (F1) to the preferred but not the non-preferred orientation (Fig. 

4g, h). These results suggest that local connections contribute to the stimulus selectivity of 

L2/3 neurons by providing tuned excitation that modulates the membrane potential in a 

manner qualitatively similar to that observed in vivo19–23.

We then systematically varied the relative fractions of strong and weak connections in the 

simulated network to estimate how connections of different strengths contribute to the F0 

and F1 response components (Extended Data Fig. 9). For instance, removing the strongest 

25% of connections from the model (equivalent to including the weakest 75% of 

connections; Fig. 4i, j, purple traces) essentially eliminated the modulated F1 component of 

the response (95% reduction in the modulation amplitude at the preferred orientation). In 

contrast, removing the weakest 75% of connections (leaving the strongest 25% connections; 

Fig. 4i, j, blue traces) decreased the mean depolarization (F0 component) by 23%, but only 

slightly affected the F1 component (5% decrease in modulation amplitude at the preferred 
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orientation). This means that the membrane potential modulation of a L2/3 neuron in 

response to drifting gratings is weakly influenced by the majority of local inputs it receives, 

which contribute only partly to the broadly-tuned depolarization. In contrast, the orientation- 

and phase-selective response is predominantly influenced by a small subset of other L2/3 

neurons with similar RF structure, which provide strong, feature-matched excitation at the 

preferred orientation.

We describe a simple rule governing how the long-tailed distribution of excitatory 

connection strength — observed in diverse cortical areas1–9 — is organized with respect to 

the functional properties of cortical neurons. In L2/3 of mouse V1, pyramidal neurons with 

correlated responses to visual stimuli connect preferentially with strong and often reciprocal 

connections, whereas neurons with uncorrelated or anti-correlated responses connect 

infrequently with weak connections. The fact that there are only very few strong connections 

in neocortical circuits reflects the low number of cell pairs with highly correlated responses. 

Therefore, the strength of synaptic coupling mirrors the strength of functional coupling, a 

relationship which may arise from correlation-based learning rules15,24.

Our results suggest that infrequent, strong connections play a prominent role in cortical 

computation. While a L2/3 pyramidal neuron receives inputs from many neurons with 

diverse response properties (for example, receptive fields) in the local V1 network, the 

majority of the synaptic drive is provided by only a small fraction of strong inputs from cells 

with the most similar responses to visual stimuli. These rare but powerful inputs provide 

strongly tuned excitation, and therefore directly contribute to a neuron’s selectivity by 

amplifying responses to specific visual features.

This circuit architecture—comprising strong recurrent excitation within ensembles of 

neurons with similar RFs—may additionally amplify (and perhaps prolong25) population-

level responses to particular sensory stimuli19,20,26–29, and thus promote effective 

information transmission to multiple postsynaptic targets. In contrast, the matrix of more 

numerous, weaker connections, which only generate a small fraction of total excitation in 

the L2/3 network, may facilitate local contextual interactions and serve as a substrate for 

plasticity—for example, when particular visual feature combinations become behaviourally 

relevant.

METHODS

Animals and surgical procedures

All experimental procedures were carried out in accordance with institutional animal welfare 

guidelines, and licensed by the UK Home Office.

In vivo two-photon calcium imaging

Experiments were performed in 17 C57Bl/6 mice of both sexes, aged P22–26. Please note 

that we applied no randomization or blinded assignment of animals to groups and no 

animals were excluded from any analyses. The number of experimental preparations used in 

the analysis was chosen according to previous studies10,13. Mice were initially anaesthetized 

with a mixture of fentanyl (0.05 mg per kg), midazolam (5.0 mg per kg), and medetomidine 
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(0.5 mg per kg). Surgery was performed as described previously30. Briefly, we made a small 

craniotomy (1–2 mm) over primary visual cortex and, after dye injection, sealed it with 1.6% 

agarose in HEPES-buffered artificial cerebrospinal fluid (ACSF) as well as a cover slip. At 

the time of imaging, the injectable anaesthetic had mostly worn off and light anaesthesia was 

maintained by isoflurane (0.3–0.5%) in a 60:40% mixture of O2:N2O delivered via a small 

nose cone.

For bulk loading of cortical neurons, we first dissolved the calcium-sensitive dye Oregon 

Green BAPTA-1 acetyloxymethyl ester (OGB-1 AM, Molecular Probes) in 4 μl DMSO 

containing 20% Pluronic F-127 (Molecular Probes), and then diluted (1/11) in dye buffer 

(150 mM NaCl, 2.5 mM KCl, and 10 mM HEPES, pH 7.4), resulting in a final concentration 

of 0.9 mM. In order to distinguish neurons and astrocytes, we added sulforhodamine 101 

(SR 101, 50 μM, Molecular Probes) to the solution31. With a micropipette (3–5 MΩ) the dye 

was slowly pressure-injected (3–10 psi, 2–4 min) into the monocular region of right visual 

cortex at a depth of 170–200 μm under visual control by two-photon imaging (×16, 0.8 

numerical aperture water immersion objective, Nikon). Activity of cortical neurons was 

monitored by two-photon imaging of OGB-1 fluorescence changes with a B-Scope 

microscope (Thorlabs) and a mode-locked Ti:sapphire laser (Mai Tai, Spectra-Physics) at 

830 nm through a ×40, 0.8 numerical aperture water immersion objective (Olympus).

Visual stimuli were generated using MATLAB (Mathworks) Psychophysics Toolbox32,33, 

and displayed on an LCD monitor (60 Hz refresh rate) positioned 20 cm from the left eye, 

roughly at 45 degrees to the long axis of the animal, covering ~110 × 84 degrees of visual 

space. At the beginning of each experiment, the appropriate retinotopic position in visual 

cortex was determined using small grating stimuli at 12 positions arranged in a 4 × 3 grid. 

The monitor was repositioned such that the preferred retinotopic position of most imaged 

neurons was roughly in the middle of the monitor.

Imaging frames of 512 × 512 pixels were acquired at 27.9 Hz in Scanimage 4.0 while 

presenting different visual stimuli, including movies and static naturalistic images (see 

sections below for details). A piezo z-scanner (PI P-726 PIFOC) was used to rapidly move 

the objective in the z axis and acquire 4 image planes, each separated by 8 μm in depth. Thus 

a single imaged plane (acquired in 35.8 ms) was part of an imaged volume acquired in 143 

ms (6.98 Hz). Before recording the first volume, a reference image was acquired. After each 

recording, the imaging position in the x and y axis was checked and realigned with the initial 

image if necessary. To obtain visually evoked responses from all neurons in a cortical 

volume of 263 × 255 × 56 μm, two volumes were recorded, starting at ~135 μm below the 

cortical surface, corresponding to superficial layer 2 in mouse V1.

After aligning image sequences to correct for tangential drift we analysed them with 

customized programs written in MATLAB. A semi-automated algorithm was used to detect 

cell outlines, which were subsequently confirmed by visual inspection. This algorithm was 

based on morphological measurements of cell intensity, size, and shape. The cell-based 

regions of interest (ROIs) were then eroded (to reduce the influence of the neuropil signal 

around the cell bodies as far as possible), and all pixels within each ROI were averaged to 

yield a time course (ΔF/F) for each neuron; to remove slow fluctuations in the signal, this 
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single time course was subsequently high-pass filtered at a 0.02 Hz cut-off frequency. A fast 

non-negative deconvolution method approximating the maximum a posteriori spike train for 

each neuron, given the fluorescence observations34, was used to infer spike trains from 

calcium signals. This method yields spike probabilities (or inferred firing rate) that are 

linearly related to the number of action potentials per imaging frame35.

In vitro whole-cell recording

After in vivo imaging experiments, whole-cell recordings in vitro were performed using an 

approach as described previously10,13. After two-photon calcium imaging in vivo, red 

fluorescent microspheres (Lumafluor) were injected into the imaged region to facilitate 

identification of the same region in sliced tissue. We then rapidly removed the mouse brain, 

dissected it in ice-cold artificial cerebrospinal fluid (ACSF) containing 125 mM NaCl, 2.5 

mM KCl, 1 mM MgCl2, 1.25 mM NaH2PO4, 2 mM CaCl2, 26 mM NaHCO3, 25 mM 

dextrose; osmolarity 315–325 mOsm, bubbled with 95% O2/5% CO2, pH 7.4. Visual cortex 

slices (300 μm) were cut coronally on a microtome (VT1200S, Leica Biosystems) and were 

incubated at 34 °C for thirty minutes before being transferred to the recording chamber. We 

identified the slice containing the imaged region by the red microsphere injection site and 

the presence of OGB-1 green fluorescence. To identify the cells’ relative locations, a 

detailed morphological stack of the slice was obtained with a custom-built microscope and a 

mode-locked Ti:sapphire laser (Vision-S, Coherent) at 830 nm through a ×16 water 

immersion objective (0.8 numerical aperture, Nikon). Scanning and image acquisition were 

controlled by custom software written in LabVIEW (National Instruments). To match the 

neurons recorded in vitro with the neurons imaged in vivo, three-dimensional image 

registration of in vivo and in vitro image stacks was carried out through an affine 

transformation using custom-written MATLAB software. We performed simultaneous 

whole-cell recordings, in 28 °C ACSF, from two to six cells in regions identified in the in 
vivo stack. Recordings were made using Multiclamp 700B amplifiers (Axon Instruments) 

and acquired using custom software running in MATLAB. Recording pipettes were mounted 

on remote-controlled motorised micromanipulators (MicroStar, Scientifica), and filled with 

internal solution containing 5 mM KCl, 115 mM K-gluconate, 10 mM K-HEPES, 4 mM 

MgATP, 0.3 mM NaGTP, 10 mM Na-phosphocreatine, 40 μM Alexa Fluor 594; osmolarity 

290–295 mOsm, pH 7.2. Junction potentials were not corrected. The chloride reversal 

potential was ~−85.2 mV. Cells were approached under visual guidance using laser-scanning 

Dodt contrast and two-photon imaging. To test for the presence of synaptic connections, five 

spikes at 30 Hz were evoked in each cell, repeated 30 to 120 times, while searching for 

postsynaptic responses. EPSP amplitudes were calculated by averaging the data points 

within 1 ms around the first peak depolarization value. After connectivity mapping, step 

currents from −50 pA to 700 pA were injected at 50 pA increments. Pyramidal neurons were 

identified according to morphology in Alexa Fluor 594 filled image stacks, spike half-width 

(>1 ms), regular-spiking pattern on current injection, and in the presence of connections, 

depolarizing postsynaptic potentials.

Connection probabilities were calculated as the number of connections detected over the 

number of potential connections assayed. Traces in which large stimulation artefacts 

occurred were excluded from the analysis. For pairs in which a high quality recording was 
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achieved in only one cell (for example, the other cell was too depolarized/unhealthy, or the 

seal resistance was less than 1 GΩ), connectivity was assayed only in the direction from the 

unhealthy cell to the healthy cell, given that spikes could be evoked in both cells. Data from 

these pairs were included in the analysis of connection probability, but not in the analysis of 

bidirectional or unidirectional pairs.

In vivo whole-cell recordings

Experiments were performed in 9 C57Bl/6 mice of both sexes, aged P29–40. Mice were 

initially anesthetized with a mixture of fentanyl (0.05 mg per kg), midazolam (5.0 mg per 

kg), and medetomidine (0.5 mg per kg). The skull was exposed and a metal head-plate was 

attached with dental cement. A small craniotomy (1–2 mm) was carried out over primary 

visual cortex, based on stereotaxic coordinates. The dura was removed and the cortex was 

kept moist with cortex buffer solution (125 mM NaCl, 5 mM KCl, 10 mM glucose, 10 mM 

HEPES, 2 mM MgSO4, and 2 mM CaCl2, pH 7.4).

A silver reference electrode was fixed in place using 2% agarose in cortex buffer under the 

skin of the neck. Recording pipettes were made using thick-walled filamentous borosilicate 

glass capillaries (G150F-3, Harvard apparatus) using a horizontal (Sutter, P1000) or vertical 

(Narashige, PC10) puller adjusted to produce a tip size of approximately 1 μm and resistance 

of 5–7 MΩ when filled with intracellular solution containing: 120 mM K-gluconate, 4 mM 

NaCl, 40 mM HEPES, 2 mM MgATP, 0.3 mM NaGTP; osmolarity 295 mOsm, pH 7.4 or 

135 mM K-gluconate, 10 mM KCl, 10 mM HEPES, 4 mM MgATP, 0.3 mM NaGTP, 10 mM 

Na-phosphocreatine; osmolarity 295 mOsm, pH 7.4.

Recording pipettes were mounted on a remote-controlled motorised micromanipulator 

(‘Junior’, Luigs & Neuman) and orientated at an elevation of approximately 45° from 

horizontal. The signal was amplified using a Multiclamp 700B amplifier (Molecular 

Devices), processed by a 50/60 Hz noise eliminator (Humbug, Digitimer) and digitized at 20 

kHz by an 18-bit ADC/DAC board (National Instruments) and low-pass filtered at 6 kHz. 

Data acquisition was controlled by a computer running either Igor Pro (Wavemetrics)/

Neuromatic (Jason Rothman, UCL) or a custom MATLAB program. Data were digitally 

stored for off-line analysis.

Recordings were made using the blind whole-cell patch technique36. Neurons were targeted 

at a depth of 150–300 μm below the pial surface (estimated using the reading of the 

micromanipulator). After a neuron was encountered and whole-cell access was achieved, the 

recording was switched to current-clamp configuration (0 pA holding current) and data 

acquired at 10 kHz. Junction potentials were not corrected.

Visual stimuli were generated using MATLAB Psychophysics Toolbox, and displayed on a 

43 × 23 cm LCD monitor with a refresh rate of 60 Hz. The monitor was located 16 cm from 

the eye, and covered ~106 × 71 degrees of the visual space. At the beginning of each 

experiment, a coarse retinotopic map was acquired for each neuron. Patches of moving black 

and white gratings were presented in 28 different locations on a grey background, in a 

pseudorandom order (stimulus duration: 600 ms; interstimulus interval: 400 ms). The 

monitor position was adjusted to centre the RF on the middle of the screen.
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Test visual stimuli consisted of square-wave gratings of 4 orientations drifting in 8 evenly 

spaced directions spanning 0–360°. Stimulus orientation was perpendicular to drift direction. 

Stimuli of 50% contrast were presented in a fixed sequence, with the direction of drift 

increasing in 135° increments. Spatial and temporal frequencies of all stimuli were 0.04 

cycles per degree and 3 cycles per s, respectively. Drifting gratings (1.67 s) were 

interspersed with stationary gratings of 1.67 s. Stationary gratings were of the same 

orientation as the subsequent drifting grating. The entire stimulus sequence was repeated 5–

10 times.

Analysis was restricted to a window commencing 250 ms after the onset of each drifting 

stimulus and lasting for 1,333 ms (that is, 4 cycles of the 3 Hz square wave grating). The 

onset of the analysis window was delayed relative to the start of the stimulus in order to 

avoid the neuron’s initial onset response.

Spike thresholds were localized to the maximum second differential within the 5 ms period 

preceding the action potential peak and spike timing was recorded at 0.1 ms precision. For 

each spike the subthreshold trace was capped at the threshold value (from the point of 

threshold until the point at which the membrane potential passed back below this value). If 

spikes occurred within 10 ms of each other the trace was capped until the membrane 

potential passed below threshold following the last spike. After spike removal subthreshold 

traces were smoothed using a 7-ms sliding window.

The baseline membrane potential of each recording block was defined as follows. The pre- 

and post-stimulus baseline conditions were divided into 1-s sections and the minimum 

membrane potential observed during each section was averaged to give the baseline of that 

recording session. The amplitude of depolarization (F0 component) and modulation (F1 

component) in response to drifting gratings was measured in the following way: a sine wave 

function given by σ(t)= A sin (2πft + φ) + B, where f is the temporal frequency of the 

drifting gratings (3 Hz), and A, B and φ are free parameters, was fit to the membrane 

potential during the analysis window, averaged over all trials of a given stimulus orientation. 

The amplitude component (F0) was taken as the depolarization B from the baseline 

membrane potential, and the modulation component (F1) was taken as the amplitude of the 

sine-wave fit, A.

Receptive field measurement

We displayed natural image sequences (1800 individual images) at 1.4 s intervals (0.4 s 

presentation time, interleaved by 1 s grey screen). After the onset of each natural image, we 

recorded 10 imaging frames at ~7 Hz before the next image was presented. For each imaged 

cell, spike probabilities were inferred from calcium signals using the fast non-negative 

deconvolution method described above. The response to an image was calculated in the 

following way: for each visual stimulus, k(1, … ,N), and each cell, i(1, … ,C), the response 

to the stimulus can be expressed r(k,i,j) where j=1, … ,10 are the 10 imaging frames. A 

response value of cell i to stimulus k was then defined as .
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To estimate linear RFs, we used a regularized pseudoinverse method37 to reverse-correlate 

neuronal responses with natural images. This algorithm regularizes the inverse problem by 

introducing a two-dimensional smoothness constraint on the linear RF; specifically, the 

constraint is that the Laplacian of the RF should be close to zero at all points (▽2 RF = 0). 

This method introduces a regularization parameter, λ, which balances the emphasis to be 

placed on fitting the data and the emphasis to be placed on the smoothness constraint.

The following analysis was performed to choose the regularization parameter. For each cell 

and each value of the regularization parameter, we separated the natural images and 

associated responses into training data sets (75% of the data) and test data sets (the 

remaining 25% of the data). The images included in the training set were chosen randomly 

and the remaining 25% of the images were placed into the test set. We then calculated linear 

RFs using the training data, and fit a sigmoid nonlinearity, which can be described by the 

equation

(where A is the amplitude, α determines the slope, and β determines the offset of the 

sigmoid) to the training data in order to convert the linear predictions made by the RF into 

neuronal spike probabilities. We then used the linear RF and nonlinearity to predict 

responses to the natural images of the test set and took the correlation coefficient between 

the actual and predicted responses as a measure of RF prediction performance. We 

performed this procedure 100 times for each cell and each value of the regularization 

parameter. For each cell, we chose the regularization parameter that maximized the RF 

prediction performance. Using this procedure, 42% of neurons, 1,969/4,743, had fraction of 

explained variance >10% (range: 22–59%, 17 experiments), comparable to previous reports 

(48%, 222/463, in ref. 13), where fraction of explained variance is defined as 100 (R2), 

where R is the Pearson’s product-moment correlation coefficient between the actual and 

predicted responses.

To assess whether the RF for a particular cell was significant, we randomly shuffled the 

response vector to the natural image sequence and performed the reverse correlation again 

using the same regularization parameter, λ. This procedure was repeated 100 times to 

produce 100 shuffled RFs, RFshuffled. From these shuffled RFs the mean, μshuffled, and 

standard deviation, σshuffled across all pixels were calculated. A RF was defined to be 

significant if there were pixels which had absolute values μshuffled + Lσshuffled, where L (the 

‘significance level’) denotes the number of standard deviations from the mean. The fraction 

of neurons with RFs with significance level >5 was 53% (2,532/4,743, range: 34–68%, 17 

experiments).

The RF was parameterized by fitting a two-dimensional Gabor function using the 

Levenberg–Marquardt algorithm. The Gabor function is described by
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where

These equations describe an underlying two-dimensional cosine grating parameterized by θ 

(orientation), f(spatialfrequency) and φ (phase), which is enveloped by a two-dimensional 

Gaussian function parameterized by A (amplitude), (cx,cy) (centre of the Gaussian) and σx 

and σy (standard deviations of the Gaussian perpendicular to and parallel to the axis of the 

grating, respectively).

The pixel–pixel Pearson’s correlation coefficient was used as a measure of RF similarity. To 

compare the difference in orientation preference, the two-dimensional Fourier transform of 

each RF was taken, . An orientation tuning curve for each neuron was calculated by 

interpolating the power value of the Fourier spectrum,  around a circle with 

radius equal to the dominant spatial frequency of the RF (also derived from the two-

dimensional Fourier transform). The Gabor fits were used to compare the amount of ON and 

OFF subfield overlap between pairs of neurons (Fig. 2 and Extended Data Figs 4 and 5). In 

this case, ON subfields were defined as the region in which pixels of the Gabor fit were 

>20% of maximum absolute value, max(abs(Gabor fit)). Similarly, OFF subfields were 

defined as the region in which pixels of the Gabor fit were <20% of the negative of the 

maximum absolute value, – max(abs(Gabor fit)). The amount of overlap was defined as

where A and B are the regions of visual space covered by the presynaptic (say, A) and 

postsynaptic (say, B) ON, OFF, or both subfields.

General statistical analyses

All statistical tests used in the manuscript were non-parametric, with no assumptions 

concerning normality or of equal variances. Statistical tests used are described in the 

manuscript or in the figure legends.

Statistical analysis of connectivity predictions

To determine which aspects of neuronal responses predict connection strength we performed 

the following analysis. Each pairwise similarity metric (for instance, difference in 

orientation preference or RF correlation) was ordered such that higher values indicated 

higher similarity between two neurons. Our test hypothesis (H1) was that there was a 

positive (linear) correlation between the similarity metric and observed connection weights. 
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Our null hypothesis (H0) was that connections are drawn randomly from the measured 

distribution of connection strengths. The prediction performance value of a pairwise 

similarity metric was defined as the Pearson’s product-moment correlation coefficient 

between the similarity metric and the observed synaptic weights, PPO = corr(p,o), where p 
and o are the vectors of the metric and observed connection weights, respectively. To 

measure the prediction for difference in orientation preference, we combined connection 

amplitude data from a previous publication, in which orientation was measured using 

drifting oriented gratings (see refs. 10 and 15), and the RF data, where orientation was 

measured using the Fourier analysis described above. Only neurons with RFs having a 

significance level >4.3 (see above) were included in the analysis for subfield overlap and 

orientation preference.

We estimated P values for this hypothesis using a Monte-Carlo analysis. We generated 

random permutations of the observed connections and connection strengths (50 

permutations were generated for each observed connection). For each permutation, we 

calculated the prediction performance, PPR = corr(o,r) where o and r are the vectors of 

observed and randomly permuted connection weights, respectively. The P values for 

hypothesis H1 were then estimated as the proportion of prediction performance values, PPR 

that were higher than the value PPO.

Receptive field transformation

To allow us to pool RF data across neurons, we normalized postsynaptic RFs by first 

defining a template RF, which was a vertical Gabor with 0 degree phase (that is, centred on 

an ON domain; see Extended Data Fig. 6). A Gabor was fit to the RF of each postsynaptic 

neuron, and then rotated, translated and scaled so that the ON subfield was centred on the 

template’s ON subfield. We used the parameters of this transformation to transform the RFs 

of all simultaneously recorded presynaptic (whether connected or not) and postsynaptic 

cells.

The RF outlines used for display (Fig. 3, Extended Data Figs 6, 7 and 8) were calculated in 

the following way. The maximum pixel value obtained by the RF was defined as PeakON, 

and the minimum pixel value obtained by the RF was defined as PeakOFF. If ∣PeakON∣ > 

∣PeakOFF∣, then a contour (ON subfield outline) was traced at a value 0.2PeakON. The OFF 

subfield outline was then defined as the contour at (0.7 – 0.5(PeakOFF/PeakON))PeakOFF. If 

∣PeakOFF∣ > ∣PeakON∣, then a contour (OFF subfield outline) was traced at a value 

0.2PeakOFF. The ON subfield outline was then defined as the contour at (0.7 – 0.5(PeakON/

PeakOFF))PeakON.

Predicting single-neuron membrane potential responses in a L2/3 network simulation

We used the statistics of recurrent cortical connections measured in our experimental work 

to predict the feature selectivity of local recurrent inputs to individual L2/3 neurons. The 

model was used to predict the subthreshold membrane potential of each neuron in response 

to drifting oriented gratings presented to the network.
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To predict inputs in response to drifting gratings, we pooled all RFs measured 

experimentally into a single population (n = 4,633 neurons) by shifting RFs so that the mean 

RF centre location of each experiment was aligned. Thus, the observed RF scatter for each 

experiment was retained. We simulated the presentation of 100% contrast, drifting sinusoidal 

gratings with temporal frequency of 3 Hz (cycles per s) and spatial frequency 0.04 cycles per 

degree, in 8 equally spaced directions from 0° to 360°.

Network connections were generated by taking each neuron in turn as a postsynaptic neuron, 

and assigning input connections from all other neurons according to the similarity between 

the pre- and postsynaptic RFs. We used the relationship between RF correlation and 

connection amplitude (Fig. 2g) to assign weights to each simulated connection (see 

schematic in Fig. 4e). Each network simulated the input only to a single postsynaptic 

neuron. Every network instance was normalized to have the same total weight. The 

contributions from the strongest 25% of inputs and the weakest 75% of inputs were 

additionally examined by setting all other weights to zero.

Responses for each neuron in the population were generated using a linear/nonlinear model. 

The parameters of this model were derived for each neuron in the population during 

estimation of the linear RF (see Methods above). The linear output in response to a 

particular grating orientation and phase was estimated by correlating the grating stimulus 

with the RF of a given neuron. The nonlinear sigmoidal transfer curve fit during RF 

estimation (see Methods above), was used to convert the linear output into a mean firing-rate 

at each time point of the simulation (Fig. 4e). The firing rates from all presynaptic neurons 

were then weighted by their connection strengths and summed to generate a time varying 

membrane potential (Vm) of the postsynaptic neurons (Fig. 4f). No external (for example, 

feedforward) input was applied to the postsynaptic neuron. The membrane potential for a 

given postsynaptic neuron was estimated by integrating an R–C membrane model, with 

input resistance Rin = 140 MΩ, capacitance C = 120 pF. Membrane potential traces produced 

in this way were analysed identically to membrane potential traces obtained in vivo (see 

above).
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Extended Data

Extended Data Figure 1. Relationship between response correlation coefficient or RF correlation 
and cortical distance
a, Pairwise response correlation coefficient plotted as a function of cortical distance, for an 

example region, indicates only a weak relationship between response correlation and cortical 

distance (R = −0.06). Red line denotes mean value of response correlation in 50 μm bins of 

cortical distance. b, Pairwise RF correlation plotted as a function of cortical distance, for the 

same example region as in a. Again, only a weak relationship was observed (R = −0.02).
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Extended Data Figure 2. Relationship between mean connection amplitude and response 
correlation or RF correlation
a, Black trace, mean connection amplitude (excluding unconnected pairs) plotted against 

response correlation. Dashed grey line indicates mean EPSP amplitude of all connections. 

Grey shaded region represents the 95% confidence interval of the expected mean, estimated 

by repeated random reshuffling of the EPSP amplitudes among all cell pairs in the data set. 

Connections were binned with ranges from −0.1 to 0, 0 to 0.1, and so on. b, Black trace, 

mean connection amplitude (excluding unconnected pairs) plotted against RF correlation. 

Dashed grey line indicates mean EPSP amplitude of all connections. Grey shaded region 

represents the 95% confidence interval of the expected mean, estimated by repeated random 

reshuffling of the EPSP amplitudes among all cell pairs in the data set. Connections were 

binned with ranges from −0.8 to −0.6, −0.6 to −0.4, and so on.
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Extended Data Figure 3. Relationship between connectivity and RF subfield overlap
a, The amount of ON and OFF subfield overlap (see Methods) was strongly correlated to the 

overall RF similarity as measured by RF correlation (R = 0.79, P < 1 × 10−10). b, Left panel, 

connection probability increased with increasing ON subfield overlap (P = 0.05; Cochran–

Armitage test). Middle panel, EPSP amplitudes categorized into bins of ON overlap. Black 

line, median EPSP amplitude for each bin. Right panel, EPSP amplitude plotted against ON 

overlap. Red data points, bidirectional connections. Black data points, unidirectional 

connections. Underlying histogram shows frequency of recorded cell pairs as a function of 
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ON overlap. c, Same as b, but for OFF overlap (P = 0.002; Cochran–Armitage test). d, Same 

as b, but for combined ON and OFF overlap (P = 1.8 × 10−5; Cochran–Armitage test). P 
values from the Cochran–Armitage test. To perform the Cochran–Armitage test, the bins at 0 

and >0–0.15 were considered together, so that groups were evenly spaced.

Extended Data Figure 4. Similarity of shared neuronal properties ranked according to how well 
they predict connection amplitude, when excluding unconnected pairs
Prediction performance and P values were calculated using a Monte-Carlo analysis (see 

Methods). Colours of the discs indicate P values.
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Extended Data Figure 5. Relationship between bidirectional and unidirectional connections and 
RF properties
a, EPSP amplitude plotted against RF correlation from bidirectionally (red) and 

unidirectionally connected pairs (black). Replotted from Fig. 2g. b, EPSP amplitude for bi- 

or unidirectional connections. Bidirectional connections were stronger than unidirectional 

connections (median connection amplitude: 0.44 mV for bidirectional connections, n = 22; 

0.16 mV for unidirectional connections, n = 50; P = 4.4 × 10−4, Wilcoxon rank-sum test). c, 

RF correlation for bidirectionally connected, unidirectionally connected and unconnected 
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pairs. The RFs of bidirectionally connected pairs were more correlated than those of 

unidirectionally connected or unconnected pairs (median RF correlation: 0.3 for 

bidirectionally connected pairs, n = 11; 0.04 for unidirectionally connected pairs, n = 50; P = 

0.002; and −0.02 for unconnected pairs, n = 191, P = 5.3 × 10−5), although unidirectionally 

connected pairs did not have higher RF correlations than unconnected pairs (P = 0.18, 

Wilcoxon rank-sum test). d, Mean EPSP amplitude versus RF correlation for all (yellow), 

unidirectionally (black) or bidirectionally (red) connected pairs. There was a positive 

relationship between RF correlation and connection amplitude for both unidirectional and 

bidirectional connections.

Extended Data Figure 6. Method of RF normalization
a, We normalized postsynaptic RFs to a template RF that was a vertical Gabor with 0 degree 

phase and an arbitrary but fixed spatial frequency (far right). A Gabor was fit to the RF of 

each postsynaptic neuron, and then rotated, translated and scaled so that the ON subfield was 
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centred on the template’s ON subfield and the spatial frequencies matched. The same 

transformation was applied to presynaptic RFs of any simultaneously patched neurons. b, 

Transformation of the RF from an example postsynaptic neuron (upper row), and for the RF 

for its connected presynaptic neuron (middle row). Bottom row shows presynaptic RF 

outline overlaid on the postsynaptic RF at each step in the transformation.

Extended Data Figure 7. Overlay of RFs between connected neurons

Cossell et al. Page 20

Nature. Author manuscript; available in PMC 2016 April 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Presynaptic RF outline overlaid on the postsynaptic RF for all the connected pairs after 

performing normalization of the pre- and postsynaptic RFs to the RF template (n = 45). 

Numbers indicate connection amplitude.

Extended Data Figure 8. Overlay of RFs between unconnected neurons
Assessed presynaptic RF outlines overlaid on the assessed postsynaptic RF for a 

representative set of unconnected pairs after normalization to the RF template.
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Extended Data Figure 9. Contribution of strong and weak connections to membrane potential 
depolarization
Removal of an increasingly larger fraction of the strongest inputs from the L2/3 model 

steeply reduces the large modulation component (F1) but more gradually reduces the mean 

depolarization component (F0). Model from Fig. 4d. Purple arrow indicates the weakest 

75% of connections, as shown in Fig. 4i, j.
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Figure 1. Excitatory connection strength reflects the similarity of pyramidal cell firing in vivo
a, Schematic of experimental protocol. b, Somatic calcium signals were sampled 

simultaneously from all neurons within a small volume of cortex (~260 × 260 × 24 μm). 

Two such volumes were recorded in each experiment. c, The distribution of pairwise 

response correlation coefficients for all imaged cell pairs. Inset, example matrix of 

correlation coefficients of pairwise responses from 20 neurons within a single imaged 

volume. d, Distribution of excitatory postsynaptic potential (EPSP) amplitudes (n = 75 

connections). e, Example triplet of neurons shown in a transformed in vivo image (upper), in 
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the brain slice (middle) and during whole-cell recordings (lower). f, Left, average 

postsynaptic potential traces of neurons in e. Black traces, connected; grey traces, 

unconnected; evoked presynaptic spikes are along the diagonal. In some traces, capacitative 

stimulation artefacts coincide with presynaptic spikes. Right, synaptic connectivity and 

response correlation coefficients of neurons in e. g, EPSP amplitude plotted against pairwise 

response correlation coefficient for bidirectionally (red) and unidirectionally (black) 

connected pairs. Underlying histogram shows the distribution of pairwise response 

correlation coefficients (blue, right y axis). h, Relationship between connection probability 

and pairwise response correlation. Grey dashed line, mean connection probability. 

Connection probability increased with response correlation (P = 8.2 × 10−8; Cochran–

Armitage test). i, Mean connection amplitude (including unconnected pairs) plotted against 

response correlation (bin size = 0.1). Grey line, mean EPSP amplitude of all pairs. Grey 

shaded region represents the 95% confidence interval of the expected mean, estimated by 

repeated random reshuffling of the EPSP amplitudes among all cell pairs in the data set. j, 
Black trace, cumulative distribution of synaptic weight with respect to response correlation. 

A value of 1 corresponds to the linear sum of all EPSPs (33.34 mV). Blue trace, cumulative 

distribution of pairwise response correlation coefficients (right y axis).
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Figure 2. Organization of excitatory connection strength with respect to linear RF properties
a, RFs obtained by regularized reverse correlation of responses to a sequence of static 

natural images (see Methods; scale bars: calcium trace, 20% ΔF/F, 5 s, RF, 20°). b, RFs 

distributed across an example imaged region (collapsed over cortical depth, 150–174 μm 

below cortical surface), revealing a large diversity of RFs. c, Distribution of spatial RF 

correlation coefficients for all recorded cell pairs. Inset, example RFs for two pairs of 

neurons and their correlation coefficients. Typically, negatively correlated RFs had similar 

orientation but opposite phase preference. d, Example quintuplet of neurons shown in the 

transformed in vivo image (upper), in the brain slice (middle) and during whole-cell 

recordings (lower). e, Average postsynaptic potential traces of neurons in d. Black traces, 

connected; grey traces, unconnected; evoked presynaptic spikes are along the diagonal. f, 
Synaptic connectivity and RFs of neurons in d. Arrows indicate a synaptic connection. 

Values indicate the correlation coefficient of RF maps (blue) and the amplitude of the 

connection (EPSP, black). a.u., arbitrary units. g, EPSP amplitude plotted against RF 

correlation for bidirectionally (red) and unidirectionally (black) connected pairs. Underlying 

histogram shows the distribution of pairwise RF correlations (blue, right y axis). h–j, Same 

as Fig. 1h–j for the RF correlation coefficient. k, Similarity of shared neuronal properties 

ranked according to how well they predict connection amplitude (including unconnected 

pairs). Prediction performance and P values were calculated using a Monte-Carlo analysis 

(see Methods). Disc colour indicates P value.
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Figure 3. Combined synaptic input from the local L2/3 cortical network matches the RF 
structure of the receiving neuron
a, Top left, presynaptic RF outlines overlaid in normalized visual space (after rotation, 

translation and scaling of the postsynaptic RF; see text, Methods and Extended Data Fig. 7). 

Red outline indicates an ON subfield, blue outline indicates an OFF subfield. Bottom left, 

superimposed RF outlines for neurons assessed presynaptically, but which did not connect. 

Top middle, sum of presynaptic RFs. Each presynaptic RF was weighted by the EPSP 

amplitude from the pre- to the postsynaptic neuron. Bottom middle, RF sum for unconnected 

neurons assessed presynaptically. Top right, RF sum of the postsynaptic neurons. Before 
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summing, each postsynaptic RF was weighted by the EPSP amplitude from the presynaptic 

to the postsynaptic neuron. b, Each point indicates the correlation between the presynaptic 

RF sum (weighted by the EPSP amplitude) and the corresponding postsynaptic RF sum, 

when including only connections in quarters of the connection amplitude distribution. The 

RF sum of the strongest 25% of inputs has the highest correlation with the postsynaptic RF 

(R = 0.67). This correlation value falls with decreasing connection strength. Disc area and 

values above represent the total synaptic weight accounted for by each quarter of the 

connection amplitude distribution. c, Relationship between ON and OFF subfields of 

connected pre- and postsynaptic neurons, ranked and displayed according to EPSP 

amplitude. Left column, presynaptic RF outlines of neurons grouped in quarters ranked by 

decreasing EPSP amplitude. Middle-left and middle columns, sum of binarized presynaptic 

ON and OFF subfields, respectively. Middle-right column, subtraction of summed OFF from 

summed ON subfields for presynaptic neurons. Right column, subtraction of summed OFF 

from summed ON subfields for postsynaptic neurons.

Cossell et al. Page 29

Nature. Author manuscript; available in PMC 2016 April 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 4. Simulation of local L2/3 excitatory input to single neurons qualitatively predicts the 
dynamics of membrane depolarization to drifting grating stimuli
a, Schematic of characteristic membrane potential (Vm) response to gratings drifting across 

a neuron’s RF in mouse V1. Both the preferred and the orthogonal stimuli evoke large 

membrane depolarizations (F0). Vm modulation (F1) is strongest when the grating and the 

RF are matched in orientation, and the grating cycles in and out of phase with the RF. b, 

Example in vivo whole-cell Vm recording from a L2/3 pyramidal cell during presentation of 

oriented gratings drifting in eight different directions. Black and grey arrows indicate 
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preferred and orthogonal orientations, respectively. c, Average Vm response of the same 

neuron in b after spike removal. d, F0 and F1 components of Vm response to drifting 

gratings normalized to the preferred stimulus for neuron in b and c (left), and averaged 

across the population of recorded neurons (n = 24, right). e, Left, schematic of network 

model, showing input to a single L2/3 neuron from an example L2/3 neuronal population. 

Right, connection strengths were sampled from the experimentally measured relationship 

between EPSP amplitude and RF correlation (Fig. 2g). f, Responses for each presynaptic 

neuron were generated using a linear/nonlinear/Poisson model by correlating the visual input 

(drifting grating stimuli) with its experimentally measured RF (see Methods). Firing rates 

were weighted by their connection strengths (e) and summed to generate a time-varying Vm 

for each postsynaptic neuron. g, Example Vm response of a simulated neuron receiving input 

from the model L2/3 network. h, F0 and F1 components of the Vm response from the 

example simulated neuron in g (left) or from the population of simulated neurons (right, n = 

4,633). i, Vm response of example simulated neuron in g when including only the strongest 

25% of connections (top, blue trace) or weakest 75% of connections from the model 

network (bottom, purple trace). j, Same as d and h but for Vm responses driven by the 

strongest 25% of connections (blue) or weakest 75% of connections (purple).
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