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Abstract

Anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid (18F-FACBC) is a synthetic amino acid 

analog PET radiotracer undergoing clinical trials for the evaluation of prostate and other cancers. 

We aimed to describe common physiologic uptake patterns, incidental findings, and variants in 

patients who had undergone 18F-FACBC PET.

Methods—Sixteen clinical trials involving 611 18F-FACBC studies from 6 centers, which 

included dosimetry studies on 12 healthy volunteers, were reviewed. Qualitative observations of 

common physiologic patterns, incidental uptake, and variants that could simulate disease were 

recorded and compared with similar observations in studies of the healthy volunteers. Quantitative 

analysis of select data and review of prior published reports and observations were also made.

Results—The liver and pancreas demonstrated the most intense uptake. Moderate salivary and 

pituitary uptake and variable mild to moderate bowel activity were commonly visualized. 

Moderate bone marrow and mild muscle activity were present on early images, with marrow 

activity decreasing and muscle activity increasing with time. Brain and lungs demonstrated 

activity less than blood pool. Though 18F-FACBC exhibited little renal excretion or bladder uptake 

during the clinically useful early imaging time window, mild to moderate activity might 
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accumulate in the bladder and interfere with evaluation of adjacent prostate bed and seminal 

vesicles in 5%–10% of patients. Uptake might also occur from benign processes such as infection, 

inflammation, prostatic hyperplasia, and metabolically active benign bone lesions such as osteoid 

osteoma.

Conclusion—Common physiologic uptake patterns were similar to those noted in healthy 

volunteers. The activity in organs followed the presence of amino acid transport and metabolism 

described with other amino acid–based PET radiotracers. As with other PET radiotracers such 

as 18F-FDG, focal nonphysiologic uptake may represent incidental malignancy. Uptake due to 

benign etiologies distinct from physiologic background also occurred and could lead to 

misinterpretations if the reader is unaware of them.
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Amino acids are involved in a variety of biologic processes including protein synthesis, and 

amino acid transport is upregulated in many neoplasms (1–4). Consequently, radiolabeled 

amino acids, both natural and synthetic, have been used for oncologic molecular imaging.

Anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid (18F-FACBC) is an investigational 

synthetic nonmetabolized amino acid analog PET radiotracer (5–14). Transport is primarily 

mediated by sodium-dependent amino acid transporters, specifically system ASC, with 

contribution by sodium-independent system L (15,16). Though this PET radiotracer has 

been most actively studied in patients with prostate carcinoma, other trials have been 

completed or are under way, including those for cerebral gliomas and breast, lung, and head 

and neck cancers, among others.

For well-established radiotracers such as 18F-FDG, normal uptake and variants have been 

reported (17–19). However for 18F-FACBC, biodistribution and radiation dosimetry have 

been obtained only in small sets of healthy volunteers (9,20,21). At our institutions, we have 

also obtained 18F-FACBC scans in clinical trials involving prostate cancer and other 

neoplasms. The purpose of this study was to report our collective experience with 18F-

FACBC imaging in patients enrolled in clinical trials, correlating uptake patterns to those of 

healthy volunteers in the description of common physiologic uptake, incidental findings, and 

variants that may simulate disease.

MATERIALS AND METHODS

Study Protocols and Demographics

The 18F-FACBC studies of 598 subjects, including 12 healthy volunteers (23 women and 

575 men; 611 total scans; 13 patients with repeated studies), spanning from October 16, 

1996, to February 10, 2014, at 6 institutions were qualitatively reviewed at each site. Table 1 

lists the protocols under which the patients received the 18F-FACBC scan. Imaging was 

acquired for all studies, commencing approximately 1–5 min after radiotracer injection. All 

study protocols were approved by the local Institutional Review Board or Committee on 
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Ethics or equivalent in accordance with the principles of the Declaration of Helsinki and 

with national regulations. Written informed consent was obtained from all enrolled subjects.

18F-FACBC Synthesis
18F-FACBC was synthesized at an institutional or central radiopharmacy through previously 

reported automated radiosynthesis methods or via a cassette produced by GE Healthcare into 

a synthesis module (FastLab) (22).

Details of 18F-FACBC Scans

Details of most of the clinical study protocols and acquisition parameters have been 

previously reported (5–14,23). PET/CT was performed on a Discovery DLS, DST, STE, or 

MV690 (GE Healthcare); a TruePoint Biograph 6 or Biograph mCT 40 (Siemens Medical 

Solutions); or a Gemini TF scanner (Philips Healthcare), except for the scans of 18 patients 

acquired on a PET-only Siemens ECAT 921. PET and CT acquisition parameters were 

specific to the PET device and protocol and ranged from dynamic acquisition in list mode to 

2- to 4-min static time frames using either 2- or 3-dimensional mode and filtered 

backprojection or iterative reconstruction. All patients fasted for 4 h or longer before the 

study.

Image Analysis

Images were reviewed on MIMvista (MIMSoftware), Xeleris (GE Healthcare), Syngo 

Multimodality Volumetric Analysis (Siemens Medical Solutions), or PMOD 3.1 (PMOD 

Technologies) workstations. Studies were examined qualitatively, though supplemented with 

quantitative data from prior and ongoing analyses, such as bladder activity data collected for 

Table 2 and published dosimetry data (9, 20,21). For descriptive purposes in this paper, mild 

uptake is defined as equal to or greater than blood pool but less than marrow, moderate as 

equal to or greater than marrow but less than liver, and intense as equal to or greater than 

liver. Absent uptake or uptake less than blood pool is described as such. Reference mean 

standardized uptake values (SUVmean) for blood pool, marrow, and liver at varying time 

points from a subanalysis of a 128-study cohort are provided in Table 2.

RESULTS

Physiologic Uptake Patterns

Cerebrum, Head, and Neck—Brain parenchyma demonstrated uptake less than blood 

pool, though brain conspicuity slightly increased with time. Moderate pituitary uptake, 

which decreased with time, was present in more than 90% of patients. The scalp was seen as 

a separate structure covering the skull. Salivary glands and lymphoid tissue of Waldeyer’s 

ring had moderate symmetric uptake, also decreasing with time. Thyroid tissue had mild 

activity. Figure 1A is an example of a whole-body early acquisition from a 18F-FACBC scan 

for recurrent prostate cancer, and Figure 1B is a dedicated acquisition of the head and neck 

region.

Chest—After initial blood pool diminished, mild to moderate uptake in the myocardium 

became evident and increased in a manner similar to muscle. Lung parenchyma 
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demonstrated absent uptake or uptake less than blood pool. Breast parenchyma had 

mild 18F-FACBC uptake but absent uptake or less than blood pool with increasing fatty 

change. Some degree of mild to moderate diffuse esophageal uptake was seen in more than 

50% of patients (Fig. 2). Though the relationship of this activity to reflux disease has not 

been formally studied, the pattern was similar to that seen with inflammatory reflux 

with 18F-FDG PET, more frequently involving the distal esophagus and gastroesophageal 

junction.

Abdomen and Pelvis—The liver and pancreas were most intense on 18F-FACBC (Fig. 2). 

Pancreatic activity was greater than that of liver initially, but by 15 min pancreatic uptake 

diminished to or below that of liver. The spleen and renal parenchyma had mild to 

moderate 18F-FACBC uptake. More intense excreted activity might be present in the 

proximal collecting system. The adrenals also had mild uptake, but in approximately 10% of 

patients moderate to intense unilateral or bilateral adrenal uptake might be seen, which does 

not seem to correlate with the presence of pathology. Variable mild to moderate gastric, 

bowel, and colonic uptake was also observed.

Bladder activity was typically absent or less than blood pool on early images but might be 

mild to moderate in 10%–15% of patients. In our experience, 18F-FACBC excretion and 

resultant focal bladder activity may interfere with the evaluation of adjacent prostate bed and 

seminal vesicles in 5%–10% of early images in some patient cohorts and may be related to 

diuretic load from intravenous contrast given as part of a CT protocol. Mild diffuse uptake in 

the bladder wall has also been observed on early sequences. Table 2 contains data from a 

subanalysis of 128 studies describing bladder activity.

The prostate had mild uptake, though this requires further validation because most studies 

have been in patients with prostate cancer. The urethral region demonstrated mild 18F-

FACBC uptake in a linear configuration. Because of limited experience with pelvic imaging 

in women, no descriptions of normal pre- or postmenopausal uterus or ovaries could be 

offered.

Musculoskeletal System—The marrow demonstrated moderate and frequently 

somewhat heterogeneous or patchy 18F-FACBC uptake, which decreased over time and 

appeared to correlate with expected locations of red marrow (Fig. 2). Heterogeneous bone 

marrow activity might present a more complex background for the evaluation of bone 

marrow metastases. Skeletal muscle also had mild uptake initially, which increased with 

time and surpassed that of marrow at approximately 30–60 min after radiotracer injection 

(Fig. 1A).

Incidental Findings and Variants

On the basis of published and unpublished data, 18F-FACBC has demonstrated elevated 

uptake in carcinomas of the prostate, breast, and lung, as well as colonic neoplasia, 

squamous cell carcinoma of the scalp, follicular lymphoma, multiple myeloma, and primary 

and metastatic tumors in the brain (Fig. 3) (5,7,11,14,24).
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Simple renal cysts do not have 18F-FACBC uptake, in our experience (Fig. 4A). Although 

papillary cell carcinoma had elevated uptake, clear cell carcinoma had uptake similar to 

parenchyma (14). As with 18F-FDG, any degree of 18F-FACBC uptake in a renal mass might 

represent malignant etiology (Fig. 4B). Benign hepatic cysts and hemangiomas are 

photopenic, compared with the liver (Fig. 4A).

Postprostatectomy uptake in the urethra might be challenging to differentiate from disease in 

the prostate bed, but sagittal images aid interpretation (Fig. 5A). Nonmalignant uptake in the 

prostate might be seen with benign prostatic hyperplasia and acute and chronic inflammation 

(Figs. 5B and 5C), including after radiation (12,23).

Focal increased uptake in a pituitary adenoma, a meningioma, an osteoid osteoma, and an 

adrenal gland adenoma has been seen (Fig. 6; written communication from coauthor Trond 

V. Bogsrud, 2014). 18F-FACBC uptake was also observed with both acute and chronic 

inflammation and infection, including mild to moderate uptake in apparently benign hilar, 

axillary, and inguinal lymph nodes, which diminished from early to more delayed sequences. 

Moderate to intense uptake was noted in inflammatory skin lesions, inguinal nodes due to 

ringworm infection, and musculoskeletal inflammation (Fig. 6; personal observation of first 

author David M. Schuster, 2008). Mild focal uptake in degenerative facet disease might be 

seen but not to the same degree as with 18F-FDG.

DISCUSSION
18F-FACBC is a nonnatural alicyclic amino acid analog PET radiotracer that has in vivo 

properties similar to its parent compound, 11C-ACBC, yet with the advantage of the 110-min 

half-life of 18F, facilitating clinical trials for prostate cancer and other neoplasia (1,6,25). 

Physiologic uptake in small sets of healthy volunteers for dosimetry studies has been 

described (9,20,21). Because 18F-FACBC is being more widely used, we set out to review 

patterns of common physiologic activity, variants, and incidental findings based on our 

collective experience.

We found that uptake patterns were similar to those described for healthy volunteers except 

for a few minor differences. McParland reported relatively less intense pancreatic uptake, 

compared with Nye and Asano (9,20,21). Although Asano also described increasing 18F-

FACBC uptake in muscle over time, there was overall greater muscle activity in the subjects 

examined by Nye (9,20). Our observations confirmed that pancreatic uptake initially was 

greater than liver and that muscle uptake increased with time but remained mild to moderate. 

The variances between these original observations may be secondary to cross-cultural 

differences in body habitus and diet.

Amino acid–based PET radiotracers target the upregulation of amino acid transporters that 

occurs in tumors (2,26). The amino acid transporters alanine-serine-cysteine transporter 2 

(ASCT2) and L-type amino acid transporter 1 (LAT1) play particularly important roles in 

tumor amino acid metabolism (26). 18F-FACBC is transported primarily by ASCT2 but also 

with important contributions by LAT1, especially in a dense tumoral cellular environment in 

which acidic conditions predominate (15,27,28). ASCT2 is a key transporter of glutamine, 
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of which 18F-FACBC seems to have the most similarity in terms of transport (16). 

Glutamine is a critical tumor nutrient for protein synthesis and is also involved in complex 

cell tumor signaling involving the mammalian/mechanistic target of rapamycin (mTOR) 

pathway and tricarboxylic acid cycle (3,29). Yet, unlike glutamine, 18F-FACBC is not 

further metabolized.

Amino acids and amino acid transporters are ubiquitous in the body, and it would seem 

logical that much 18F-FACBC physiologic activity may be explained with this knowledge 

(2,4,26,29). For example, the pancreas and liver are centers of amino acid metabolism or 

synthesis of plasma proteins (4,9,30). Increased uptake with certain amino acid radiotracers 

in the salivary glands, lymphoid tissue, and pituitary seems to be a normal variant (2,30). 

Muscle is also involved with amino acid metabolism and transport (31). The kidneys contain 

amino acid transporters such as those used for 18F-FACBC (32). 18F-FACBC bladder 

activity, when present, is mostly derived from the parent 18F-FACBC compound having 

escaped reabsorption and not metabolites (33). If interfering bladder activity is apparent, 

reimaging prone or after bladder emptying may be of help.

As a synthetic amino acid radiotracer, the physiologic pattern of 18F-FACBC distribution in 

background structures is similar to that of other amino acid PET radiotracers including 11C-

methionine and L-3-18F-α-methyltyrosine (2,30,34,35). Yet some important differences exist. 

Unlike 11C-methionine, 18F-FACBC is a nonnatural synthetic amino acid radiotracer that is 

neither metabolized nor used for protein synthesis (28). Compared with 11C-

methionine, 18F-FACBC demonstrates more rapid pancreatic clearance but comparatively 

little renal and bladder activity (9). Methionine transport is governed primarily by sodium-

independent system L transporters, whereas 18F-FACBC is transported primarily by sodium-

dependent system ASC, with lesser contribution by system L (15,16,30). 18F-FACBC has 

greater liver uptake and less bladder activity than does L-3-18F-α-methyltyrosine, another 

nonnatural amino acid radiotracer (35). These differences are likely secondary to the 

presence and density of specific amino acid transporters and other factors such as biologic 

and electrochemical properties of the ligand, modes of physiologic excretion, and interplay 

with other nutrient transporters and microenvironments.

Amino acid transport is upregulated in a variety of tumors. Unexpected uptake beyond that 

ascribed to physiologic activity, especially if focal, intense, and accompanied by an 

anatomic abnormality on CT, should be further investigated. Though amino acid imaging is 

believed to be less prone to inflammatory uptake, amino acid transport also occurs in benign 

inflammation. Uptake of amino acid radiotracers not specific to malignancy has been 

described, and as demonstrated in this paper, 18F-FACBC is no exception (2,36). We have 

recently shown that although 18F-FACBC uptake ratios of tumor cells to activated 

macrophages and granulocytes are higher than those for 18F-FDG, the uptake ratios of tumor 

cells to activated T and B cells are comparable (16). Because system A, ASC, or L is 

overexpressed in activated T or B cells, accumulation of 18F-FACBC in inflammation via 

these transporters might cause uptake in 18F-FACBC imaging (16).

In the differentiation of benign from malignant uptake in recurrent prostate cancer, Schuster 

used the prospective criteria of abnormal focal visual and quantitative uptake greater than 
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that of background marrow at L3 persisting from early to delayed imaging using multiphase 

abdominopelvic acquisitions (6,13). More recently, other groups have reported success with 

single-time-point whole-body imaging starting from the pelvis 3–5 min after 18F-FACBC 

injection (10). Analysis from multiple trials and ongoing consensus development will help 

standardize scan protocols and interpretative criteria.

The limitations of this investigation include our relatively narrow experience with 18F-

FACBC, compared with more commonly used radiotracers such as 18F-FDG. Because most 

imaging to date has been of men, there are less data for women. Also, there is less 

experience with certain body regions, such as the head and neck. In addition, most patients 

studied had cancer, and it is possible that global physiologic patterns involving 18F-FACBC 

are thus altered. Yet, it is reassuring that our observed common physiologic activity patterns 

are similar to those of healthy volunteers. Finally, this study was not designed as a 

centralized analysis with definitive follow-up but was intended to be a collective consensus 

of experience at each site. It is important that such centralized analysis be performed in the 

future.

CONCLUSION

The review of studies from multiple 18F-FACBC clinical trials demonstrated a common 

physiologic activity pattern, which included highest intensity in the pancreas and liver. 

Moderate heterogeneous marrow activity and mild muscle activity were present, with 

marrow activity decreasing and muscle activity increasing with time. Moderate uptake was 

noted in salivary, lymphoid, and pituitary tissue, whereas variable mild to moderate activity 

was present in the bowel. The brain had uptake less than the blood pool. Mild to moderate 

uptake was present in the kidneys, with absent bladder activity or less than blood pool in 

early images, though more intense accumulation of excreted activity might occur in a small 

number of patients. Lack of significant parenchymal uptake in the brain and relatively 

minimal renal excretion might be advantageous for cerebral and pelvic imaging, 

respectively. Intense liver and pancreatic uptake would limit disease detection in those 

organs. Because of efflux of tracer from the tumor, early imaging at less than 30 min was 

most useful for disease detection. Incidental benign and malignant uptake might occur and 

should be further evaluated with clinical correlation or other imaging.
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FIGURE 1. 
(A) Early-time-point 18F-FACBC maximum-intensity-anterior projection (MIP) 

demonstrates intense liver and pancreatic uptake, cerebral and lung uptake less than blood 

pool, and absent urinary excretion. Greater muscle uptake is noted in upper body because 

scanning proceeded caudal to cranial, and muscle uptake increased with time. (B) MIP from 

different patient in dedicated head and neck study demonstrates moderate uptake in salivary 

glands, lymphoid tissue of Waldeyer’s ring, and pituitary activity (arrow).
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FIGURE 2. 
Sagittal, coronal, and maximum-intensity-projection (MIP) 18F-FACBC images acquired 

over 3 time intervals (5–16, 17–28, and 29– 40 min) in patient with recurrent prostate 

cancer. Images demonstrate common appearance of background organ structures as 

described in text. Uptake is noted in right iliac nodes (arrows) at site of metastatic recurrent 

prostate carcinoma. Bladder activity initially is absent but moderately increases with time. 

Also noted is mild to moderate diffuse esophageal activity (arrowheads).
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FIGURE 3. 
(A) Coregistered axial 18F-FACBC PET/CT image demonstrates focal uptake in known left 

breast carcinoma (arrow), but uptake in breast tissue is less than blood pool. (B) 

Coregistered sagittal 18F-FACBC PET/CT image shows focal uptake in tubulovillous 

adenoma (arrow) with atypia, a premalignant tumor, detected incidentally on 18F-FACBC.
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FIGURE 4. 
(A) Coregistered axial 18F-FACBC PET/CT image from summed dynamic 18F-FACBC renal 

study demonstrates lack of uptake in MR imaging–proven hepatic hemangioma (small 

arrow) and left renal cyst (large arrow). (B) Coregistered axial 18F-FACBC PET/CT image 

demonstrates uptake in renal cancer (arrow) similar to that of renal parenchyma on summed 

dynamic images.
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FIGURE 5. 
(A) Coregistered sagittal 18F-FACBC PET/CT image in patient with prostate bed recurrence 

postprostatectomy. There is mild uptake in urethra (arrowheads) but more focally intense 

uptake at base of bladder above expected course of urethra in biopsy-proven recurrence 

(arrow). In addition, uptake is shown in coregistered axial 18F-FACBC PET/CT image for 

clinically proven prostatitis in healthy volunteer (B) and in patient with benign prostatic 

hyperplasia (C).
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FIGURE 6. 
Nonmalignant 18F-FACBC uptake in coregistered coronal PET/CT image of meningioma 

proven on MR imaging (arrow) (A), coregistered axial PET/CT image of inflammatory skin 

papule (arrow) in patient with recurrent prostate cancer (B), coregistered coronal PET/CT 

image of symmetric inguinal nodes in ringworm infestation as well as physiologic bowel 

activity (C), and osteoid osteoma on coregistered axial PET/CT image (D).
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