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Prediction of In Vivo Knee Joint
Loads Using a Global
Probabilistic Analysis
Musculoskeletal models are powerful tools that allow biomechanical investigations and
predictions of muscle forces not accessible with experiments. A core challenge modelers
must confront is validation. Measurements of muscle activity and joint loading are used
for qualitative and indirect validation of muscle force predictions. Subject-specific mod-
els have reached high levels of complexity and can predict contact loads with surprising
accuracy. However, every deterministic musculoskeletal model contains an intrinsic
uncertainty due to the high number of parameters not identifiable in vivo. The objective
of this work is to test the impact of intrinsic uncertainty in a scaled-generic model on esti-
mates of muscle and joint loads. Uncertainties in marker placement, limb coronal align-
ment, body segment parameters, Hill-type muscle parameters, and muscle geometry were
modeled with a global probabilistic approach (multiple uncertainties included in a single
analysis). 5–95% confidence bounds and input/output sensitivities of predicted knee com-
pressive loads and varus/valgus contact moments were estimated for a gait activity of
three subjects with telemetric knee implants from the “Grand Challenge Competition.”
Compressive load predicted for the three subjects showed confidence bounds of
333 6 248 N, 408 6 333 N, and 379 6 244 N when all the sources of uncertainty were
included. The measured loads lay inside the predicted 5–95% confidence bounds for
77%, 83%, and 76% of the stance phase. Muscle maximum isometric force, muscle geom-
etry, and marker placement uncertainty most impacted the joint load results. This study
demonstrated that identification of these parameters is crucial when subject-specific
models are developed. [DOI: 10.1115/1.4032379]

Introduction

Musculoskeletal models are powerful tools that allow subject-
specific investigations of biomechanical quantities that are not
measurable in vivo, and predictions of the effects of clinical treat-
ments [1–4]. The main challenge of subject-specific modeling is
the lack of validation strategies, because predicted outcomes of
musculoskeletal models can rarely be compared to measurable
experimental data [5]. In particular, when muscle forces are
involved in model predictions, two quantities measurable in vivo
have been used to verify the reliability and accuracy of the model:
(1) muscle electromyography (EMG) signals that allow for a
mostly qualitative comparison of muscle activity [6,7] and (2)
joint loads measured with instrumented joint implants that allow
for an indirect validation of muscle forces [8–12]. Instrumented
implants have significantly enhanced the awareness of the ability
of musculoskeletal models to predict contact loads with surprising
accuracy [9,13–15]. In particular, blinded predictions of total knee
replacement (TKR) contact loads on an instrumented tibial com-
ponent were possible due to the Grand Challenge Competition,
which made joint load, human movement, and imaging data sets
available to the scientific community [13].

All previous attempts to match experimental contact loads have
used deterministic models whose final output depended on several

input parameters necessarily estimated from the available data
(e.g., joint kinematics, segment inertial parameters or musculoten-
don parameters). However, deterministic musculoskeletal models
are characterized by an intrinsic uncertainty that is often ignored.
For example, segment masses cannot be directly measured from
the subject and are often estimated with scaling techniques. Mus-
culoskeletal models are usually developed and validated with the
purpose of predicting and estimating biomechanical quantities not
measurable in vivo. If an accurate estimate of an output is
obtained by means of a model with intrinsic uncertainty, there is
no guarantee that future estimates of the model will be accurate in
different conditions. Therefore, it is important to take into account
this variability in order to assess the robustness of a model.

Many studies have partially included model uncertainty and an-
alyzed its influence on biomechanical outputs of interest. When
the possible amount of an uncertainty is not available, the sensitiv-
ity of a particular output (e.g., joint kinematics, muscle moment
arms, muscle function) to the change of an uncertain input (e.g.,
musculoskeletal geometry, musculotendon properties, joint axis
location) can be quantified and provide valuable insights into the
possible effects of lack of knowledge [5,16,17]. The impact of the
uncertainty in different input parameters on several outputs of
interest has been analyzed for musculotendon parameters [18–22],
musculotendon geometry [23–25], joint center location [26],
degree of freedom classification [27], joint models [28–30], skin
marker placement [30], and pose estimation algorithms [31]. On
the other hand, when the amount of possible uncertainty is known,
an accurate evaluation of the output variability can be quantified.
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In particular, uncertainty has been evaluated in video motion cap-
ture marker placement [32], segment inertial parameters [33,34],
kinematics and muscle origin-insertion location [35].

While many studies have used probabilistic tools to analyze the
effect of uncertain parameters on the output of interest [18–31],
few of them have performed probabilistic analyses that combine
multiple uncertainties belonging to different categories of parame-
ters (described hereafter simply as “global”) [36,37]. These global
analyses allow a more complete investigation of the overall
reliability of a model. Valente et al. [37] used a full limb MRI-
informed musculoskeletal model in OPENSIM that included uncer-
tainties of anatomical landmark location, muscle attachments
sites, and maximum muscle tension. Myers et al. [36] used a
scaled-generic musculoskeletal model in OPENSIM that included
marker placement error, segment inertial parameters uncertainty,
and Hill-type muscle parameters uncertainty. However, Myers
et al. [36] did not account for variability in muscle geometry and
did not investigate the impact of the included uncertainties on
joint reaction forces. Moreover, these two studies used data from
a single healthy subject and did not perform a quantitative valida-
tion of their results because joint load measurements were not
available for the subjects.

The present study proposes a global probabilistic analysis to
investigate the influence of uncertainty in multiple parameters of a
musculoskeletal model on knee joint load while simulating level
gait for three TKR patients. The goals of this study are: (1) to
include common sources of uncertainty present in a musculoskel-
etal model in a probabilistic framework with realistic input distri-
butions while predicting the TKR contact loads of patients with
telemetric implants; (2) to quantify the influence of each input
uncertainty on the desired output (knee contact loads) and there-
fore to identify the most critical parameters whose knowledge
must be improved to develop more accurate subject-specific mod-
els; and (3) to compare the obtained variability of the prediction
to the available in vivo contact loads. This will allow an estimate
of the musculoskeletal model’s reliability for prediction of muscle
forces and knee joint loads.

Methods

Experimental Data. Walking data of three subjects
(169.0 6 2.6 cm, 71.7 6 6.0 kg) implanted with an instrumented
TKR from the Grand Challenge Competition was used [13]. The
three subjects walked at similar self-selected speed (1.2, 1.1 and
1.0 m/s, respectively). The first subject was implanted with an
instrumented tibial prosthesis with four uniaxial load cells to
allow the measurement of medial and lateral contact forces sepa-
rately [38]. The other two subjects were implanted with telemetric
implants that allowed the measurement of knee contact forces in
six degrees of freedom by means of a single load cell [39]. The
available data includes video motion capture marker locations,
ground reaction forces, and tibiofemoral contact forces.2 A modi-
fied Cleveland Clinic marker set that included extra markers on
the feet and trunk was used for motion data collection [13]. Sur-
face EMG signals were also collected for the major muscles span-
ning the knee of each subject.

Baseline Musculoskeletal Model. A previously developed
musculoskeletal model with a total of 10 segments and 92 muscu-
lotendon units was modified in OPENSIM to obtain the baseline
model for this study [40,41]. The lower limbs included a ball-and-
socket hip joint and a revolute ankle joint. In the current study,
the knee joint was modified to implement a coupled mechanism
(one degree-of-freedom) with translations of tibia and patella pre-
scribed by the knee flexion angle [42]. In addition, a varus/valgus
degree of freedom of the tibia with respect to the femur was intro-
duced in the knee model for subsequent analysis of uncertainty in

lower limb coronal alignment and was fixed to zero in the baseline
model. The geometry of the quadriceps muscles in the original
OPENSIM model was refined to insert on the tibial tubercle with via
points placed on the superior and inferior poles of the patella [43].
This enabled resultant quadriceps force to be correctly included in
the calculation of tibiofemoral contact forces in OPENSIM. Via point
locations of the quadriceps were manually adjusted to assure that
the moment arm of each of the musculotendon units lied inside
the mean 6 std area of the patellar tendon moment arm measure-
ments presented by Krevolin et al. [44]. Finally, geometry and
properties of the two gastrocnemius musculotendon units (medi-
alis and lateralis) of the original model were replaced with the
gastrocnemius units from the musculoskeletal model of Arnold
et al. [42], as these better matched the moment arms measured by
Buford et al. [45].

Body segment dimensions and inertial properties were scaled to
the subjects using scale factors calculated from motion capture
marker locations. The dimensions of the scaled segments were
also checked by comparing them to the CT images of the subjects’
implanted lower limb.

Baseline joint kinematics and inverse dynamics for each subject
were determined with OPENSIM. To achieve the pose of the subject,
the recorded marker locations are matched to virtual markers on
the kinematic model of the subject. This matching technique is
performed by solving a weighted least squares problem that mini-
mizes marker errors at each time frame [41]. Net forces and
moments needed at the joints to achieve the desired motion were
obtained through the inverse dynamics solution. Baseline muscle
forces were predicted with a static optimization technique that sol-
ves the equations of motion while minimizing the summed muscle
activations squared at each time frame [46]. Baseline joint loads
were calculated in OPENSIM from the inverse dynamics and muscle
forces by calculating loads exchanged between segments through
a free body diagram analysis [43].

Probabilistic Workflow. A previously developed Probabilistic
Toolbox [36] that alters OPENSIM input files within a Monte Carlo
simulation was customized to introduce the desired uncertainty in
the baseline model’s parameters. The uncertainty of all the param-
eters considered in this study was propagated to the joint contact
analysis through the stages of the workflow (Fig. 1). In particular,
four main sources of uncertainty were taken into account: the
uncertainty (1) in the motion capture marker placement on the an-
atomical landmarks, (2) in the coronal alignment, (3) in the seg-
ment inertial parameters, and (4) in the Hill-type muscle model
parameters and in muscle geometry.

(1) Marker placement: Errors in marker placement result from
the inherent uncertainty that occurs when an examiner pla-
ces a marker on the skin relative to a palpated bony land-
mark. This uncertainty was modeled as a constant offset
between the anatomic landmark and the marker [36].
Marker placement uncertainty was modeled by sampling
the magnitude of the offset in each direction from a normal
distribution. Previously reported intra-examiner variances
were used [32] for anatomical landmarks present both in
the marker set used in this study and in the marker set used
by Della Croce et al. [32] (Table 1). To assess intra-
examiner precision, the same examiner performed the ana-
tomical landmark identification six times and the standard
deviation (std) across the six measurements was calculated.
For markers in the present study that were not described by
Della Croce et al. [32], two different stds were used. To
represent the uncertainty along the two directions of the
anatomical plane (either sagittal, coronal, or transverse)
that best represents the surface tangent to the anatomical
landmark, the average of the maximum stds in Della Croce
et al. [32] was used (7.9 mm). Along the direction perpen-
dicular to that same surface, the average of the minimum
stds in Della Croce et al. [32] was used (3.7 mm). The2https://simtk.org/home/kneeloads
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uncertainties calculated this way were applied also to the
markers on the foot because the patients in our study wore
shoes, which likely created greater uncertainty than the sub-
jects in Della Croce et al. [32] who were barefoot. Although
uncertainty in marker placement occurs during the experi-
mental session, they were more easily accounted for by per-
turbing the location of the virtual markers in the local
coordinate system of the corresponding segment on the mus-
culoskeletal model. Since the kinematics were resolved by
minimizing the distance between experimental and virtual
markers, perturbations in the virtual or experimental marker
location have the same effect on joint angles.

(2) Limb alignment in the coronal plane: Although an implant
aligned to the mechanical axis of the lower limb is usually
the surgical objective, it can be challenging to achieve.
Coronal alignment, besides affecting the survivorship of
the implant [47], influences the distribution of the tibiofe-
moral contact load on the lateral and medial side [48]. The
uncertainty in this postoperative tibiofemoral angle was
included in the present study. The varus/valgus degree of
freedom was introduced in the knee model and locked to a
constant offset sampled from a normal distribution with
null mean and std of 2.5 deg, since this is the std of the
postoperative tibiofemoral alignment for 6070 TKA
patients reported by Fang et al. [47].

(3) Inertial parameters: Body segment parameters are usually
estimated by considering them linearly proportional to their
dimensions, obtained by scaling a general model according
to marker distance ratios. This approximation of the actual
parameters does not account for other factors such as mass
distribution, density and amount of soft tissue. Therefore,
uncertainties in mass, moment of inertia, and center of
mass location of the lower limb segments were modeled by
perturbing the parameters of the baseline scaled model with
estimated variances [34] (Table 2). Rao et al. [34] calcu-
lated variability in inertial parameters by estimating them
with six different parameter identification models. Input
distributions for the current study were defined using base-
line model parameters as the means and stds defined by
coefficients of variation (COV¼ std/mean) from Rao et al.

Fig. 1 Workflow of the study. Monte Carlo analyses were per-
formed with OPENSIM at each step of a pipeline that included
inverse kinematics, inverse dynamics, muscle force prediction
with static optimization and joint reaction analysis. Every prob-
abilistic input was described as a normal distribution with
standard deviations from the literature. Specific description of
each uncertainty can be found in Table 1 (marker placement),
Table 2 (Inertial parameters) and Table 3 (muscle paths and
properties). Only uncertainty in tibiofemoral alignment (VV
alignment) is not described in a table since it is a single distri-
bution with null mean and std of 2.5 deg [47]. The propagation
of the uncertainties was obtained by using output distributions
of each step as input uncertainty for following steps. The final
output of the workflow was knee compressive load and varus/
valgus contact moment.

Table 2 Uncertainty in body segment parameters. Inertia ten-
sor and center of mass components are expressed in OPENSIM

coordinate systems (based on Rao et al. [34]).

COV (std/mean) Std (mm)

Inertia tensor COM

Body Mass x y z x y z

Femur 0.138 0.22 0.22 0.22 3.4 6.8 3.4
Tibia 0.065 0.1 0.1 0.1 3.8 7.5 3.8
Talus 0.07 0.225 0.3 0.2 0.3 0.2 0.2
Calcaneus 0.07 0.225 0.3 0.2 4.2 2.1 2.1
Toes 0.07 0.225 0.3 0.2 1.4 0.7 0.7

Table 1 Uncertainty in marker placement relative to anatomical
landmarks expressed in OPENSIM coordinate systems (based on
Della Croce et al. [32]). Bold stds represent anatomical land-
marks directly investigated in Della Croce et al. Nonbold stds
were selected according to the anatomical plane that best rep-
resents the surface tangent to the anatimical landmark. Along
the two directions of this plane, a std of 7.9 mm was used (aver-
age of maximum stds in Della Croce et al.). Along the direction
perpendicular to the same surface, a std of 3.7 mm was used
instead (average of minimum stds in Della Croce et al.).

Marker Std (mm)

Pelvis x y z

L ASIS 3.4 4 11

R ASIS 10 11.5 14.5

L PSIS 2.8 8.3 7.5

R PSIS 5.7 10.7 4.6

Patella x y z

Patella 3.7 7.9 7.9

Femur x y z

Thigh Sup 7.9 7.9 3.7
Thigh Inf 7.9 7.9 3.7
Thigh Lat 3.7 7.9 7.9

Tibia x y z

Shank Sup 3.3 3.3 3.3

Shank Inf 3.7 7.9 7.9
Shank Lat 7.9 7.9 3.7

Foot x y z

Heel 3.7 7.9 7.9
Toe 7.9 3.7 7.9
Toe Lat 7.9 3.7 7.9
Toe Med 7.9 3.7 7.9
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[34]. Inertial parameters of the pelvis and the segments of
the upper body were not perturbed because they do not
influence the calculation of ankle, knee and hip net joint
moments calculated via inverse dynamics, and conse-
quently do not significantly affect the prediction of muscle
forces and joint reaction loads in the lower limb [36].

(4) Muscle path and parameters: Musculotendon units were
modeled as Hill-type muscles. A Hill-type muscle is com-
pletely described by: (a) its path, (b) the active and passive
force-length relationships [49], (c) the force–velocity rela-
tionship [40] and (d) four parameters (maximum isometric
force, optimal fiber length, tendon slack length, and penna-
tion angle) [50]. While force–length and force–velocity
relationships are consistent among different muscles and
subjects [51,52], there can be significant variability in mus-
cle path and parameters. Uncertainties in Hill-type muscle
parameters of 20 musculotendon units were modeled by
sampling them from input distributions defined according
to the dataset in Ward et al. [53] (Table 3), where means
and stds of physiological cross-sectional area (PCSA), fiber
length (Lf ), and pennation angle (a) from 21 cadavers are
presented. Since maximum isometric force (Fo

M) can be cal-
culated as PCSA times muscle tension [54], the COVs from
PCSA measurements by Ward et al. [53] were used to cal-
culate stds for maximum isometric forces by multiplying
them times the baseline values (considered the mean val-
ues). Fiber lengths by Ward et al. [53] were obtained by
first measuring a raw fiber length (L0f ) from three to five
regions in each muscle and scaling it with a sarcomere
length-based ratio [55]

Lf ¼
2:7 � L0f

Ls
(1)

where Ls is the bundle sarcomere length measured by laser dif-
fraction from each muscle region, and 2.7 lm represents the opti-
mum sarcomere length for human muscles [55]. Therefore, the

fiber length measured by Ward et al. [53] is an approximation of
optimal fiber length, since this is the length at which most of the
sarcomeres are at their optimal length. The baseline optimal fiber
length values were used as mean values of the input distributions,
and stds were calculated by means of the fiber length COVs from
the cited dataset [53]. COVs from pennation angle measurements
were used to calculate stds for this parameter. Since tendon slack
length (LS

T) variability was not found in the literature, this parame-
ter was calculated from the sampled optimal fiber length and pen-
nation angle by keeping a constant musculotendon total length

LS
Tpert ¼ LS

Tbl � ðLo
Mpert � Lo

MblÞ � cosðapertÞ (2)

where the subscripts pert and bl indicate the perturbed value and
the baseline value, respectively [56].

Uncertainty in the paths of the same 20 muscles was included
by perturbing the location of muscle attachments and via points.
Uncertainty in muscle attachments on the femur (origins of vasti,
biceps femoris short head, gastrocnemius medialis and lateralis,
and insertions of glutei maximus, glutei medialis, psoas and ilia-
cus) were modeled according to the variability reported in a
cadaver study with six specimens whose femur lengths were
scaled to a mean model to allow interspecimen comparison [57].
Attachment and via point locations not investigated by Duda et al.
[57] were perturbed in all directions according to a normal distri-
bution with a 5 mm std, comparable to the range of landmark loca-
tion errors reported in the literature [58,59] (Table 3).

Output variability of joint kinematics, net joint torques, muscle
forces, and joint contact loads was determined with OPENSIM by per-
forming several combined Monte Carlo analyses (Fig. 1). In particular,
the output variability of each step was used as the input distribution for
the following step (e.g., joint kinematics outputs from the kinematics
Monte Carlo analysis were used as one of the random inputs for inverse
dynamics, static optimization, and joint reaction analysis).

Data Analysis. The 5–95% confidence bounds of the output
variables (joint kinematics, kinetics, muscle forces, and joint con-
tact loads) were calculated at each time frame, which represents
the region in which the true result would lie with a confidence of
90%. Mean and std of the 5–95% confidence bounds were used to
evaluate an average impact of the uncertainties on the analyzed
output [36]. The relative contribution of each source of uncer-
tainty was assessed by comparing the sizes of the confidence
bounds when only single sources of uncertainty were included in
the Monte Carlo analysis. When mean and std of muscle force
bounds were calculated, only time frames when the muscle was
active were included. A total of 15 Monte Carlo analyses were
performed for each subject to assess the relative contribution of
each source of uncertainty to output kinematics, kinetics and mus-
cle forces: three inverse kinematics analyses in which just inverse
kinematics was performed (perturbing marker location, tibiofe-
moral alignment, and both); four inverse dynamics analyses in
which inverse dynamics was performed (perturbing marker loca-
tion, tibiofemoral alignment, inertial parameters, and all of them
combined); eight static muscle optimization analyses in which
static muscle optimization was performed (perturbing marker
location, tibiofemoral alignment, inertial parameters, muscle
paths, maximum isometric force, fiber properties, pennation angle,
and all of them combined). Joint contact loads were estimated for
each static optimization solution of each Monte Carlo analysis.

One thousand simulations per Monte Carlo analysis ensured con-
vergence for the main outputs: knee superior/inferior (compressive)
force and varus/valgus contact moment 5–95% confidence bounds.
Specifically, means and stds of output confidence bounds lay within
1% of each final mean and std over the last 100 simulations for ev-
ery Monte Carlo analysis [22,37]. When maximum isometric force
and/or muscle path were perturbed, a limited number of simulations
(always less than 2% of the total number for each Monte Carlo
analysis) failed because of the muscular system’s weakness.

Table 3 Uncertainty in muscle parameters. Bold stds for origin
and insertion locations are from Duda et al. [57]. For origin and
insertion locations not investigated in Duda et al. [57], a std of
5 mm along each axis was used according to the range of land-
mark location errors reported in White et al. and Kepple et al.
[58,59]. A std of 5 mm along each axis was also used for all the
via points of the 20 muscles included in the study.

std (mm)

COV (std/mean) Origin Insertion

Muscle Fo
M Lo

M a x y z x y z

Rectus Femoris 0.37 0.17 0.25 5 5 5 5 5 5
Vastus Intermedius 0.41 0.20 1.00 14 50 13 5 5 5
Vastus Lateralis 0.46 0.18 0.37 15 22 4 5 5 5
Vastus Medialis 0.35 0.24 0.23 11 38 15 5 5 5
Semimembranosus 0.41 0.27 0.23 5 5 5 5 5 5
Semitendinosus 0.42 0.21 0.38 5 5 5 5 5 5
Biceps Fem Long Head 0.42 0.47 0.27 5 5 5 5 5 5
Biceps Fem Short Head 0.33 0.19 0.29 10 18 5 5 5 5
Gastrocnemius Lateralis 0.34 0.16 0.26 9 15 10 5 5 5
Gastrocnemius Medialis 0.27 0.19 0.44 4 23 12 5 5 5
Soleus 0.29 0.23 0.36 5 5 5 5 5 5
Psoas 0.30 0.14 0.30 5 5 5 7 11 7

Iliacus 0.34 0.17 0.37 5 5 5 6 13 7

Tibialis Anterioris 0.28 0.12 0.32 5 5 5 5 5 5
Gluteus Medius Ant 0.43 0.21 0.84 5 5 5 8 12 6

Gluteus Medius Centr 0.43 0.21 0.84 5 5 5 8 12 6

Gluteus Medius Pos 0.43 0.21 0.84 5 5 5 8 12 6

Gluteus Maximus Ant 0.26 0.16 1.20 5 5 5 16 41 13

Gluteus Maximus Centr 0.26 0.16 1.20 5 5 5 13 27 13

Gluteus Maximus Pos 0.26 0.16 1.20 5 5 5 7 43 15
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However, every failed simulation was replaced by another simula-
tion to ensure a total of 1000 simulations per Monte Carlo analysis.

Sensitivity of knee loads was assessed by calculating the Pear-
son Product-Moment Correlation between the input parameter and
the two compressive loading peaks that normally occur during
gait. Significant correlations were divided into three groups
according to their absolute value: weak (0:2 < jrj < 0:4), moder-
ate (0:4 < jrj < 0:6), and strong (jrj > 0:6). The slope of each
correlation was also calculated and multiplied by the standard
deviation of the input uncertainty to assess the potential influence
of the input parameter on the analyzed output. Sensitivity was eval-
uated for Monte Carlo analyses where only individual groups of
parameters were perturbed (e.g., only maximum isometric force of
all the muscles) in order to assess the influence of a single parame-
ter in comparison to other parameters of the same kind. Therefore,
a total of six additional Monte Carlo analyses were performed per
each subject to evaluate sensitivity: one with only marker and coro-
nal alignment uncertainties, one with only BSP uncertainty, and
one for each source of uncertainty in the muscles (maximum iso-
metric force, fiber parameters, pennation angles, and muscle path).

Root mean square (RMS) errors and squared Pearson Product-
Moment Correlations were calculated between joint loads pre-
dicted with the baseline musculoskeletal model and joint loads
measured from the subjects [13,14]. The percentage of the stance

phase in which loads measured by the telemetric implants were
within the predicted 5–95% confidence bounds was also calcu-
lated. EMG signals were first processed with a 10–400 Hz band-
pass eighth order Butterworth filter, then rectified and filtered with
a 6 Hz low-pass second order Butterworth filter, and finally, nor-
malized to signals collected during maximum voluntary contrac-
tions [60]. The processed EMG signals were used to confirm
predicted muscle forces were appropriate.

Intersubject differences were identified through comparison of
5–95% confidence bounds and sensitivity analysis results for the
three subjects. For each subject, input variables were ranked from
largest to smallest according to the mean 5–95% bounds they pro-
duced on each output (kinematics, kinetics and joint loads). In
addition, rankings were compared among subjects of most
affected outputs when all input variables were perturbed. Finally,
moderate and strong correlations between input variables and the
first and second joint load peaks during the gait cycle were com-
pared between subjects.

Results

5–95% Confidence Bounds

Kinematics. The impact of marker placement error and coronal
alignment on kinematics was quantified by the size of the 5–95%

Fig. 2 (a) Effect of marker and limb coronal alignment uncertainties shown as 5–95% confidence bounds on joint angles for
subject 1. The baseline results are represented by the black line. (b) Mean and standard deviation of 5–95% Bounds for each
individual source of uncertainty that affected kinematics (subject 1).
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confidence bounds of each joint angle (Fig. 2(a)). For the three
subjects, the degree of freedom with the largest mean bound size
was hip flexion/extension (8.4 6 0.5 deg for subject 1).

The impact of marker placement error was higher than coronal
alignment for all joint angles of the lower limb, with a maximum of
11.3 times higher than coronal alignment for hip flexion/extension
angle of subject 1 (Fig. 2(b)).

Kinetics. The confidence bounds of net joint moments quanti-
fied the impact of marker placement, coronal alignment and BSP
uncertainties on inverse dynamics (Fig. 3(a)). Bounds for hip
flexion/extension moment (5.7 6 1.8 Nm) and hip internal/exter-
nal rotation (2.0 6 0.9 Nm) in subject 1 were the largest and
smallest bounds, respectively. Marker placement error had the
most significant impact also on all joint moments for the three
subjects except internal/external rotation of the hip of subject 1,
on which coronal alignment had the largest effect (Fig. 3(b)).

Muscle Forces. By combining all the uncertainties in the work-
flow (Fig. 1), soleus presented bounds substantially larger than other
muscles (e.g., 500 6 362 N for subject 1) (Fig. 4(a)). Other musculo-
tendon actuators with average 5–95% confidence bounds above
250 N were psoas (305 6 235 N), iliacus (297 6 229 N), medial gas-
trocnemius (264 6 287 N), anterior gluteus medius (273 6 192 N),
and central gluteus medius (262 6 176 N) (Fig. 4(a)).

Joint Loads. Knee compressive load and varus/valgus contact
moment of subject 1 showed confidence bounds of 333 6 248 N
(Fig. 5(a)) and 16 6 11 Nm (Fig. 6(a)), respectively, when all the
sources of uncertainty were considered. The variables that had a sub-
stantially higher impact on muscle forces and knee loads were mus-
cle maximum isometric force and muscle fiber path (Fig. 5(b)).
Their contribution to compressive load variation was 3.4 and 2.5
times higher than the contribution of marker placement error, which
was the third most impactful variable. Varus/valgus contact moment
bounds were also influenced by coronal alignment uncertainty (80%
of muscle maximum isometric force influence) (Fig. 6(b)).

Sensitivity Analysis. When only the marker placement and cor-
onal alignment uncertainties were included in the Monte Carlo
analysis, compressive load for subject 1 was just moderately cor-
related to the anterior/posterior location of the right Thigh Inferior
marker at its first peak, and to the anterior/posterior location of
the right ASIS marker (see Table 4 for correlations and responses
to 1 std change in the input parameters). Strong correlations
between alignment in the coronal plane and both peaks of varus/
valgus contact moment were found. Tibial inertial parameters
showed the highest correlations when only BSP uncertainties in
subject 1 were investigated, but relatively small impacts on the
outputs were observed (Table 4).

Fig. 3 (a) Effect of marker, limb coronal alignment, and body segment parameters uncertainties shown as 5–95% confi-
dence bounds on joint moments for subject 1. The baseline results are represented by the black line. (b) Mean and standard
deviation of 5–95% Bounds for each individual source of uncertainty that affected inverse dynamics (subject 1).
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Several significant correlations were found when only individ-
ual muscle parameters were perturbed in subject 1. The muscles
that showed the strongest correlation to first and second peaks of
compressive load were vastus medialis (maximum isometric
force) and anterior gluteus medius (pennation angle) for the first
peak, and gastrocnemius medialis (fiber parameters and pennation
angle) for the second peak (Table 4). The varus/valgus contact
moment was strongly affected by vastus lateralis (maximum iso-
metric force and fiber parameters) and vastus medialis (fiber
parameters) at its first peak, and by gastrocnemius medialis (maxi-
mum isometric force, fiber parameters, and pennation angle) at its
second peak (Table 4).

Validation. Simulation of walking for the three subjects pro-
duced RMS errors of 218 N (r2¼ 0.85), 229 N (r2¼ 0.91), and
229 N (r2¼ 0.85), respectively, between compressive load pre-
dicted by the baseline deterministic model and the measured
value. The measured loads were within the predicted 5–95% con-
fidence bounds (mean 6 2 std) for 77%, 83%, and 76% of the
stance phase. The 5–95% bounds size of compressive load for the
three subjects was 43 6 12%, 50 6 15%, and 55 6 18%
(mean 6 std) of the deterministic prediction during the stance
phase. RMS error between measured and predicted varus/valgus
moments was 8 Nm (r2¼ 0.53), 12 Nm (r2¼ 0.11), and 14 Nm
(r2¼ 0.37) for the three subjects (Fig. 5(a)). The measured
moments were within the confidence bounds for 73%, 51%, and
25% of the stance phase (Fig. 6(a)).

Timing and magnitude of processed EMG signals were consist-
ent with estimated muscle activation 5–95% confidence bounds
(Fig. 4). Specifically, knee flexors were active at the beginning
and end of the gait cycle, whereas knee extensors and ankle plan-
tarflexors were active in correspondence of the first and second
peaks of the knee compressive force, respectively.

Comparison Between Subjects. When 5–95% confidence
bounds of kinematics outputs were compared, the ranking of most
affected degrees of freedom was consistent among subjects, with
marker placement error having a larger impact than tibiofemoral
alignment on all degrees of freedom (Fig. 2(b)). Similarly, marker
placement error had the largest impact on kinetics outputs when
the three subjects were compared (Fig. 3(b)). Joint loads 5–95%
bounds showed the same ranking for the three subjects (Figs. 5(b)
and 6(b)). Uncertainty in maximum isometric force had consis-
tently the largest impact on both compressive force and varus/
valgus moment; tibiofemoral alignment and BSP uncertainties
consistently had the smallest influence on compressive force and
varus/valgus moment, respectively.

Intersubject differences were revealed in the muscles when
results from the sensitivity analysis were compared across sub-
jects. Similar to subject 1, only a few individual marker placement
uncertainties showed moderate correlation with joint load in
subjects 2 and 3. Uncertainties in coronal alignment and in medio-
lateral (M-L) location of tibial center of mass were strongly corre-
lated with both peaks of varus/valgus moment for all the subjects.

Fig. 4 Effect of all sources of uncertainty shown as 5–95% confidence bounds on muscle activation predictions for subject
1. Activation confidence bounds are compared to processed EMG signals (black dashed line). Vastus medialis processed
EMG signal was not included in the graph because it was not considered reliable.
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The muscles that showed strong correlations with the first peak of
compressive load were different among subjects: vastus medialis
(subject 1), anterior gluteus medius (subjects 1 and 3), and semi-
membranosus (subjects 2 and 3). Varus/valgus moment first peak
was strongly correlated to changes in parameters of vastus latera-
lis, vastus medialis and anterior gluteus medius for subjects 1 and
3, and to biceps femoris long head, semimebranosus, and central
gluteus maximus for subject 2. Conversely, all muscle parameters
of gastrocnemius medialis were either moderately or strongly cor-
related to the predicted second peak of both compressive load and
varus/valgus contact moment for all the subjects.

Discussion

A global probabilistic analysis that evaluated the influence of
experimental and model uncertainties on joint kinematics, joint
dynamics, muscle forces, and knee contact loads was presented.
Marker misplacement strongly influenced the calculated joint

kinematics and net torques, whereas muscle maximum isometric
force and muscle path had the largest impact on muscle forces and
compressive load variability. These results demonstrate the neces-
sity of including subject-specific musculoskeletal parameters and
geometry for the assessment of joint loading.

The 5–95% confidence bounds of the predicted compressive
load captured the general shape and timing of the experimental
contact force for the analyzed activity with RMS errors and r2 val-
ues comparable to Grand Challenge competitors [14]. The com-
pressive loads measured in vivo were within the bounds for most
of the stance phase (77%, 83% and 76% for the three subjects). In
particular, the predicted bounds captured the experimental value
at the two peaks (weight acceptance and contralateral heel strike).
Only during the swing phase of gait was the compressive load
consistently underestimated by the model, although the trend of
the predicted bounds was clearly similar to the measured load
(Fig. 5). This may be explained by a muscle activation strategy
used by the subjects that includes muscle co-contractions that was

Fig. 5 (a) Effect of all the uncertainties shown as 5–95% confidence bounds on knee com-
pressive load for the three subjects. The baseline results are represented by the solid black
line. Corresponding measured data are represented by the black dashed line. (b) Mean and
standard deviation of 5–95% bounds for each individual source of uncertainty that affected
compressive loads for the three subjects.
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not enforced in the static optimization algorithm and can be inter-
preted as preparatory mechanism of joint stabilization [61].

Predicted varus/valgus contact moments for the three subjects
were generally less accurate than compressive loads. Correlation
between deterministic predictions and experimental measure-
ments were significant for all subjects (p< 0.05) but r2 values
were on average 0.34. Measured values were captured by confi-
dence bounds for 73%, 51%, and 25% of the stance phase. These
results show that the musculoskeletal model and the optimization
technique used in this study to solve the muscle redundancy prob-
lem provide satisfying predictions of muscle force allocation
among main muscle groups (quadriceps, hamstrings, gastrocne-
mius), whereas predictions of the distribution of load on the tibia
may require more sophisticated estimates of muscle forces, con-
tact point location and the inclusion of passive tissues such as the
tibiofemoral ligaments.

There are limitations of our study that should be considered.
First, although several sources of uncertainty were included in the
probabilistic analysis, some features of the model remain uncertain.
For example, the employed scaling technique affects inertial param-
eters, muscle fiber parameters, muscle attachment, and via point
locations, segment dimensions and joint center locations according
to marker-based ratios. While uncertainty in inertial, muscle fiber
parameters and muscle geometry was addressed in the present
study, uncertainty sources such as segment dimensions and joint
location may influence simulation outputs but were left out to focus
the investigation on the most common sources of uncertainty.

The second limitation was that maximum isometric forces of
muscles in the same limb were not assumed to be correlated. Cor-
relations were not taken into account in this study because no
quantitative data was found in the literature to support this
assumption (e.g., similar scaling of the maximum isometric force

Fig. 6 (a) Effect of all the uncertainties shown as 5–95% confidence bounds on varus/valgus
contact moment for the three subjects. The baseline results are represented by the solid black
line. Corresponding measured data are represented by the black dashed line. (b) Mean and
standard deviation of 5–95% bounds for each individual source of uncertainty that affected
contact moment for the three subjects.
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of the medial and lateral gastrocnemius). If correlations between
fiber strengths of the same muscle group were included, maximum
isometric force uncertainty might have a smaller impact on varus/
valgus contact moment because activation distribution among
fibers on the medial and lateral sides of the knee might be more
similar. Although the modeled uncertainty in maximum isometric
force was significant and a limited number of simulations failed
for not achieving dynamic equilibrium, its source [53] was consid-
ered the most complete dataset with the given information about
the subjects (measurements from 21 cadavers).

The third limitation of this study was related to the input data
used to model the uncertainty in muscle path. Moment arms,
which represent the effectiveness of a muscle in generating force
or torque along a degree of freedom, are mainly defined by the
geometry of the muscle and therefore by the location of the attach-
ments and via points used to describe it in the model [22]. Uncer-
tainty in attachment and via point locations not investigated by Duda
et al. [57] was modeled with a normal distribution with a 5 mm std
that is an approximation of the uncertainty in locating an anatomical
landmark and estimating attachment sites as points from irregular
areas on the surface of the bones [58,59]. However, straightforward
scaling does not account for all intersubject variability in muscle
size, shape, and path point sites [62]. Since a 5-mm std has a signifi-
cant impact on joint loads, we assume that greater uncertainty in
attachment sites would produce even larger output bounds.

The combined effect of all the included sources of uncertainty
significantly impacted joint load. Different sources of uncertainty
had significantly different impacts on the analyzed outputs. Val-
ente et al. stated that uncertainties in parameter identification of
their subject-specific model had a moderate effect on model pre-
dictions (knee compressive load included) and that no specific pa-
rameter was crucial to model robustness [37]. However, Valente
et al. measured muscle cross-sectional area using full lower limb
MRI that allowed better identification of muscle maximum iso-
metric force values and, consequently, a smaller uncertainty. In
addition, other musculotendon parameters (optimal fiber length,
tendon slack length, and pennation angle) were not modeled.
These parameters were shown to have a significant effect on mus-
cle force and function predictions [21,22,36]. Myers et al. showed
that muscle force predictions were mostly influenced by uncer-
tainty in muscle parameters and, in particular, by tendon slack
length variability [36]. In the present study maximum isometric
force and muscle path points location had the highest impact on
muscle forces and compressive load, whereas tendon slack length
was less impactful (27% of maximum isometric force bounds size
for subject 1). This can be explained by the different input distri-
butions used by Myers et al. First, maximum isometric force
uncertainty was chosen from a cadaver study that included just
two specimens [63]; second, tendon slack length was included by
using the COVs specified in Ward et al. for optimal fiber length.

Table 4 Correlations and 1std changes between joint load peaks and input variables that presented a correlation jr j>0:4 for sub-
ject 1. Italic and bold values represent moderate (0:4<jr j<0:6) and strong (jr j>0:6) correlations, respectively. Corresponding 1std
changes present the same format. Vas Lat PP4 5 path point of the vastus lateralis muscle fiber on the distal patella. A/P 5 antero/
posterior, S/I 5 superior-inferior, M/L 5 medio-lateral, V/V 5 varus/valgus.

First peak

Correlation 1std change

Variable Compressive load V/V moment Compressive load V/V moment

R.Thigh.Inf A/P 0.4 0.02 24.11 0.07
Coronal alignment 0.26 20.91 15.76 �4.14

Body Mass Inertia COM Mass Inertia COM Mass Inertia COM Mass Inertia COM

Tibia A/P
0.71

�0.03 20.61

0.33
�0.14 0.23

3.38

�0.12 22.89

0.05
�0.02 0.03

Tibia S/I �0.03 �0.13 0.03 �0.17 �0.16 �0.6 0 �0.03
Tibia M/L �0.04 �0.15 0.06 20.84 �0.21 �0.7 0.01 20.12

Muscle Fo
M Lo

M a Fo
M Lo

M a Fo
M Lo

M a Fo
M Lo

M a

Vas Lat �0.08 �0.1 �0.01 0.78 0.62 �0.06 �3.13 �0.65 �0.05 2.88 0.59 �0.02
Vas Med �0.28 20.75 0.07 �0.39 20.67 0.18 �11.14 24.9 0.42 �1.45 20.64 0.07
Glut Med Ant 0.52 �0.16 20.76 �0.3 0.06 0.88 20.9 �1.05 24.73 �1.11 0.06 0.32

Vas Lat PP4 M/L 0.43 0.69 23.79 2.72

Second peak

Correlation 1std change

Variable Compressive load V/V moment Compressive load V/V moment

R.ASIS A/P 0.43 0.01 24.17 0.03
Coronal alignment �0.23 20.96 �12.8 24.68

Body Mass Inertia COM Mass Inertia COM Mass Inertia COM Mass Inertia COM

Femur A/P
�0.57

0.03 �0.44
�0.12

0.04 �0.03
�3.69

0.2 �2.85
�0.02

0.01 0
Femur S/I �0.05 0.23 �0.01 �0.01 �0.31 1.53 0 0
Femur M/L �0.29 �0.17 0.02 0.03 �1.85 �1.1 0 0.01
Tibia A/P

0.29
0.02 0.32

0.25
�0.02 0.16

1.86
0.16 2.07

0.04
0 0.03

Tibia S/I 0.03 �0.16 0.03 �0.19 0.18 �1.03 0.01 �0.03
Tibia M/L �0.1 �0.12 �0.01 20.9 �0.65 �0.76 0 20.14

Muscle Fo
M Lo

M a Fo
M Lo

M a Fo
M Lo

M a Fo
M Lo

M a

Gas Lat �0.06 �0.01 0.05 0.48 0.33 �0.03 �11.21 �0.31 1.62 3.1 0.41 �0.03
Gas Med �0.54 20.69 0.88 20.77 20.71 0.92 �100.1 236.08 26.53 24.93 20.89 1.08
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However, variability in fiber parameters can be assumed to have a
stronger influence on muscle forces when activities with high
range of motion and muscle length changes are analyzed (e.g.,
squat, chair rise).

The three input uncertainties that had the largest impact on
compressive load were maximum isometric force, muscle path,
and joint kinematics. Estimates of muscle and joint loading might
be improved by more accurate subject-specific determination of
these inputs. Maximum isometric force derived from measure-
ments in cadavers is most often tuned in musculoskeletal models
to match measurements of isometric and isokinetic torque. This
strategy can be used to obtain baseline maximum isometric values
by averaging results for different subjects [40], and also to tune
subject-specific strength values to peak torques measured during
isometric contractions [64]. Alternatively, subject-specific maxi-
mum isometric forces have been estimated from the physiological
cross-sectional area of the muscle obtained from MRI or CT
images [37,65,66]. However, image-based models can be expen-
sive and especially challenging and time-consuming to create.
Correlations between muscle strength and anthropometric meas-
urements could be used to assess subject-specific parameters or
reduce the intersubject variability in probabilistic analyses. Rela-
tionships between 35 lower limb muscles to height and body mass
were investigated in a group of 24 young, healthy subjects using
MRI [66] and several correlations between the volumes of muscle
groups and the product of body mass and height were observed.
However, Handsfield et al. acknowledged their results cannot be
generalized to all humans because many factors like inactivity,
disease-related atrophy or obesity can affect muscle volumes in
different populations [66]. An increase of publicly available mus-
culoskeletal parameter data is needed for more rendering of
subject-specific parameters from population-based databases.

The second most impactful uncertainty in this study was muscle
geometry. This variable has a large influence on muscle force pre-
dictions because it determines the moment arm of the muscle, and
therefore its effectiveness in joint torque generation. Muscle
attachment and via point location also influences the joint load
calculation since it affects muscle lines of action, and therefore
the joint force direction. Muscle attachment sites and geometry
can be identified from MRI images to obtain more realistic
subject-specific moment arms and lines of action [37,62,67].
However, the geometric description of a muscle cannot be
reduced to one single joint configuration because muscles wrap
around many structures (especially bones and other muscles) and
take on different shapes. Models with linear representations of
muscle fibers that make use of via points and wrapping surfaces
provide moment arms in good agreement with average values
measured in vitro [68], but an intrinsic uncertainty remains in
subject-specific moment arms.

Inaccuracies of marker-based measurement of joint kinematics
are challenging to overcome. Techniques such as videofluoro-
scopy allow submillimeter and sub-degree accuracy [69]. How-
ever, this solution is not always accessible and requires subject
exposure to X-ray. In addition, it is limited to acquisitions of a sin-
gle joint at a time, and tracking kinematics involves time-
consuming manual work. Therefore, the need for noninvasive
accurate solutions is still a priority. Results from the present work
show that joint kinematics and subsequent calculation of joint
loads can be affected by uncertainty in single markers, which
demonstrates the importance of quantifying and accounting for
this kind of uncertainty when drawing conclusions.

When results of the probabilistic analysis were compared
between the three subjects, relevant differences were not observed
in the relative contribution of input distribution groups to the out-
put variability size. The most notable difference was related to
the muscles correlated to compressive load and varus/valgus
contact moment first peaks: while for subjects 1 and 3 the peaks
showed strong correlations with vasti parameters, high correla-
tions to hamstrings were observed for subject 2. This can be par-
tially explained by the need of a higher hip extension torque

during weight acceptance (i.e., when the first joint load peaks
occur) in subject 2. The similarity among subjects strengthens
the conclusion of the present study that correct identification of
subject-specific maximum isometric forces, muscle geometries,
and marker placements is more crucial than for the other per-
turbed parameters when muscle forces and joint loads are
estimated.

In conclusion, our study demonstrated that uncertainty in the
large number of parameters that must be estimated to perform a
pipeline of biomechanical analyses with a commonly used muscu-
loskeletal model has a significant impact on joint kinematics, mus-
cle forces and contact loads. Results for subjects with TKR during
gait were most sensitive to uncertainties in kinematics, muscle
strength, and muscle geometry. Although better subject-specific
measurements may provide more precise knowledge of these inputs
and improve estimates of muscle and joint loads, demonstrating the
reliability of these estimates requires evaluation of uncertainty.
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