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Abstract

G protein-coupled receptors (or GPCRs) represent the largest family of membrane proteins in the 

human genome and are the target of approximately half of all therapeutic drugs. GPCRs contain a 

conserved structure of seven transmembrane domains. Their amino terminus is located 

extracellularly, whereas the carboxy terminus extends into the cytoplasm. Accumulating evidence 

suggests that GPCRs exist and function as monomeric entities. Nevertheless, more recent findings 

indicate that GPCRs can also form dimers or even higher order oligomers. The differential 

pharmacological and signaling properties of GPCR heteromeric complexes hint that their 

physiological effects may be different as compared to those obtained in tissue cultures that express 

a particular GPCR. In this chapter, we review current data on the role of GPCR heteromerization 

in receptor signaling, as well as its potential implication in neuropsychiatric disorders such as 

schizophrenia, depression, and Parkinson’s disease.

1. INTRODUCTION

Among the different proteins found in cell membranes responsible for transmitting 

information from the extracellular environment into the cytoplasm, there are those ones 

belonging to the superfamily ofGprotein-coupled receptors (GPCRs).1–4 It has been 

described in the human genome about 800 members of GPCRs,5,6 and they are the target of 

nearly half of the drugs currently in use for the treatment of different human diseases.3,7 

GPCRs are single polypeptides embedded in the membrane with the amino terminus 

remaining in the extracellular side and the carboxy terminus in the cytoplasm.8–11 Until 

recently, GPCRs have been assumed to function as monomers that, upon agonist binding, 

initiate the activation of heterotrimeric G proteins and consequently modulate the function of 

intracellular signaling cascades downstream. This is supported by findings that demonstrate 

functional G protein coupling of a single purified family A GPCR reconstituted into a 

phospholipid bilayer.12,13 During the past two decades, however, there has been much 

evidence to suggest that GPCRs exist as dimers and higher order oligomers.14–19 Of 

particular interest is the demonstration of heteromerization between two GPCRs belonging 

to different families. These protein complexes have been shown to affect diverse aspects of 
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receptor function.20–24 This chapter reviews some of the latest advances in our 

understanding of structure and function of GPCR heteromers, and their role in 

neuropsychiatric disorders such as schizophrenia, depression, and Parkinson’s disease.

2. STRUCTURE OF GPCR HETEROMERS

The three major families of GPCRs include family A (rhodopsin-like), family B (glucagon-

related receptors), and family C (metabotropic glutamate (mGlu)-related receptors).1,5,6 

Much evidence indicates that family C GPCRs, including GABAB
25–31 and mGlu 

receptors30,32–36, exist and function as constitutive dimers. The GABAB receptor has been 

shown to be a heterodimer of GABAB-R1 and GABAB-R2, each of which is unable to form 

a functional GABAB receptor. The domains responsible for GABAB heterodimeric receptor 

formation are located in the C-termini of both GABAB-R1 and GABAB-R2 receptors. 

Recent findings also suggest that mGlu receptors are expressed at the plasma membrane as 

strict dimers, and not higher order oligomers, that are covalently linked through a disulfide 

bond. In marked contrast, however, family A GPCRs are assembled as homomers and 

heteromers through structural mechanisms that involve noncovalent interactions between 

amino acid residues located in transmem-brane (TM) regions. As an example, it has been 

suggested using biochemical and biophysical approaches such as coimmunoprecipitation of 

epitope-tagged receptors and fluorescence resonance energy transfer (FRET) that α1b-

adrenergic receptors are assembled into oligomeric structures with symmetric contact points 

involving residues located in TM domains 1 and 414,37–39 (see also Refs. 40 and 41 for 

reviews about FRET and other techniques based on energy transfer). Expression of α1b-

adrenergic receptors as higher order oligomers was suggested based on the use of three-color 

FRET (3-FRET). Similar findings were obtained with the dopamine D2 receptor. Thus, the 

combination of bioluminescence/fluorescence complementation and energy transfer 

provided evidence that dopamine D2 receptors are expressed as higher order oligomers in 

the plasma membrane.15,38,39 The use of cysteine cross-linking experiments also pointed 

toward the location of TM1 and TM4 at the symmetrical interfaces of the dopamine D2 

receptor oligomers (i.e., TM1–TM1 interface and TM4–TM4 inter-face).15,38,39 The critical 

role of TM4 in the formation of GPCR complexes is further supported by recent findings 

with the serotonin 5-HT2A and the metabotropic glutamate 2 (mGlu2) receptors.20,23,24 It 

was demonstrated that 5-HT2A and mGlu2, but not mGlu3, form a GPCR heteromer in 

tissue culture. The differences between mGlu2 and mGlu3 receptors to be assembled as a 

GPCR heteromer with the 5-HT2A receptor provided the rational for the design of mGlu2/

mGlu3 chimeras that showed differences in their capacity to be expressed in close proximity 

with coexpressed 5-HT2A receptors. The authors suggested that three residues located at the 

intracellular end of TM4 of mGlu2 are necessary to form a GPCR heteromer with the 5-

HT2A in HEK293 cells.24 Together, these findings suggest that TM4 and TM1 contribute to 

the formation of GPCR homo- and heterocomplexes.

Another important question related to structure and function of GPCRs concerns the stability 

of dimeric/oligomeric states.42 The use of fluorescence recovery after photobleaching 

(FRAP) has demonstrated transient interactions on a timescale of seconds between the 

components of the β1-adrenergic receptor homomer. On the contrary, the β2-adrenergic 

receptor has been shown to be expressed as a stable oligomer in HEK293 cells.43 A dynamic 
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equilibrium between monomers and homodimers/olig-omers has also been recently 

suggested using FRAP in HEK293 cells expressing dopamine D2 receptors.44 Similarly, the 

use of total internal reflection fluorescence microscopy in living cells point toward a 

dynamic nature of muscarinic M1 receptor dimer formation. Thus, muscarinic M1 receptors 

are expressed as monomers or dimers, but not oligomers. It was also shown that muscarinic 

M1 receptors do not form constitutive dimers, with ∼30% of the receptor molecules in close 

proximity at any given time.17

3. ROLE OF GPCR HETEROCOMPLEXES IN NEUROPSYCHIATRIC 

DISORDERS

Although is has been clearly established in reconstituted systems that single GPCR 

molecules are able to couple with and activate heterotrimeric G proteins, recent evidence 

also demonstrates close molecular proximity between different GPCR molecules that affects 

functional outcomes such as ligand binding profiles, patterns of G protein coupling, and 

subcellular location (Fig. 8.1). This has opened in recent years a new field of research that 

adds complexity to the mechanisms underlying the physiological and behavioral responses 

induced by signaling pathways downstream GPCRs (Table 8.1). As certain receptor 

subtypes, such as dopamine, serotonin, glutamate, and adenosine receptors, have been 

shown to form GPCR heteromers in vitro in tissue culture and in vivo in animal models, a 

better understanding of their structure, neuroanatomical location, and physiological function 

may represent a new target for the design of drugs for the treatment of neuropsychiatric 

disorders such as schizophrenia, depression, suicidal behavior, and drug abuse.45–48 Here, 

we will review recent findings related to GPCR heteromers and their role in central nervous 

system (CNS) function.

4. ADENOSINE AND DOPAMINE RECEPTORS

4.1. Adenosine A1 and dopamine D1 receptors

Expression of adenosine A1 receptor and dopamine D1 receptor as a GPCR heteromer has 

been demonstrated using approaches such as coimmunoprecipitation, bioluminescence 

resonance energy transfer (BRET), and FRET.49–53 It has also been shown that adenosine 

A1 receptor and dopamine D1 receptor are colocalized in soma and dendritic regions of 

cortical neurons. Selective adenosine A1 receptor antagonists reverse the hyperlocomotor 

behavioral effects induced by dopamine D1 receptor agonists, and opposite effects were 

shown after administration of adenosine A1 receptor agonists. These findings suggest 

adenosine A1 receptor as a potential target to modulate dopamine D1 receptor-dependent 

signaling. Importantly, suboptimal doses of adenosine A1 receptor antagonists potentiate the 

therapeutic-like effects of dopamine D1 antagonists in rodent models of Parkinson’s disease.

4.2. Adenosine A2A and dopamine D2 receptors

Kjell Fuxe at the Karolinska Institute and collaborators provided the first evidence of a 

ligand binding interaction between adenosine A2A and dopamine D2 receptors in rat 

striatum,54,55 and they suggested intramembrane receptor/receptor interaction as a potential 

mechanism involved in this pharmacological cross talk. Based on these findings, they 
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demonstrated the existence of adenosine A2A–dopamine D2 receptor heteromers using a 

variety of approaches such as coimmunoprecipitation, BRET, and FRET in vitro and in 

tissue culture.56–60 An electrostatic interaction between the intracellular loop 3 of dopamine 

D2 receptor and the C-terminal tail of adenosine A2A receptor has been proposed as 

necessary for this protein–protein interaction.60 Behavioral and microdialysis assays in 

whole animal models suggest the functional role of the adenosine A2A–dopamine D2 

receptor heteromer in whole animal models through a mechanism that involves their 

coexpression in striatopallidal GABAergic neurons and nucleus accumbens.61–72 Thus, 

adenosine A2A receptor antagonists reduce dopamine D2 receptor-dependent signaling and 

pharmacological properties,54,73–75 and enhance therapeutic effects in rodent models of 

Parkinson’s disease.65,76–81 The adenosine A2A receptor antagonist istradefylline 

(KW-6002) has been used in animal models of Parkinson’s disease.77 Importantly, clinical 

studies with istradefylline showed a symptomatic improvement in Parkinson’s disease 

patients.82,83 Bivalent ligands that bind both dopamine D2 and adenosine A2A receptors 

have also been proposed as a new approach to treat Parkinson’s disease.84

The potential role of the adenosine A2–dopamine D2 receptor heteromer as a target of 

antipsychotic drugs has been suggested using the hyperlocomotor activity induced by 

amphetamine and the noncompetitive NMDA receptor antagonist phencyclidine as rodent 

model of schizophrenia and psychosis.85,86 The adenosine A2A receptor agonist CGS21680 

reduces the hyperlocomotor activity induced by amphetamine or phencyclidine.87 The 

authors provide evidence suggesting that this antipsychotic-like behavioral effect may be 

mediated by inhibition of dopamine D2 receptor-dependent signaling through the adenosine 

A2A–dopamine D2 receptor heteromer in striatopallidal GABAergic neurons.88

4.3. Adenosine A2A, dopamine D2, and mGlu5 receptors

In addition to adenosine and dopamine transmission, glutamate transmission plays an 

important role in the function of striatal GABAergic efferent neurons originating in the 

nucleus accumbens. In 1984, L-glutamate was found to reduce the affinity of dopamine D2 

receptor agonist binding sites in rat striatal membrane preparations, providing the first 

evidence of the existence of glutamate receptor–dopamine D2 receptor heteromeric 

complexes.89 It was also shown that adenosine A2A receptor agonists and group I mGlu 

receptor agonists synergistically reduce the affinity of dopamine D2 receptor agonists 

binding in striatal membrane preparations.90 In line with these results, adenosine A2A 

receptor and mGlu5 receptor colocalize in primary cultures of rat striatal neurons91 and in 

striatal glutamate nerve terminals.92,93 Similarly, adenosine A2A receptors and dopamine 

D2 receptors colocalize with mGlu5 receptors in rat striatum.90 Additional data showed that 

adenosine A2A receptor and mGlu5 receptor agonists act synergistically to increase 

extracellular levels of GABA in the nucleus accumbens, which also potentiate the inhibitory 

effects of the dopamine D2 receptor.94 In Parkinson’s disease, glutamate transmission is 

overactive mostly due to the reduced inhibitory effect of the dopamine D2 receptor,95 and 

anti-parkinsonian drugs regulate functional responses that require adenosine A2A and 

mGlu5 receptors.96,97
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Moreover, recent data suggest that adenosine A2A antagonists and mGlu5 antagonists 

induce antiparkinsonian-like effects in animal models acting through the adenosine A2A–

dopamine D2–mGlu5 receptor oligomer.98 This is further supported by findings showing 

that the antiparkinsonian-like effects of mGlu5 receptor antagonists need coexpression of 

adenosine A2A and dopamine D2 receptors.96 Since the intramembrane adenosine A2A–

dopamine D2 receptor functional interaction is positively regulated by mGlu5 receptor 

agonists,90,93,99,100 together, these results suggest that adenosine A2A receptor antagonists 

and mGlu5 receptor antagonists induce antiparkinsonian-like effects through a mechanism 

that requires expression of adenosine A2A, mGlu5, and dopamine D2 as a GPCR oligomeric 

functional unit.98 Based on these findings, the authors proposed the combination of 

adenosine A2A and mGlu5 receptor antagonists to enhance their antiparkinsonian-like 

effects in rodent models of motor deficits, and suggested that this nondopaminergic therapy 

may avoid the adverse effects of dopaminergic drugs such as dyskinesia and cognitive 

dysfunction.97,101,102

4.4. Adenosine A2A, dopamine D2, and cannabinoid CB1 receptors

The cannabinoid system represents an important inhibitory neuroregulator acting in the 

CNS.103–107 Cannabinoid CB1 receptors are coexpressed with the dopamine D2 receptor 

ventral striatopallidal GABAergic neurons, and with the adenosine A2A receptor in 

corticostriatal glutamatergic terminals.108–114 Activation of cannabinoid CB1 receptors by 

WIN55,212-2 leads to motor suppression in rodent models.108 Importantly, 

coimmunoprecipitation and BRET experiments showed that CB1 and adenosine A2A 

receptors interact together in close molecular proximity in living cells and in rat striatum.115 

It was also suggested that this GPCR heteromer is functional since some of the CB1 

receptor-dependent locomotor effects were affected in adenosine A2A receptor knockout 

mice.116 Biochemical and cellular signaling assays in SH-SY5Y neuroglioblastoma cells 

together with behavioral tests in mice indicated that some of the effects induced by 

activation of the cannabinoid CB1 receptor in striatum depend upon adenosine A2A 

receptor-dependent signaling.108,115 Several studies have reported antagonistic interactions 

between cannabinoid CB1 and dopamine D2 receptors.117–119 Together with 

coimmunoprecipitation and FRET experiments,46 the reduction of the affinity of dopamine 

D2 receptor agonists in the presence of cannabinoid CB1 receptor agonists point toward 

expression of these two receptors as a GPCR heteromer.45 It has also been suggested that the 

antagonistic interactions between cannabinoid CB1 and dopamine D2 receptors as a GPCR 

heteromer may also involve the adenosine A2A receptor.120–122 This is supported by the 

demonstration that adenosine A2A receptors directly interact with both dopamine D256 and 

cannabinoid CB1115 receptors. The importance of this functional cross talk has been further 

suggested by recent findings using a method that combined bio-molecular fluorescence 

complementation (BiFC) and BRET techniques and showed expression of dopamine D2, 

cannabinoid CB1, and adenosine A2A receptors as a higher order GPCR oligomeric 

complex in living cells.123–125

In postmortem human brain of schizophrenic subjects, radioligand binding assays showed 

alterations in expression of adenosine A2A,126 dopamine D2,127 and cannabinoid CB1128 

receptors. In rodent models, chronic anti-psychotic treatment with the atypical antipsychotic 
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drug clozapine induces downregulation of cannabinoid CB1 receptor expression in nucleus 

accumbens,129,130 which has been suggested to be a consequence of a compensatory 

mechanism that reduces the endocannabinoid-mediated suppression of GABA release.130 

Together, these findings suggest that the adenosine A2A–cannabinoid CB1–dopamine D2 

receptor heteromer may represent a potential target for new antipsychotic compounds.

4.5. Serotonin and glutamate receptors

Serotonin (5-HT) is one of the most ancient signaling molecules in evolution, and is 

involved in biological processes such as learning and memory, mood, food intake, sleep, 

reproduction, circadian rhythm, thermoregulation, pain perception, and social 

behavior.131,132 Serotonin receptors also play an important role in cardiovascular, 

gastrointestinal, and endocrine function.132 Glutamate is the primary excitatory 

neurotransmitter in the CNS.133 Pyramidal neurons represent approximately 80% of the 

neurons of the cortex, and glutamate serves as the neurotransmitter of the cortical pyramidal 

cells.134,135 Glutamate receptors are classified either as ion channel receptors (ionotropic) or 

metabotropic GPCRs.136–138 mGlu receptors have an important function in synaptic 

modulation throughout the CNS.135

Recent findings demonstrate that 5-HT2A and mGlu2 receptors colocalize at a subcellular 

level in mouse cortical pyramidal neurons.20,23,24 It has also been shown that these two 

receptors form a GPCR heteromer in HEK293 cells with consequences on pharmacology, 

signaling, and behavioral effects of drugs that bind to either 5-HT2A or mGlu2 

receptors.20,24 Radioligand binding assays showed that drugs that activate the mGlu2 

receptor increase the affinity of hallucinogenic drugs for the 5-HT2A receptor, and that drugs 

that activate the 5-HT2A receptor decrease the affinity of agonists for the mGlu2 receptor.20 

Using ion channels in Xenopus oocytes as markers of Gq/11-dependent and Gi/o-dependent G 

protein signaling, recent findings demonstrate that both serotonergic and glutamatergic 

ligands balance the pattern of G protein signaling downstream of the 5-HT2A–mGlu2 

receptor heteromer in a way that predicts their anti-psychotic or propsychotic potential, 

which may provide the basis for the rationale design of new antipsychotic drugs that affect 

the function of this serotonin–glutamate receptor heteromer.23

The behavioral effects of 5-HT2A and mGlu2 as a GPCR heteromer have been recently 

demonstrated using hallucinogenic 5-HT2A receptor agonists as a rodent model of psychosis. 

Hallucinogenic 5-HT2A agonists, such as lysergic acid diethylamide (LSD) and mescaline, 

induce head-twitch behavior in mice, and this behavior is absent in 5-HT2A receptor 

knockout mice.139,140 It has been shown that the head-twitch behavioral response is 

significantly reduced in mGlu2 knockout mice.141 More importantly, viral-mediated 

overexpression of wild-type mGlu2 receptor in frontal cortex rescues the effects of LSD-like 

drugs in mGlu2 knockout mice,24,141 and this does not occur by overexpression of 

mGlu2DTM4N, a construct that is unable to form a GPCR heteromer with the 5-HT2A 

receptor.24 These observations suggest that it is 5-HT2A–mGlu2 receptor complex, and not 

the 5-HT2A alone, which is the molecular target responsible for psychoactive-like behavioral 

effects of LSD-like hallucinogenic drugs in mouse models of pychosis.23,24,141
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Expression of the components of the 5-HT2A–mGlu2 receptor complex has been shown to 

be dysregulated (i.e., increased 5-HT2A receptor and decreased mGlu2 receptor) in 

postmortem human brain of antipsychotic-free schizophrenic subjects.20 More recent 

findings provide evidence that the allosteric binding cross talk between 5-HT2A receptor and 

mGlu2 receptor as a GPCR heterocomplex is upregulated in postmortem schizophrenia 

brain.24,142 It is then possible that 5-HT2A–mGlu2 receptor complex-dependent signaling 

effects may integrate serotonin and glutamate signaling, and therefore contribute to the 

abnormalities of thought and behavior in schizophrenia patients.

5. CONCLUSION

Understanding the structure and function of GPCR heteromers is essential for the discovery 

of mechanisms that define the signaling cross talk between the components of these protein 

complexes. Given that a large number of GPCRs are expressed in individual cells at any 

given time, further work is needed to better unravel the molecular rules that govern GPCR 

heteromeric formation, as well as the stability and lifetime of such structural units. Here, we 

have focused our attention on the potential role of GPCR heteromers in the treatment of 

neuropsychiatric disorders such as schizophrenia and Parkinson’s disease. Despite these 

advances, further research efforts will focus on a better understanding of the structure, 

pharmacology, and behavioral function of GPCR heteromers in vitro and in animal models, 

with the final goal of developing new therapeutic drugs that specifically affect their function.
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Figure 8.1. 
Schematic model of functional responses induced by GPCR homomers as compared to 

GPCR heteromers. Combinations of drugs modulate different patterns of signaling 

responses, and a cross talk between the components of the GPCR heteromeric complex leads 

to unique signaling properties.
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Table 8.1

Examples of GPCR Heterocomplexes with potential roles in neuropsychiatric disorders

GPCR
heterocomplex Experimental approaches Neuropsychiatric relevance

A1–A2A Cell lines, striatum
(IP, BRET, FRET)

Drug tolerance

A1–D1 Cell lines, striatum
(IP, BRET, BP)

Involved in PD and cocaine
addiction

A1–mGlu1 Cell lines (IP) Involved in schizophrenia

A1–5HT2A Cortex (BP) Involved in schizophrenia

A2A–D2 Cell lines, striatum (IP,
BRET, FRET, Phar, BP)

Reversal of PD deficits, putative
antipsychotic, and anticocaine
properties

A2A–mGlu5 Cell lines, striatum (IP) Possible PD, schizophrenia,
and cocaine treatment

A2A–D2–
mGlu5

Cell lines, striatum (IP,
SRET)

Possible PD, schizophrenia,
and cocaine treatment

A2A–CB1 Cell lines, striatum (IP,
BRET, BP)

A2A–CB1–D2 Cell lines (BP, SRET) Involved in schizophrenia

α2A–MOR Cell lines, striatum (IP,
BRET, FRET)

Involved in addiction

CB1–D2 Cell lines, striatum (IP,
FRET, Phar, BP)

Possible PD, addiction,
and schizophrenia treatment

CRH1–V1b Cell lines (IP, BRET,
FRET)

Involved in mood disorder,
depression

D1–D2 Cell lines, striatum (IP,
FRET)

Possible PD, schizophrenia,
and treatment

D1–D3 Cell lines (BRET, FRET,
Phar, BP)

Cocaine addiction

D2–D3 Cell lines, striatum (IP, BP) Involved in PD and schizophrenia

D2–H3 Cell lines, striatum (BRET,
Phar, BP)

Involved in PD

D4–MOR Striatum (Phar) Acquisition during drug addiction
and risks for drug use initiation

mGlu2–5HT2A Cell lines, cortex (IP,
BRET, FRET, Phar, BP)

Possible schizophrenia treatment

IP, coimmunoprecipitation; BRET, bioluminescence resonance energy transfer; FRET, fluorescence resonance energy transfer; SRET, sequential 
resonance energy transfer; Phar, pharmacological allosteric effects in radioligand binding assays; PD, Parkinson’s disease; BP, behavioral 
paradigms.
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