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The relationship between DNA methylation and gene expression is complex and elusive. To further elucidate these
relations, we performed an integrative analysis of the methylome and transcriptome of 4 circulating immune cell
subsets (B cells, monocytes, CD4C, and CD8C T cells) from healthy females. Additionally, in light of the known sex bias
in the prevalence of several immune-mediated diseases, the female datasets were compared with similar public
available male data sets. Immune cell-specific differentially methylated regions (DMRs) were found to be highly similar
between sexes, with an average correlation coefficient of 0.82; however, numerous sex-specific DMRs, shared by the cell
subsets, were identified, mainly on autosomal chromosomes. This provides a list of highly interesting candidate genes
to be studied in disorders with sexual dimorphism, such as autoimmune diseases. Immune cell-specific DMRs were
mainly located in the gene body and intergenic region, distant from CpG islands but overlapping with enhancer
elements, indicating that distal regulatory elements are important in immune cell specificity. In contrast, sex-specific
DMRs were overrepresented in CpG islands, suggesting that the epigenetic regulatory mechanisms of sex and immune
cell specificity may differ. Both positive and, more frequently, negative correlations between subset-specific expression
and methylation were observed, and cell-specific DMRs of both interactions were associated with similar biological
pathways, while sex-specific DMRs were linked to networks of early development or estrogen receptor and immune-
related molecules. Our findings of immune cell- and sex-specific methylome and transcriptome profiles provide novel
insight on their complex regulatory interactions and may particularly contribute to research of immune-mediated
diseases.

Introduction

DNA methylation (DNAm) is an epigenetic mechanism link-
ing genetics and the environment. The addition of a methyl
group to a cytosine base within a CpG dinucleotide producing 5-
methylcytosine (5mC) has mainly been associated with decreased
gene expression, while the oxidation of 5mC to 5-hydroxyme-
thylcytosine (5hmC) by Tet enzymes has been suggested to pro-
mote demethylation and thus to increase gene expression.1,2

Today, accumulating data have shown that the relationship
between 5mC, 5hmC, and gene expression is far more complex,
and depends upon the density and specific location of the
CpGs.3,4 It is estimated that the human genome contains about
30 million methylated CpG dinucleotide sites, of which
70–80% are methylated.5 CpG islands (CGIs) are genomic
regions characterized by a CpG dinucleotide content of at least

60% and are often, but not exclusively, located upstream tran-
scription start sites (TSSs).4,6 Hypermethylated promoter CGIs
are found mainly in long-term suppressed genes and are main-
tained throughout life. These include genes expressed only dur-
ing early development, imprinted genes, or genes on the inactive
X chromosome.4,7 In contrast to promoter CGI hypermethyla-
tion, gene body CGIs methylation has been associated with active
genes and associated with tissue-specific methylation.4,8 Methyla-
tion of intragenic and gene body CGIs could play a role in the
regulation of alternative or orphan promoters,4,8-10 and gene
body methylation has also been suggested to be involved in exon
recognition and alternative splicing mechanisms.11,12 The
unclear gene annotation of intergenic CpG regions leaves their
functional role unknown. In the last few years, additional CpG
elements have been defined according to their distance from
CGIs: northern and southern shore, northern and southern
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shelves, and open sea. CpG shores are located within 2 kb from
CGIs and are variable and dynamic regions that have been shown
to be involved in tissue specificity.5,13,14 CpG shelves are defined
as occurring 2-4 kb from CGIs, while open sea are regions
>4 kb from CGIs. CpG shelves may also be associated with tis-
sue specific methylation,15 while differentially methylated regions
(DMRs) associated with disease have frequently been detected in
open sea CpGs.16-18

Accumulating evidence points to altered DNAm patterns
serving a critical role in development, differentiation, aging,
autoimmune diseases, and cancer.13,19-21 High rates of hyper-
and hypo-methylation as a function of age have been shown in
mice and human,22 and aberrant methylation of promoter CpG
islands was associated with silencing of tumor suppressor genes
and may be a risk factor for cancer.13,18 Sexual dimorphism is
established early in development and reinforced in adults by hor-
monal regulation, which is in part regulated by DNA methyla-
tion.23-25 Sex is a known factor affecting the methylation pattern
mainly on the X chromosome, but also on autosomal chromo-
somes.26,27 The general prevalence, course, and severity of several
diseases, including autoimmune diseases, are higher in females
compared to males.23,28,29 This sex bias could be due to sex-spe-
cific hormones or to differences between male and female
immune responses.28 Females have been shown to produce stron-
ger humoral and cellular immune responses to antigen than
males, suggesting that this increased immune reactivity makes
women more prone to develop autoimmune diseases.30,31 In line
with the above, systematic mapping of genomic regions, which
are differentially methylated between males and females, might
highlight CpG sites that are more likely to be associated with
autoimmune diseases.

Peripheral blood mononuclear cells (PBMCs) are easily acces-
sible in humans and therefore commonly used for biomarkers
detection both in clinical practice and in research. PBMCs are a
mixture of different immune cell subsets, each characterized by a

distinct functional role.8 Since DNA methylation and gene
expression patterns are cell type specific, this specificity may be
masked within the PBMCs mixture.3,32 Immune cell frequencies
can be altered in disease states and in response to therapeutic
agents and these might complicate proper interpretation of meth-
ylation results in health and disease.3,32,33 It is therefore critical to
generate genomic and methylomic datasets from purified cell
subsets. In the current study, we determined cell-specific expres-
sion and DNAm patterns of PBMCs and 4 circulating immune
cell subsets: B cells, monocytes, CD4CFoxp3¡ and CD8C T cells
and identified the location of cell-specific CpG methylation. We
demonstrated the unique profile of each immune cell subset and
the value of working with purified cell subsets. We defined the
correlation between DNA methylation and gene expression pro-
files of these subsets and characterized the relation between meth-
ylation status, correlation direction, and CpG location, as well as
possible functionality using pathway analysis. We compared
immune cell methylation patterns of males and females, and
found that while cell subset-specific profiles were highly similar
between males and females, sex-specific methylation patterns,
mostly shared in all subsets, could be found. These data sets can
be used as baseline reference for studying the role of abnormal
methylation in immune-mediated diseases, as well as data for
studying the complex role of DNA methylation in gene
regulation.

Results

Distinct expression and methylation profiles characterize
each immune cell subset

The expression and methylation profiles of immune cell-sub-
sets and PBMCs from 5 healthy Caucasian females, age 30-52 y
(average age 41 y), were acquired using HumanHT-12 for
expression and HumanMethylation450 for methylation. Details

on healthy donors are found in
Table S1. Variance component
analysis revealed that most of the
variance was contributed by cell
subset distinctiveness (»70%) and
an additional 18% of the variance
was due to differences between
donors (Figs. S1, S2). The similar-
ity between samples and distinction
between cell subsets can be visual-
ized in Figure 1A–B for expression
and methylation, respectively.
Monocytes and B cells create dis-
tinct clusters, both in transcription
and in methylation pattern, while
CD4C and CD8C T cells overlap,
suggesting high similarity between
the 2 T cell subsets, despite
their diverse functional roles
(Fig. 1A–B). Interestingly, PBMCs
methylation pattern overlaps with

Figure 1. Expression and methylation patterns are distinct between different immune cell subsets. Heat
plot correlation diagrams of expression (A) and methylation (B) patterns of 4 different immune subsets
(CD14, CD4, CD8, and CD19) and whole PBMCs from 5 healthy females. Clustering of samples is based on
similarity, with red to blue color scale indicating high to low similarity, respectively. Name of cell subset
sample appears next to the plot.
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CD4C and CD8C T cells (Fig. 1B), most likely reflecting the T
cell abundance within PBMCs, whereas PBMCs expression pat-
tern forms a distinct group (Fig. 1A), suggesting that the final
cell subset-specific pattern of gene activation is more defined.

Gene expression and DNA methylation validation of
immune cell subset-specific genes confirmed BeadChip results

One way analysis of variance (ANOVA) was used to identify
differentially expressed genes (DEGs) between subsets with a
�1.6-fold change in expression at an adjusted P-value < 0.05
after FDR correction. Monocytes had the largest number of
DEGs (1878 specific transcripts), followed by B cells with 415
DEGs, while there were only 66 DEGs in the CD4C T cell sub-
set, and 107 in the CD8C T cell subset (Table 1). Similarly, dif-
ferentially methylated genes (DMGs) between cell subsets were
identified using a cut-off of an adjusted P-value <0.05 combined
with �15% difference in methylation b-values. About 7747
DMGs were found in monocytes, 3141 in B cells, while only
875 DMGs were found in the CD4C subset and 853 DMGs in
the CD8C T cell subset (Table 1). A complete list of immune
cell subset DEGs and DMGs can be found in Tables S2-S5 for
expression and Tables S6-S9 for methylation. These numbers
are consistent with the results of the descriptive analysis presented
in the previous paragraph. The relatively large numbers of DEGs
and DMGs found in monocytes most likely reflect the distance
between the myeloid and the lymphoid lineages, whereas the low
numbers found in CD4C and CD8C cells reflect their closeness
within the lymphoid lineage.

As proof of concept, 42 cell-specific DEGs were validated
by RT-PCR using a microfluidic device (http://www.fluidigm.
com/) (Fig. 2A). DEGs showing large difference in expression
were selected from each subset, and included both known cell-
specific genes, such as the monocyte-specific CD14C and the B
cell-specific BANK1, but also less known transcripts, such as
VAV1 in monocytes or AXIN2 in CD4C T cells. In addition to
the female RNA samples previously used in the microarray exper-
iment, RNA from 4 immune cell subsets was collected from 6
healthy, Caucasian males, age-matched to our female group
(average age 41.3 y; details in Table S1) and included in the RT-
PCR assay, in order to determine if these cell-specific DEGs were
shared by both sexes. As can be visualized by the heat plot, sam-
ples from both sexes clustered together according to cell subset,
thus confirming the subset specificity of all 42 genes selected,

while no sex differences were detected. The negative control
RPL4 was non-cell-specific, as expected.

For the validation of methylation results, a novel assay that
combines target bisulfite amplification with next generation
sequencing was developed and named Target Bisulfite Sequenc-
ing (TBS) (details in the Methods section). Nine cell subset-spe-
cific DMGs with multiple differentially methylated CpG sites
(�3) were selected with one to 2 amplicons per gene. These nine
genes were also included in the qRT-PCR validation presented
above and showed inverted correlation between expression and
methylation in the BeadArray experiments. Since no difference
in expression between males and females was found in the
selected subset-specific genes, only the female DNA samples were
used in the TBS validation assay. Average methylation percentage
was calculated as the number of cytosine sequenced in a specific
position after bisulfite conversion, out of the total number of
sequences for each sample. The average methylation of 3 to 5
representative DMRs per cell subset are presented in Figure 2B
as a heat plot, confirming the cell subset-specificity of each
DMG. The methylation percentages we calculated based on the
BeadArray (Tables S6–S9) and on the TBS results (data not
shown) were found to be remarkably similar, despite the differen-
ces in the assay biochemistry and methodology. The numbers of
validated genes are a fraction of the cell subset DMRs identified
by the BeadArray and the complete list can be found in
Tables S6–S9.

Immune cell subset-specific DMGs are not associated
with distinct sex-specific patterns

In order to compare our datasets with similar data sets and to
identify any sex-specific differences, we downloaded, from
ArrayExpress (http://www.ebi.ac.uk/arrayexpress/), public avail-
able immune cell subset gene expression (GEX) and methylation
datasets generated from 6 healthy Caucasian males, aged 36–
51 y (average age 45 y), non-smokers, hence age- and ethnicity-
matched to our female samples.3 By performing the same analy-
sis, we created one list of male cell subset-specific for DEGs and
another for DMGs. However, due to the different platforms
used for GEX data generation, Affymetrix versus Illumina,
expected to distort results, only the methylomes (performed on
the same Illumina platform) were compared.34,35 The numbers
of DEGs and DMGs from the male public data set are presented
in Table 1, together with our female analysis. The larger num-
bers of DEGs and DMGs obtained in the male datasets most
properly reflect better power (data set based upon 6 males vs. 5
females); however, the relative number of DEGs and DMGs
between the subsets was quite similar to the results from females,
with the highest number of cell-specific DEGs or DMGs found
in monocytes. The male list of cell subset-specific DMGs was
highly similar to the female DMR list, as can be visualized in
Figure 2C. Correlation levels between male and female cell sub-
set-specific DMR lists were calculated using Pearson correlation.
The correlation between the 2 lists was 90% for monocytes, 77%
for B cells, 83% for CD4C T cells, and 81% for CD8C T cells.
We suspect the lower correlation in B cells reflects a relatively
low purification of B cells in the male samples (73%), as reported

Table 1. Number of immune cell-specific DEGs and DMGs per immune cell
subset in female and male3 data sets

Sex DMG/DEG
CD8C

T cells
CD4C

T cells B cells Monocyte

Female DEG 107 66 415 1878
Male DEG 363 155 638 2484
Female DMG 834 854 2983 6750
Male DMG 1946 1303 1550 9330

DEGs were defined as transcripts with a � 1.6-fold change of expression;
DMRs were defined as �15% difference in methylation b-values, both at a
�0.05 FDR adjusted P-value.
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by the authors,3 compared to 95% purity of B cells in our female
samples (Table S1). This comparison of the 2 datasets indicates
that immune cell-specific methylation is highly alike in males
and females. Moreover, the ability to reproduce highly compara-
ble results in a second data set increases the confidence in the
validity of the analysis, and indicates that technical artifacts, such
as batch effect, which might distort results, have a marginal effect
on current results.

A significant enrichment of cell-specific DMGs was found
in the gene body and open sea

The interactions between methylation and transcription are
complex and seem to depend upon location and density of CpGs
involved. Using the bead chip annotation file, the distribution of
CpG sites (%) according to location (promoter, 50UTR, 1st
Exon, Body, 30UTR, and intergenic regions) was compared
between total CpG sites and cell subset-specific DMGs; results
are presented in Figure 3A and summarized in Table 2. Enrich-
ment in subset-specific DMGs was found in the gene body, 42%

versus 33% of the total CpG sites, while less than expected
DMGs were found in the promoter, 16% vs. 25% of the total
CpG sites. This suggests that cell subset-specific DMGs within
the gene body could have an important role in regulating specific
immune cell transcription and, possibly, function. A similar anal-
ysis of the percentage of CpGs according to their distance from
CGIs [island, shores (north and south), shelves (north and
south), and open sea] between cell subset-specific DMGs and the
total CpG sites are presented in Figure 3B and summarized in
Table 2. Cell subset-specific DMGs were enriched in the shores,
shelves, and especially open sea, while decreased in CGIs (25%,
14%, 55%, and 7% versus 23%, 10%, 36%, and 31% of the
total CpG sites, respectively), suggestive of an important role of
non-CGIs in distinction of immune cells. Furthermore, under-
representation of DMGs in promoter CGIs, while overrepresen-
tation in gene body CGIs was found (8.8% vs. 36.3% and
57.5% versus 25.4% of the total CpG sites, respectively)
(Fig. 3C and Table 2), implying a different functional role for
CGIs depending on genomic location. We downloaded an

Figure 2. Validation of cell specific genes confirmed BeadChip results with no significant difference between males and females. Heat plots presenting
average RNA expression (A) and DNA methylation (B) with gene names on the Y-axis and cell subsets on the X-axis. (A) The subset-specific expression
level of 42 selected subset-specific DEGs was validated in immune cell samples from 5 healthy females, previously analyzed by the BeadArray, and addi-
tional RNA samples obtained from 6 healthy males by RT-PCR; the average relative quantification 2¡DDCT of each subset is presented. RPL4 was used as a
non-subset-specific negative control. Red color indicates increased expression and blue indicates decreased expression in the specific cell subset. (B)
The methylation level of 3-5 CpGs within 9 cell subset-specific DMGs was evaluated in immune cell samples from 5 healthy females using the TBS
method, and average methylation percentage of each cell subset presented. Red color indicates increased methylation and blue indicates decreased
methylation in the specific cell subset. (C) A heat plot presenting differences in methylation level between immune cell subset samples in the BeadArray
data set from the 5 females and similar public data from 6 males3. Plot shows 2-way unsupervised clustering of methylation b difference, with red indi-
cating increased methylation and blue indicating decreased methylation between the 2 cell subsets compared (M: male, F: female, followed by the
names of cell subsets compared). Cell subset-specific CpG identifier can be found in Tables S6-S9.
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enhancers annotation list from a
Broad Institute portal (http://www.
broadinstitute.org/pubs/finemap-
ping/?qDdata-portal)36 and crossed
with our cell subsets DMGs list.
We found a significant enrichment
of cell subset DMGs within
enhancer elements of 75% vs. 64%
of the total CpG sites (Table 2),
suggesting that distal regulatory
elements might be important for
differentiation and regulation of
immune cells. While CpGs can be
divided into hypomethylated, par-
tially methylated, or hypermethy-
lated CpGs, most studies have been
focused upon the interactions
between hypermethylation or
hypomethylation and transcrip-
tion, especially in the well-known
context of hypermethylated CGIs
in the promoter region, associated
with gene inactivation, or hypome-
thylated CGIs, associated with
gene activation. In the current
study, both hypomethylated and
hypermethylated DMGs were
mainly found within the gene body
(32–51%) and open sea (50–59%)
(Fig. S3B–C), with hypomethy-
lated DMGs more frequent
than hypermethylated DMGs
(Fig. S3A). In CD8C and CD4C

cells, the relative proportion of

Figure 3. Immune cell subset-specific DMRs are mainly located in the gene body and mostly found in non-
CGI regions. The genomic location of the cell subset-specific DMRs (described in Tables S6-S9) from 4 dif-
ferent immune subsets in 5 healthy females was analyzed and compared to the total CpG cover on chip.
(A) Genomic location of CpGs defined as promoter, 50 UTR, 1st Exon, Gene Body, 30 UTR, and intergenic
region. The percentages of total CpG sites scanned (black) and of cell subset-specific DMRs (white) within
each genomic location are presented. (B) Distribution of CpG positions relative to CGI: Island, Shore, Shelf,
and Open Sea. The percentages of total CpG sites scanned (black) and of cell subset-specific DMRs (white)
relative to CpG position are presented. (C) The percentages of total CGIs scanned (black) and of cell subset-
specific CGIs (gray) are presented in 3 genomic regions: promoter, gene body, and intergenic region.

Table 2. Summary of location and enrichment of cell subset- and sex-specific DMGs

DMRs Promoter Gene body Enhancer CGIs Open sea

Immune cell
subset-specific

DMRs 16% versus 25%
of total CpG sites
(reduced)

42% versus 33%
of total CpG sites
(enriched)

75% versus 64% of
total CpG sites
(enriched)

7% versus 31%
of total CpG sites
(reduced)

55% versus 36% of
total CpG sites
(enriched)

% DMGs of negatively
correlated
DEG-DMG pairs

27% 47%

% DMGs of positively
correlated DEG-DMG
pairs

12% 70%

Sex-specific DMGs 20% versus 25% of
total CpG sites
(reduced)

36% versus 33% of
total CpG sites
(no change)

60% versus 64% of
total CpG sites
(no change)

38% versus 31%
of total CpG sites
(enriched)

31% versus 36%
of total CpG sites
(reduced)

Percentage of DMGs in a specific location, compared to the total CpG sites scanned by the chip in the location. We defined a difference� 5% as enrichment
or reduction.
Percentage of DMGs in the promoter or gene body out of correlated DEG-DMG pairs (other locations not included)
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hypermethylated DMGs in the gene body was lower compared to
other cell subsets (Fig. S3B). In CD4C cells, a relatively lower
proportion of hypomethylated DMGs were found within CGIs,
while a relatively higher proportion was found in the open sea,
compared to the other subsets (Fig. S3C). This indicates that
each immune cell subset-specific methylome is comprised of a
pattern of both specific hypo- and hyper-methylated CpGs,
mainly located in non-CGIs within the intra- and inter-genic
regions.

The genomic distribution of negative and positive
correlations between immune cell subset-specific methylome
and transcriptome

It is well accepted today that DNAm has several functional
roles; however, its main function remains being the regulation of
gene expression, with a negative correlation between expression
and methylation being the more common outcome. The relation
between gene expression and methylation was evaluated by merg-
ing the DMGs and DEGs datasets for each cell subset using the
gene symbol as a common field. This procedure was performed
for both the male and female data sets and the number of both
negatively as well as positively DMG-DEG pairs determined.
The number of correlating genes was surprisingly small,

especially in CD4C and CD8C cell subsets (Fig. 4A); hence, only
CD14C and CD19C data are presented in Figure 4B–C. The
low number of correlating genes may be due to incomplete anno-
tation of CpGs, such as open sea CpGs without association to
defined transcripts, to transcripts not included in the GEX chip,
such as srRNA, or to the simple method used to combine the 2
datasets by gene ID. For some of our correlated pairs, such as
AXIN2 and CD82, the correlation between expression and meth-
ylation has previously been described37,38; however, for most
pairs, such as CD93 and KLRD1, the correlation is novel
(a complete list of correlating genes can be found in Table S10).
Approximately 70% of the positively correlated, but less than
50% of negatively correlated, DMG-DEG pairs were located
within the gene body, while in the promoter the numbers were
»12% and »27%, respectively, supporting our previous results
on the importance of DNA methylation within the gene body
(Fig. 4B). Negative correlation between hypomethylated
DMG-DEG pairs was more frequent (Fig. 4A, C), but positive
correlations, of either hypomethylated and silenced genes or
hypermethylated and active genes, could be observed in all sub-
sets (Fig. 4A, C). Our results support the considerable evidence
of a negative correlation between hypomethylation and gene acti-
vation; we found that this is observed in similar proportion in

the promoter and gene body geno-
mic regions. In addition, the num-
ber of positive correlated pairs was
noteworthy; however, these inter-
actions were observed mainly in
the gene body.

Pathway analysis shows
distinct functional pathway
enrichment for negatively and
positively correlated DEGs
and DMGs

Correlations between DNA
methylation and gene expression
in a population context have been
reported to be both positive and
negative,39,40 with positively corre-
lated methylation appearing
mainly, but not solely, in the gene
body.39 In fact, both negative and
positive correlated methylation
seems to be highly replicated across
cell types, with effect sizes being
cell type specific.39 Since hyperme-
thylated promoter CpGs are often
negatively correlated with expres-
sion and mainly found in long-
term suppressed genes involved in
development, and gene body
methylation is often positively cor-
related with expression and associ-
ated with active genes and tissue
specificity,4 we hypothesized that

Figure 4. Hypomethylated DMGs negatively correlate with DEGs in all subsets. (A) Table presenting the
number of negative and positive correlated DMG-DEG pairs in each cell subset, as obtained from the data-
sets of 5 healthy females and public data sets from 6 healthy males3. (B) The percentage of positive (C) and
negative (¡) correlated DMG-DEG pairs in CD14 and CD19 cells by genomic region: promoter (black) and
gene body (gray). (C, D) Plots showing the correlation of cell subset-specific genes changing both in methyl-
ation and in gene expression between cell subsets, with either increased (C) or decreased (¡) methylation
or expression, in CD14 (C) or CD19 (D) cells.
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the direction of correlation may be associated with different bio-
logical functions and pathways or may reflect differences in the
regulatory mechanisms. To test this, negatively and positively
correlated DMG-DEG pairs from either female and male mono-
cyte data sets, were analyzed using Ingenuity Pathway Analysis
(IPA) software. As was shown in Figure 2C, immune cell subsets
DMGs of males and females were comparable; however, the lists
of correlating DMG-DEG pairs overlap by less than a third
between males and females, as can be seen in the Venn-diagram
in Figure 5A–B. We cannot rule out that this difference might
be due to sex-associated differences in expression, but the most
plausible explanation is the difference between gene expression
platforms (Affymetrix versus Illumina).34,35 Despite the limited
overlap, the lists of top enriched pathways with a
Z-score>1.8 included similar functions for the male and female
datasets, as summarized in Figure 5C-D. Several of the pathways,
such as cell movement, cell migration, and cell proliferation, all
quite general pathways, appear for both positively and negatively
correlated genes, suggesting that these genes are integral parts of
the regulation of specific immune cell functions, and that both
interactions between methylation and expression are part of this
mechanism. However, the inflammatory response appeared only
in the negatively correlated list, while cell death appeared only in
the positively correlated list, implying that these 2 biological
pathways might be regulated by different mechanisms.

Detection of sex-specific
methylation patterns shared
by all immune cell subsets

In order to detect sex-specific
DMGs, statistical analysis was per-
formed on the male and female
methylation data sets, using 2 way
ANOVA for sex and cell subsets
after excluding cross-reacting
probes.41 This analysis highlighted
sex-specific methylation in about
14,000 CpG sites (Fig. 6). Of
these, about 6,500 were located on
the X-chromosome, while the
remaining 7,500 DMGs were
located on autosomal chromo-
somes (Table S11). About 75% of
these sex-specific DMGs were
found to be hypermethylated in
females compared to males (Sup-
plemental Table S11). The distri-
bution of autosomal sex-specific
DMGs in different genomic loca-
tions was found to be relatively
similar to the total CpG sites distri-
bution, but with a minor enrich-
ment in gene body and intergenic
region (36% and 29% vs. 33% and
25% of the total CpG sites, respec-
tively) (Fig. 7A and Table 2),

similar to cell subset-specific DMGs (Fig. 3A). The distribution
of autosomal sex-specific DMGs relatively to CGI showed
enrichment in island and shore, but reduction in open sea CpGs
(38%, 26%, and 31% versus 31%, 23%, and 36 % of the total
CpG sites, respectively) (Fig. 7B and Table 2), in contrast to
what we showed for cell subset-specific DMGs (Fig. 3B). Com-
pared to total CpG sites, autosomal sex-specific DMR CGIs were
highly enriched in the gene body, 41% vs. 25%, and intergenic
region, 25% versus 15%, while reduced in the promoter, 17%
vs. 36% (Fig. 7C and Table 2). No such deviation was observed
on the sex chromosomes (data not shown), and unlike immune
cell-specific subset DMGs, no enrichment in enhancer elements
was found in sex-specific DMGs (summarized in Table 2).
Taken together, these results indicate that, compared to immune
cell-specific DMGs, which were mainly found in non CGI
regions, the autosomal sex-specific DMGs are found more fre-
quently in CGIs, suggesting some difference in the role of meth-
ylation in the regulation of sex- versus cell subset-specificity.

Pathway analysis of sex-specific DMGs
Sex-specific DMGs on the sex chromosomes and on autoso-

mal chromosomes were evaluated using IPA software. Using
extremely stringent criteria, only genes with an average difference
in methylation of at least 15% between females and males and
with at least 3 hyper- or hypo-methylated CpGs were selected.
No enrichment to any specific pathway was found for the 461

Figure 5. Similar pathway enrichment is found in the gene-lists of both negatively and positively correlating
cell subset-specific DMG-DEG pairs. (A, B) Venn diagrams showing the overlap between the female and
male lists of negatively (A) and positively (B) correlating cell subset-specific DMG-DEG pairs in CD14 cells,
obtained from the datasets of 5 healthy females and public data sets from 6 healthy males3. (C, D) Top
enriched pathways and biological functions, receiving the highest Z-scores in an IPA analysis of the lists of
negatively (C) and positively (D) correlating cell subset-specific DMG-DEG pairs in CD14 cells in either males
or females. A Z-score below ¡1.8 or above 1.8 was considered significant.
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DMGs on the sex chromosome, most prabably because the mas-
sive methylation due to X-chromosome inactivation masks the
sex-specific DMGs. IPA analysis of the 224 autosomal sex-spe-
cific DMGs linked 7 transcription regulators as upstream regula-
tors of 13 sex-specific DMGs, with an enrichment Z-score above
2 or below ¡2, as can be visualized in Figure 8A. These 13 tran-
scripts and 7 transcription regulators were connected to biologi-
cal functions, such as cellular proliferation (Z score D 2.435),
cellular differentiation (Z score D 2.554), and embryonic devel-
opment (Z score D 1.729). Sox-2 and POU5F1(Oct-4) are mas-
ter regulators of transcription and have been shown to be
essential for mammalian development,42 and Sox1, Sox2, and
Sox3 have been shown to interact with their putative co-factor
Oct4 during early development.43 Thus, this result seems to con-
nect some of the sex-specific DMGs to regulation of early devel-
opment. The three networks with highest score obtained in IPA
network analysis for autosomal sex-specific DMGs are presented
in Table 3, and network number 2 is presented in Figure 8B.
Although the biological significance of the network is still
unclear, it links several immune-related molecules, such as CD3,
lymphocyte-specific protein 1(LSP1), IgM, BCL11B, TNFRSF4,
and the NFKB complex, to the female endocrine system, via the
estrogen receptor (ER). Thus, this network shows a possible
crosstalk between the immune system and female hormones that
potentially could alter immune response in females compared to
males.

Discussion

DNA methylation has been shown to be implicated in the
establishment, maintenance, and activation of cell type spe-
cific expression.8,14,44 The distinct expression and methylation
profiles we found for each subset, while overlapping the pro-
file of PBMCs, strongly emphasizes that DNA methylation
patterns must be studied in purified cell subsets. Our data on
immune cell profiles is expected to contribute to the creation
of a methylome atlas, reflecting different interpretations of
genome-wide methylation signals that will eventually be func-
tionally interrogated.3,8,32 Cell subset-specific hypomethylated
regions have previously been shown by others to be enriched
for SNPs associated with immune-mediated disease in
genome-wide association studies, indicating that altered meth-
ylation might contribute to disease risk.3 Disease-specific
immune cell DNA methylation patterns have been identified
in autoimmune patients with systemic lupus erythematosus,
partly associated with a disease-mediated change in the com-
position of the CD4C population.21 Peripheral blood-derived
DNA methylation profiles have been shown to be able to pre-
dict several non-haematopoietic cancers, perhaps by identify-
ing shifts in leukocyte populations, representative of disease,
thus representing a powerful diagnostic tools,45 and DNA
hypomethylation in blood leukocytes has been related to can-
cer risk.46 Our aim was to create cell- and sex-specific data-
sets of immune cell subsets to study the interaction between
transcription and methylation in both health and disease. We

Figure 6. Sex-specific DMRs in haematopoietic cells are abundant. The
methylome datasets of 4 immune cell subsets from 5 females and 6
males3 were compared and sex-specific DMRs identified. The average
methylation b-values of these DMRs are presented in a heat plot with
red and blue colors indicating high and low methylation levels, respec-
tively. On the X-axis: sex and cell subset-specific name (M: male, F:
female). On the Y-axis, each line represents a different DMR. A complete
list of sex-specific DMRs is presented in Table S11.
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produced such a data set from
healthy females and, when com-
bining this with a parallel male
dataset from the public domain,3

we found a very high overlap in
cell subset methylation profiles
between males and females, with
an average correlation factor of
0.82. The fact that independent
data sets generated by 2 different
research groups gave such com-
parable results suggests that
DNA methylation profiles are
highly reproducible.

The HumanMethylation450
BeadChip has recently become an
attractive choice for quantitative
DNA methylation studies, among
others reasons due to its cost-bene-
fit aspects.47 However, as can be
seen in Figure 3, this product has a
relatively high coverage of pro-
moter regions and CGIs, and less
coverage of gene body or more dis-
tal CpG elements. Tissue specific
methylation has been shown to
occur over a wide range of CpG
densities, mainly in intragenic and
intergenic regions.9,15,48 The
majority of immune cell-specific
DMGs in the current study were
found in the gene body and inter-
genic regions, located in CpG
shores and open sea, while, to a
much lesser extent, in the promoter region and in CGIs. The
immune cell-specific DMGs were enriched within enhancer ele-
ments, and this is specifically of interest since »60% of SNPs
associated with autoimmune diseases has been mapped to
immune cell enhancers.36 Taken together, our results, summa-
rized in Table 2, point to that immune cell-specific methylation
is located mainly in inter- and intra-genic, non-CGI CpGs, in
line with recently published studies of immune cells.3,14 Hence,
better coverage of CpGs in distal genomic regions by bead arrays
is expected to provide epigenetic researchers with more valuable
information, especially for comprehending immune-mediated
diseases.

Immune cells differentiate throughout life from a common
haematopoietic progenitor into myeloid and lymphoid blood
lineages, and continue to differentiate and maturate in
response to physiological changes and environmental expo-
sure, thus demonstrating high plasticity. Lineage commit-
ment, acquisition of mature cell phenotype, and repression of
the naive cell state have been shown to be accompanied by
extensive DNA methylation remodeling, preferentially of
CpGs located in enhancer elements distal from defined CpG
islands and shores, and enriched for specific transcription

factors (TFs) binding sites.49,50 Our results support that
methylation patterns within intragenic and intergenic regions
are important for immune cell subset specificity and differen-
tiation, perhaps by modifying distal regulatory elements.

The expression and methylation datasets were combined
and the relationship between the two defined, revealing a
modest number of correlated genes pairs. As indicated previ-
ously, this might be due to limitations in the gene annotation
of CpGs or the CpG coverage of the arrays. Novel methods to
discover more complex relations between gene expression and
DNA methylation are being developed, but remain to be vali-
dated.51,52 Both negative and positive correlations between
expression and methylation were found, with the negatively
correlated, hypomethylated, active genes being more frequent
in all cell subsets evaluated. The positively correlated DMGs
were mainly found in the gene body, while negatively corre-
lated genes were common both in the promoter and in the
gene body. The latter is in line with the frequently observed
inverse correlation between methylation CGIs and transcrip-
tion.4,53,54 Several papers have described positive correlations
between methylation and transcription, mainly of intragenic
or intergenic CpGs,4,8,9,53,55,56 similar to our results

Figure 7. Autosomal sex-specific DMRs are mainly located in promoter CGIs. The genomic location of the
7,500 sex-specific, autosomal DMRs described in Table S11 was analyzed and compared to the total CpG
covered on chip. (A) Genomic location of CpGs defined as: promoter, 50 UTR, 1st Exon, Gene Body, 30 UTR,
and intergenic region. The percentaged of total CpG sites scanned (black) and of sex-specific DMRs (white)
within the 3 major genomic locations are presented. (B) Distribution of CpG positions relative to CGI: Island,
Shore, Shelf, and Open Sea. The percentages of total CpG sites scanned (black) and of sex-specific DMRs
(white) relative to CpG position are presented. (C) The percentages of total CGIs scanned in 3 genomic
regions, promoter, gene body, and intergenic region (black), and of sex-specific CGIs (gray) are presented.
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(summarized in Table 2). It was shown that while negative
correlations between expression and methylation were more
frequently associated with activation markers sites, such as
H3K4me3 and DNase I hypersensitive sites (DHS), positive
correlations were associated with repressive chromatin marker
sites, such as H3K27me3.57 Work on DHS published by the
ENCODE project indicated an inverse correlation between
DNA methylation and chromatin accessibility as assessed by
DHS, as well as with transcription factor expression.58 In gen-
eral, the depletion of DNA methylation does not necessarily
induce gene activation but rather renders a permissive state for
activation.59 Thus, it has been suggested that combined epige-
netic marks, such as histone markers, chromatin state, and
DNA methylation, might be better predictors for expression
level than position of the CpG sites with respect to the gene.57

A confounding factor in defining this relationship is the fact
that assays based upon bisulfite conversion, such as Human-
Methylation450 BeadChips, do not distinguish between
5hmC and 5mC. Since 5hmC has been associated with
demethylation and possible gene activation,1,2 it is possible

that at least part of the positive
correlations observed between
methylation and transcription
could be due to hydroxylation of
5mCs.55 5hmC is mostly
depleted in CGIs, but found in
the exons of gene bodies and
highly enriched in distal regula-
tory elements, which include
enhancers, insulators, p300-bind-
ing sites, and DHSs.59-61 Thus,
the observed enrichment of
immune cell-specific DMGs in
enhancer elements could at least
in part include 5hmC sites.59

Pathway analysis revealed similar
biological pathways for nega-
tively and positively correlated
genes, indicating that the direc-
tion of correlation is not specific
to a biological function. How-
ever, 2 pathways, the inflamma-
tory response and cell death
pathways, were specific to only
one of the directions, suggesting
that the regulatory mechanism of

these pathways may be different. These results emphasize the
complexity of the relation between methylation and gene
expression, and the need for future studies to decipher these
interactions.

In light of the well-known sexual dimorphism in the preva-
lence of several disease states, including autoimmune diseases,62

we assessed whether DNA methylation in immune cells may
differ between males and females. Sex differences in the human
transcriptome have been described in several tissues, including
in peripheral blood, where 582 DEGs were identified on auto-
somal chromosomes.63 Of these, female-biased DEGs were
enriched for several immune pathways, for estradiol-regulated
genes and linked to rheumatoid arthritis, thus emphasizing the
importance of studying the sex bias in gene regulation.63 Using
a public available methylome data set from males, we found
that male immune cell-specific DMGs highly overlapped with
the female methylome obtained, with only minor sex differen-
ces being observed. However, we detected 14,000 sex-specific
DMGs not associated with a specific cell subset. Of these,
46 % were detected on the sex chromosome, reflecting, most

Table 3. Three top enriched IPA networks for the autosomal sex-DMGs

Top pathways (negatively correlated autosomal sex-specific DEGs/DMGs) Score Focus molecule

1 Cell to signaling and interaction, molecular transport, small molecule biochemistry 42 26
2 Cell morphology, cell mediated immune response, cellular development 33 22
3 Dermatological diseases and conditions, organismal injury and abnormalities, Cardiovascular disease 28 20

Novel networks from a user gene list favoring denser connectivity networks, and maximization of genes from list, i.e., focus molecules, out of possible 35 per
network. The score of each network, expressed as –log10(P-value), is calculated as the probability of finding for more Focus Genes in a set of n genes ran-
domly selected from the Global.

Figure 8. Sex-specific autosomal DMGs are enriched in networks of regulators of early development and
linked to estrogen receptor and immune-related factors. Gene networks and pathways highlighted by inge-
nuity pathway analysis (IPA) of autosomal sex-specific DMGs. (A) An enriched interaction network (Z-score
above 1.8 or below¡1.8) of 7 transcription regulators (symbols), presented as light gray (predicted to be acti-
vated) and dark gray (predicted to be inhibited), regulate 13 genes, all hypermethylated in the female data
set compared to the male dataset, as indicated by the black color. The different shapes indicate molecular
family as defined in IPA path designer (enzyme, cytokine, peptidase, transcription regulator, transporter,
kinase, and other). (B) A top score network of hypermethylated genes (gray fill) and hypomethylated genes
(black fill) in females versus males, connecting immune molecules, such as CD3, LIF, BCL11B, and TNFRSF4
and the NFKB pathway to the female endocrine system, via the estrogen receptor. Details on this network
are found in Table 3.
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likely, sex chromosome dosage,64,65 but 54% sex-specific
DMGs were located on autosomal chromosomes (Table S11).
Even after excluding cross-reacting probes, which have been
shown to include »10% of the array probes,41 the number of
sex-specific DMGs, despite our stringent criteria, is still unex-
pectedly high, compared to previous publications.27,66,67 We
cannot rule out that some batch effect may occur, since the 2
datasets were generated in different laboratories. However,
since the cell subset-specific DMR lists in males and females
were highly similar (average correlation of 0.82), and since
DMGs were defined by highly stringent criteria, we believe
that the batch effect is minor in the current analysis. Further-
more, some of the sex-specific DMGs were found in the vicin-
ity of known sex specific genes, such as TDGF1, NDN,
PLAGL1, ERN1, and PEG10,68 thus providing further confi-
dence that the results are not confounded. We also detected
many novel sex-specific DMGs, such as MED8, PFKM, and
TEKT4; their role in sex-specific regulation and function
remains to be explored. The large number of sex-specific
DMGs found in our immune cell samples, suggests that auto-
somal sex-specific DMGs are in part tissue-specific, and that
autosomal sex-specific DMGs are more abundant in some tis-
sues than in others. This is supported by a recent publication
showing that autosomal sex-specific methylation is unique to
the specific brain tissue in a murine model.69,70 Thus, the
result of the current study provides a list of highly interesting
candidate genes to be studied in diseases with sexual dimor-
phism such as immune-mediated/autoimmune diseases. The
effect of sex on methylation is well documented,66 including
the recognition that X-chromosome inactivation in females is
accompanied with widespread CpG hypermethylation.64 Sex
differences appear in embryos before the production of hor-
monal factors by the gonads, causing long-lasting epigenetic
changes that, together with later hormonal regulation, may
eventually create sexual dimorphism.71 Some of the autosomal
sex-DMGs, such as TLE1 and NUPL1, found by both us and
Liu et al. could already be detected in samples from umbilical
cord blood at time of birth.66,72 However, sex-specific methyla-
tion has been shown to be modified by sex hormones,23,69 as
suggested also from preliminary studies showing hormone-
related changes in DNA methyltransferase expression during
menstrual cycles or pregnancy in the uterus,59,73 indicating
that the mechanism of sex differences in CpG methylation is
complex and dynamic. Compared to immune cell subset-spe-
cific DMGs, autosomal sex-specific DMGs were much more
common in CGIs, suggesting some difference in the mecha-
nisms of sex-related vs. immune cell-specific regulation; how-
ever, in both cases, the DMGs were mainly found in the gene
body.

Pathway analysis of autosomal DMGs revealed a network of
transcription factors known to be master regulators, essential
in early mammalian embryo development.42,74,75 Some of the
DMGs connected in this network have been shown to be
involved in gonad differentiation, such as WNT5A, or to be
differently expressed between male and female mice, such
as the mesoderm-specific transcript/imprinted paternally

expressed gene 1 (MEST).76,77 Hence, it is possible that sex-
specific DMGs observed in the current study arise already dur-
ing early embryonic development and may be reinforced by
sex hormones after puberty. The results of a network analysis
of the autosomal sex-specific DMGs included a high-score net-
work connecting ER and molecules with major roles in immu-
nity, such as the pathway to the sex-specific DMGs. The role
of ER in both innate and adaptive immunity is well known
and modulation of ER function has been suggested as a poten-
tial target for therapy in autoimmune diseases.78,79 Thus, these
sex-specific DMGs could be involved in the sex-biased preva-
lence of autoimmune diseases; however, this aspect needs to be
further investigated. All in all, further classification and exami-
nation of sex-related changes in expression, methylation, chro-
matin accessibility, and functional pathways is necessary in
order to understand the molecular basis of sex-specific modifi-
cations in health and disease.28,46,65

In this study, we determined the expression and methylation
profiles of 4 immune cell subsets and characterized the specific
genomic locations of differential methylation in immune cells as
well as the correlation between methylome and transcriptome.
Furthermore, we identified extensive sex-specific methylation
located on the autosomal chromosomes, and propose that these
changes could have a biological significance that might contribute
to sex-specific bias in pathological states, such as autoimmune
diseases. Our comprehension of the role of methylation in gene
regulation is limited due to the complexity of the relation
between methylation and expression, depending, among other
things, upon location and density of the CpGs, as demonstrated
in this study. Further obstacles include the limitations of available
databases of regulatory elements, as well as the difficulty in
manipulating CpG methylation in a site-specific manner in order
to study functional effect. Hence, better and more comprehensive
algorithms will be required to capture the diversity of the cross-
talk between expression, chromatin state, regulatory elements,
and methylation. The current study may contribute another
building block in defining a control immune cell methylome and
transcriptome that may serve as references for studying abnormal
patterns of immune cell profiles in pathological states, such as
autoimmune diseases.

Materials and Methods

Subjects
Six female and 6 male healthy donors (ages 30-52 years) were

recruited at the Institute of Myology, Paris, France, with
approval of the local ethical committee (Ref afssaps B100384-
30) in accordance with the Helsinki Declaration of 1975, after
signing a written informed consent. All donors had no known
medical conditions and were not receiving any regular medica-
tion. Details on donors are presented in Table S1. Female RNA
and DNA samples were used for both gene expression and meth-
ylation analysis as described below, while male RNA samples
were used for gene expression validation by qRT-PCR.
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Cell separation and DNA/RNA extraction
PBMCs were purified from 60 ml blood by Ficoll density gra-

dient centrifugation (U16 NovaMed). Some PBMCs were set
aside, and the rest were used for subset isolation. The CD14 sub-
set was isolated using EasySepTM Human Monocyte Enrichment
Kit (#19059 Stemcell). B and T cell subsets were purified by
FACS ARIA sorting (Becton Dickinson) using anti-CD19 anti-
body (Ab) (R0808, DAKO), anti-CD4 Ab (556345, BD Phar-
Mingen), and anti-CD8 Ab (F0765,Dako). Recovery was 65-
80% and purity >89% (detailed in Table S1). FoxpP3C CD4C

cells (Tregs) were also sorted by the FACS ARIA, but not used in
this analysis; therefore, the CD4C T cells included in the study
are Foxp3¡. From each sample, both RNA and DNA was
extracted using AllPrep kit (#80204 Qiagen), according to man-
ufacturer’s protocol. DNA concentration was measured by pico-
green and stored at 4�C until use. RNA quantity and quality was
measured by NanoDrop and Agilent BioAnalyzer, respectively,
and stored at ¡80�C until use.

Genome-wide expression and DNA methylation data
generation

Data generation was performed at the Genomics Core Facility at
the Rappaport Faculty of Medicine, Technion, according to the
manufacturer’s protocol. RNA and DNA samples from 5 females
were hybridized to IlluminaHumanHT-12 v4� (BD-103-0204 Illu-
mina) or HumanMethylation450 BeadChip (WG-314-1003 Illu-
mina), respectively. The data has been submitted to Gene Expression
Omnibus (GEO): accession number GSE71245. The methylation
BeadChip detects the methylation status of 450,000 CpG sites
throughout the genome; the quantitative measurement of methyla-
tion for each CpG is expressed as a b-value ranging between 0 and 1,
with 0 indicating an unmethylated and 1 indicating a fully methyl-
ated CpG site.80 In addition, public available gene expression (GEX)
and DNA methylation data sets generated from 5 primary immune
subsets from 6 Caucasian, non-smoking males, age 36–51 y (average
age 45 y), was downloaded from ArrayExpress [accession number:
E-ERAD-179 (K450 Illumina methylation arrays), E-MTAB-2062
(GEXAffymetrix arrays)],3 for comparison with our female datasets.

Statistical and pathway analysis
Gene expression data was analyzed using JMP Genomics V6

software (SAS Institute Inc., Cary, NC), as previously
described.81,82 DEGs were defined as transcripts with a �1.6-
fold change of expression at a � 0.05 False Discovery Rate
(FDR) adjusted P-value.83 The methylation BeadChip data was
preprocessed using an R-script pipeline developed by Touleimat
and Tost 80 and the normalized methylation b-values were
imported into JMP-genomic software. Cross reacting probes
between X- and Y-chromosomes, and probes that overlapped
SNPs were excluded.41 DMGs between cell subsets were defined
as �15% difference in methylation b-values at a � 0.05 FDR
adjusted P-value. The same analysis was performed on the public
downloaded data sets from males, creating a list of male DMGs
and DMGs. Due to the different platforms used for GEX data
generation, Affymetrix versus Illumina, only the methylome
datasets were compared between females and males. The

correlation levels between the male and female subset-specific
DMR lists were determined by Pearson correlation calculated
using the JMP Genomics V6 software (SAS Institute Inc., Cary,
NC), as previously described.81,82 The direction of correlation
between expression and methylation was independently assessed
for the data sets of both females and males. An enhancer annota-
tion list from a Broad Institute Portal (http://www.broadinsti-
tute.org/pubs/finemapping/?qDdata-portal)36 was downloaded;
annotation regarding enhancer position was added to the Illu-
mina-provided annotation file. Ingenuity Pathway Analysis (IPA
8.0, Ingenuity� Systems, Redwood City, CA) was used to iden-
tify statistically significant functional categories in the dataset.
Gene lists were imported into IPA and mapped to biological
functional pathways. Z-score, a statistical method for rescaling
and standardizing data, was used to determine enrichment, with
Z-scores greater than 1.8 or smaller than 1.8 considered signifi-
cant.84 The IPA algorithm generates novel networks from a user
gene list, favoring denser connectivity networks with low proba-
bility to be generated by random chance, and maximization of
genes from list, known as focus molecules. The score of each net-
work, expressed as –log10(P-value) is calculated as the probability
of finding for more Focus Genes in a set of n genes randomly
selected from the Global Molecular Network.84,85

cDNA preparation and RT-PCR
Microfluidic dynamic arrays (BMK-M10-96.96-EG/1 Fluid-

igm) were used to perform high-throughput gene expression meas-
urements by RT-PCR of 44 genes on RNA samples from 4 cell
subset in 5 females and 6 males, according to the manufacturer’s
protocol.86 Ubiquitin-conjugating enzyme E2D2 (UBE2D2) was
used as a reference gene. Ribosomal Protein L4 (RPL4) was used
as a negative control gene, since this gene was known from previ-
ous experiments in our lab not to be cell-specific. Relative quantifi-
cation was calculated by the comparative CT method (2¡DDCT),
and results are shown as fold change of expression.

Target bisulfite amplification and next generation
sequencing

We have developed a novel assay for DNA methylation that
we named target bisulfite sequencing (TBS). This new assay com-
bines target bisulfite amplification with next generation sequenc-
ing and will be described in more detail in a separated
manuscript (under preparation). Genomic DNA (gDNA) was
treated with the EpiTect Bisulfite conversion kit (#59104 Qia-
gen), primers were designed using the Bisearch primer web site
(http://bisearch.enzim.hu/), and target specific amplification was
performed with EpiMark Hot Start Taq DNA Polymerase
(NEB-M0490L New England Biolab). The amplicons were
sequenced using Ion Torrent, according to manufacturer’s proto-
col.87 Alignment of the sequences to our target bisulfite reference
sequences and base calling was performed using Torrent Suite
software version 2.0.1 and AmpliseqTM Variant Caller plug-in
(Life Technologies). The Integrative Genomics Viewer (IGV)
was used to visualize the read alignment.88 For each transcript 3-
20 CpG sites located within 200-400 bp amplicons were
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identified and methylation percentage calculated as the number
of cytosine sequenced out of the total number of sequences.
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France for the cell sorting experiments, and Dr. Liat Linde,

the Genomics Core Facility at the Rappaport Faculty of
Medicine, Technion, Israel for generation of the gene expres-
sion and DNA methylation data.

Funding

This work was supported by 7th Framework Program of the
European Union FIGHT-MG [grant no. 242210] and by AFM-
T�el�ethon [grant no. 16910].

Supplemental Material

Supplemental data for this article can be accessed on the
publisher’s website.

References

1. Thalhammer A, Hansen AS, El-Sagheer AH, Brown T,
Schofield CJ. Hydroxylation of methylated CpG dinu-
cleotides reverses stabilisation of DNA duplexes by
cytosine 5-methylation. Chem Commun (Camb)
2011; 47:5325-7; PMID:21451870; http://dx.doi.org/
10.1039/c0cc05671e

2. Guo JU, Su Y, Zhong C, Ming GL, Song H. Hydroxyl-
ation of 5-methylcytosine by TET1 promotes active
DNA demethylation in the adult brain. Cell 2011;
145:423-34; PMID:21496894; http://dx.doi.org/
10.1016/j.cell.2011.03.022

3. Zilbauer M, Rayner TF, Clark C, Coffey AJ, Joyce CJ,
Palta P, Palotie A, Lyons PA, Smith KG. Genome-wide
methylation analyses of primary human leukocyte sub-
sets identifies functionally important cell-type-specific
hypomethylated regions. Blood 2013; 122:e52-60;
PMID:24159175; http://dx.doi.org/10.1182/blood-
2013-05-503201

4. Jones PA. Functions of DNA methylation: islands, start
sites, gene bodies and beyond. Nat Rev Genet 2012;
13:484-92; PMID:22641018; http://dx.doi.org/
10.1038/nrg3230

5. Ziller MJ, Gu H, Muller F, Donaghey J, Tsai LT,
Kohlbacher O, De Jager PL, Rosen ED, Bennett DA,
Bernstein BE, et al. Charting a dynamic DNA methyla-
tion landscape of the human genome. Nature 2013;
500:477-81; PMID:23925113; http://dx.doi.org/
10.1038/nature12433

6. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le
JM, Delano D, Zhang L, Schroth GP, Gunderson KL,
et al. High density DNA methylation array with single
CpG site resolution. Genomics 2011; 98:288-95;
PMID:21839163; http://dx.doi.org/10.1016/j.
ygeno.2011.07.007

7. Straussman R, Nejman D, Roberts D, Steinfeld I,
Blum B, Benvenisty N, Simon I, Yakhini Z, Cedar H.
Developmental programming of CpG island methyla-
tion profiles in the human genome. Nat Struct Mol
Biol 2009; 16:564-635; PMID:19377480; http://dx.
doi.org/10.1038/nsmb.1594

8. Deaton AM, Webb S, Kerr AR, Illingworth RS, Guy J,
Andrews R, Bird A. Cell type-specific DNA methyla-
tion at intragenic CpG islands in the immune system.
Genome Res 2011; 21:1074-86; PMID:21628449;
http://dx.doi.org/10.1101/gr.118703.110

9. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ,
D’Souza C, Fouse SD, Johnson BE, Hong C, Nielsen
C, Zhao Y, et al. Conserved role of intragenic DNA
methylation in regulating alternative promoters. Nature
2010; 466:253-7; PMID:20613842; http://dx.doi.org/
10.1038/nature09165

10. Cao-Lei L, Leija S, Kumsta R, W€ust S, Meyer J, Turner
J, Muller C. Transcriptional control of the human glu-
cocorticoid receptor: identification and analysis of alter-
native promoter regions. Hum Genet 2011; 129:533-

76; PMID:21234764; http://dx.doi.org/10.1007/
s00439-011-0949-1

11. Anastasiadou C, Malousi A, Maglaveras N, Kouidou S.
Human epigenome data reveal increased CpG methyla-
tion in alternatively spliced sites and putative exonic
splicing enhancers. DNA Cell Biol 2011; 30:267-342;
PMID:21545276; http://dx.doi.org/10.1089/
dna.2010.1094

12. Malousi A, Maglaveras N, Kouidou S. Intronic CpG
content and alternative splicing in human genes con-
taining a single cassette exon. Epigenetics 2008; 3:69-
73; PMID:18418084; http://dx.doi.org/10.4161/
epi.3.2.6066

13. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano
C, Onyango P, Cui H, Gabo K, Rongione M, Webster
M, et al. The human colon cancer methylome shows
similar hypo- and hypermethylation at conserved tis-
sue-specific CpG island shores. Nat Genet 2009;
41:178-86; PMID:19151715; http://dx.doi.org/
10.1038/ng.298

14. Ji H, Ehrlich LI, Seita J, Murakami P, Doi A, Lindau P,
Lee H, Aryee MJ, Irizarry RA, Kim K, et al. Compre-
hensive methylome map of lineage commitment from
haematopoietic progenitors. Nature 2010; 467:338-42;
PMID:20720541; http://dx.doi.org/10.1038/
nature09367

15. Slieker RC, Bos SD, Goeman JJ, Bovee JV, Talens
RP, van der Breggen R, Suchiman HE, Lameijer
EW, Putter H, van den Akker EB, et al. Identifica-
tion and systematic annotation of tissue-specific dif-
ferentially methylated regions using the Illumina
450k array. Epigenetics Chromatin 2013; 6:26;
PMID:23919675; http://dx.doi.org/10.1186/1756-
8935-6-26

16. Qu Y, Lennartsson A, Gaidzik VI, Deneberg S, Karimi
M, Bengtzen S, Hoglund M, Bullinger L, Dohner K,
Lehmann S. Differential methylation in CN-AML
preferentially targets non-CGI regions and is dictated
by DNMT3A mutational status and associated with
predominant hypomethylation of HOX genes. Epige-
netics 2014; 9:1108-19; PMID:24866170; http://dx.
doi.org/10.4161/epi.29315

17. Dayeh T, Volkov P, Salo S, Hall E, Nilsson E, Olsson
AH, Kirkpatrick CL, Wollheim CB, Eliasson L, Ronn
T, et al. Genome-wide DNA methylation analysis of
human pancreatic islets from type 2 diabetic and non-
diabetic donors identifies candidate genes that influence
insulin secretion. PLoS Genet 2014; 10:e1004160;
PMID:24603685; http://dx.doi.org/10.1371/journal.
pgen.1004160

18. Shen J, Wang S, Zhang YJ, Wu HC, Kibriya MG, Jas-
mine F, Ahsan H, Wu DP, Siegel AB, Remotti H, et al.
Exploring genome-wide DNA methylation profiles
altered in hepatocellular carcinoma using Infinium
HumanMethylation 450 BeadChips. Epigenetics 2013;
8:34-43; PMID:23208076; http://dx.doi.org/10.4161/
epi.23062

19. Zouali M. Epigenetics in lupus. Ann N Y Acad Sci
2011; 1217:154-65; PMID:21251010; http://dx.doi.
org/10.1111/j.1749-6632.2010.05831.x

20. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G,
Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, et al.
Genome-wide methylation profiles reveal quantitative
views of human aging rates. Mol Cell 2013; 49:359-67;
PMID:23177740; http://dx.doi.org/10.1016/j.
molcel.2012.10.016

21. Absher DM, Li X, Waite LL, Gibson A, Roberts K,
Edberg J, Chatham WW, Kimberly RP. Genome-wide
DNA methylation analysis of systemic lupus erythema-
tosus reveals persistent hypomethylation of interferon
genes and compositional changes to CD4C T-cell pop-
ulations. PLoS Genet 2013; 9:e1003678;
PMID:23950730; http://dx.doi.org/10.1371/journal.
pgen.1003678

22. Maegawa S, Hinkal G, Kim HS, Shen L, Zhang L,
Zhang J, Zhang N, Liang S, Donehower LA, Issa JP.
Widespread and tissue specific age-related DNA meth-
ylation changes in mice. Genome Res 2010; 20:332-
40; PMID:20107151; http://dx.doi.org/10.1101/
gr.096826.109

23. Ammerpohl O, Bens S, Appari M, Werner R, Korn B,
Drop SL, Verheijen F, van der Zwan Y, Bunch T,
Hughes I, et al. Androgen receptor function links
human sexual dimorphism to DNA methylation. PLoS
One 2013; 8:e73288; PMID:24023855; http://dx.doi.
org/10.1371/journal.pone.0073288

24. Vige A, Gallou-Kabani C, Junien C. Sexual dimor-
phism in non-Mendelian inheritance. Pediatr Res
2008; 63:340-7; PMID:18356736; http://dx.doi.org/
10.1203/PDR.0b013e318165b896

25. Orozco LD, Rubbi L, Martin LJ, Fang F, Hormozdiari
F, Che N, Smith AD, Lusis AJ, Pellegrini M. Intergen-
erational genomic DNA methylation patterns in mouse
hybrid strains. Genome Biol 2014; 15:R68;
PMID:24887417; http://dx.doi.org/10.1186/gb-2014-
15-5-r68

26. El-Maarri O, Becker T, Junen J, Manzoor SS,
Diaz-Lacava A, Schwaab R, Wienker T, Olden-
burg J. Gender specific differences in levels of
DNA methylation at selected loci from human
total blood: a tendency toward higher methylation
levels in males. Hum Genet 2007; 122:505-14;
PMID:17851693; http://dx.doi .org/10.1007/
s00439-007-0430-3

27. Xu H, Wang F, Liu Y, Yu Y, Gelernter J, Zhang H.
Sex-biased methylome and transcriptome in human
prefrontal cortex. Hum Mol Genet 2014; 23:1260-70;
PMID:24163133; http://dx.doi.org/10.1093/hmg/
ddt516

28. Ngo ST, Steyn FJ, McCombe PA. Gender differences
in autoimmune disease. Front Neuroendocrinol 2014;
35:347-69; PMID:24793874; http://dx.doi.org/
10.1016/j.yfrne.2014.04.004

www.tandfonline.com 955Epigenetics

http://dx.doi.org/10.1080/15592294.2015.1084462
http://dx.doi.org/10.1080/15592294.2015.1084462


29. Ober C, Loisel DA, Gilad Y. Sex-specific genetic archi-
tecture of human disease. Nat Rev Genet 2008; 9:911-
22; PMID:19002143; http://dx.doi.org/10.1038/
nrg2415

30. Hewagama A, Patel D, Yarlagadda S, Strickland FM,
Richardson BC. Stronger inflammatory/cytotoxic T-
cell response in women identified by microarray analy-
sis. Genes Immun 2009; 10:509-16; PMID:19279650;
http://dx.doi.org/10.1038/gene.2009.12

31. Zandman-Goddard G, Peeva E, Shoenfeld Y. Gender
and autoimmunity. Autoimmun Rev 2007; 6:366-72;
PMID:17537382; http://dx.doi.org/10.1016/j.
autrev.2006.10.001

32. Liang L, Cookson WO. Grasping nettles: cellular het-
erogeneity and other confounders in epigenome-wide
association studies. Hum Mol Genet 2014; 23(R1):
R83-8; PMID:24927738

33. Li H, Zheng T, Chen B, Hong G, Zhang W, Shi T, Li
S, Ao L, Wang C, Guo Z. Similar blood-borne DNA
methylation alterations in cancer and inflammatory dis-
eases determined by subpopulation shifts in peripheral
leukocytes. Br J Cancer 2014; 111:525-31;
PMID:24960404; http://dx.doi.org/10.1038/
bjc.2014.347

34. Shi L, Reid LH, Jones WD, Shippy R, Warrington JA,
Baker SC, Collins PJ, de Longueville F, Kawasaki ES,
Lee KY, et al. The MicroArray Quality Control
(MAQC) project shows inter- and intraplatform repro-
ducibility of gene expression measurements. Nat Bio-
technol 2006; 24:1151-61; PMID:16964229; http://
dx.doi.org/10.1038/nbt1239

35. Maouche S, Poirier O, Godefroy T, Olaso R, Gut I,
Collet JP, Montalescot G, Cambien F. Performance
comparison of two microarray platforms to assess dif-
ferential gene expression in human monocyte and mac-
rophage cells. BMC Genomics 2008; 9:302;
PMID:18578872; http://dx.doi.org/10.1186/1471-
2164-9-302

36. Farh KK-H, Marson A, Zhu J, Kleinewietfeld M,
Housley WJ, Beik S, Shoresh N, Whitton H, Ryan
RJH, Shishkin AA, et al. Genetic and epigenetic fine
mapping of causal autoimmune disease variants. Nature
2015; 518:337-43; PMID:25363779; http://dx.doi.
org/10.1038/nature13835

37. Drucker L, Tohami T, Tartakover-Matalon S, Zisma-
nov V, Shapiro H, Radnay J, Lishner M. Promoter
hypermethylation of tetraspanin members contributes
to their silencing in myeloma cell lines. Carcinogenesis
2006; 27:197-204; PMID:16113057; http://dx.doi.
org/10.1093/carcin/bgi209

38. Koinuma K, Yamashita Y, Liu W, Hatanaka H, Kura-
shina K, Wada T, Takada S, Kaneda R, Choi YL, Fuji-
wara SI, et al. Epigenetic silencing of AXIN2 in
colorectal carcinoma with microsatellite instability.
Oncogene 2006; 25:139-46; PMID:16247484

39. Gutierrez-Arcelus M, Lappalainen T, Montgomery SB,
Buil A, Ongen H, Yurovsky A, Bryois J, Giger T,
Romano L, Planchon A, et al. Passive and active DNA
methylation and the interplay with genetic variation in
gene regulation. Elife 2013; 2:e00523;
PMID:23755361

40. Gutierrez-Arcelus M, Ongen H, Lappalainen T, Mont-
gomery SB, Buil A, Yurovsky A, Bryois J, Padioleau I,
Romano L, Planchon A, et al. Tissue-specific effects of
genetic and epigenetic variation on gene regulation and
splicing. PLoS Genet 2015; 11:e1004958; PMID:
25634236; http://dx.doi.org/10.1371/journal.
pgen.1004958

41. Chen YA, Lemire M, Choufani S, Butcher DT, Grafo-
datskaya D, Zanke BW, Gallinger S, Hudson TJ,
Weksberg R. Discovery of cross-reactive probes and
polymorphic CpGs in the Illumina Infinium Human-
Methylation450 microarray. Epigenetics 2013; 8:203-
9; PMID:23314698; http://dx.doi.org/10.4161/
epi.23470

42. Rizzino A. Sox2 and Oct-3/4: a versatile pair of master
regulators that orchestrate the self-renewal and pluripo-
tency of embryonic stem cells. Wiley Interdiscip Rev

Syst Biol Med 2009; 1:228-36; PMID:20016762;
http://dx.doi.org/10.1002/wsbm.12

43. Archer TC, Jin J, Casey ES. Interaction of Sox1, Sox2,
Sox3 and Oct4 during primary neurogenesis. Dev Biol
2011; 350:429-40; PMID:21147085; http://dx.doi.
org/10.1016/j.ydbio.2010.12.013

44. Futscher BW, Oshiro MM, Wozniak RJ, Holtan N,
Hanigan CL, Duan H, Domann FE. Role for DNA
methylation in the control of cell type specific maspin
expression. Nat Genet 2002; 31:175-9;
PMID:12021783; http://dx.doi.org/10.1038/ng886

45. Koestler DC, Marsit CJ, Christensen BC, Accomando
W, Langevin SM, Houseman EA, Nelson HH, Karagas
MR, Wiencke JK, Kelsey KT. Peripheral blood
immune cell methylation profiles are associated with
nonhematopoietic cancers. Cancer Epidemiol Bio-
markers Prev 2012; 21:1293-302; PMID:22714737;
http://dx.doi.org/10.1158/1055-9965.EPI-12-0361

46. Gao Y, Baccarelli A, Shu XO, Ji BT, Yu K, Tarantini L,
Yang G, Li HL, Hou L, Rothman N, et al. Blood leu-
kocyte Alu and LINE-1 methylation and gastric cancer
risk in the Shanghai Women’s Health Study. Br J Can-
cer 2012; 106:585-91; PMID:22173668; http://dx.
doi.org/10.1038/bjc.2011.562

47. Dedeurwaerder S, Defrance M, Calonne E, Denis H,
Sotiriou C, Fuks F. Evaluation of the Infinium Methyl-
ation 450K technology. Epigenomics 2011; 3:771-84;
PMID:22126295; http://dx.doi.org/10.2217/
epi.11.105

48. Liang P, Song F, Ghosh S, Morien E, Qin M, Mah-
mood S, Fujiwara K, Igarashi J, Nagase H, Held WA.
Genome-wide survey reveals dynamic widespread tis-
sue-specific changes in DNA methylation during devel-
opment. BMC Genomics 2011; 12:231;
PMID:21569359; http://dx.doi.org/10.1186/1471-
2164-12-231

49. Ronnerblad M, Andersson R, Olofsson T, Douagi I,
Karimi M, Lehmann S, Hoof I, de Hoon M, Itoh M,
Nagao-Sato S, et al. Analysis of the DNA methylome
and transcriptome in granulopoiesis reveals timed
changes and dynamic enhancer methylation. Blood
2014; 123:e79-89; PMID:24671952; http://dx.doi.
org/10.1182/blood-2013-02-482893

50. Scharer CD, Barwick BG, Youngblood BA, Ahmed R,
Boss JM. Global DNA methylation remodeling accom-
panies CD8 T cell effector function. J Immunol 2013;
191:3419-29; PMID:23956425; http://dx.doi.org/
10.4049/jimmunol.1301395

51. Vanderkraats ND, Hiken JF, Decker KF, Edwards JR.
Discovering high-resolution patterns of differential
DNA methylation that correlate with gene expression
changes. Nucleic Acids Res 2013; 41:6816-27;
PMID:23748561; http://dx.doi.org/10.1093/nar/
gkt482

52. Dyson MT, Roqueiro D, Monsivais D, Ercan CM,
Pavone ME, Brooks DC, Kakinuma T, Ono M, Jafari
N, Dai Y, et al. Genome-wide DNA methylation anal-
ysis predicts an epigenetic switch for GATA factor
expression in endometriosis. PLoS Genet 2014; 10:
e1004158; PMID:24603652; http://dx.doi.org/
10.1371/journal.pgen.1004158

53. Yu DH, Ware C, Waterland RA, Zhang J, Chen MH,
Gadkari M, Kunde-Ramamoorthy G, Nosavanh LM,
Shen L. Developmentally programmed 30 CpG island
methylation confers tissue- and cell-type-specific tran-
scriptional activation. Mol Cell Biol 2013; 33:1845-58;
PMID:23459939; http://dx.doi.org/10.1128/
MCB.01124-12

54. Marx A, Kahan T, Simon I. Integrative analysis of methyl-
ome and transcriptome reveals the importance of unmethy-
lated CpGs in non-CpG island gene activation. Biomed
Res Int 2013; 2013:785731; PMID:23936848; http://dx.
doi.org/10.1155/2013/785731

55. Banovich NE, Lan X, McVicker G, van de Geijn B,
Degner JF, Blischak JD, Roux J, Pritchard JK,
Gilad Y. Methylation QTLs Are Associated with
Coordinated Changes in Transcription Factor Bind-
ing, Histone Modifications, and Gene Expression

Levels. PLoS Genet 2014; 10:e1004663;
PMID:25233095; http://dx.doi.org/10.1371/
journal.pgen.1004663

56. Portela A, Esteller M. Epigenetic modifications and
human disease. Nat Biotechnol 2010; 28:1057-125;
PMID:20944598; http://dx.doi.org/10.1038/nbt.1685

57. Wagner JR, Busche S, Ge B, Kwan T, Pastinen T,
Blanchette M. The relationship between DNA methyl-
ation, genetic and expression inter-individual variation
in untransformed human fibroblasts. Genome Biol
2014; 15:R37; PMID:24555846; http://dx.doi.org/
10.1186/gb-2014-15-2-r37

58. Thurman RE, Rynes E, Humbert R, Vierstra J, Maur-
ano MT, Haugen E, Sheffield NC, Stergachis AB,
Wang H, Vernot B, et al. The accessible chromatin
landscape of the human genome. Nature 2012;
489:75-82; PMID:22955617; http://dx.doi.org/
10.1038/nature11232

59. Gao F, Das SK. Epigenetic regulations through DNA
methylation and hydroxymethylation: clues for early
pregnancy in decidualization. Biomol Concepts 2014;
5:95-107; PMID:25372745; http://dx.doi.org/
10.1515/bmc-2013-0036

60. Yu P, Xiao S, Xin X, Song CX, Huang W, McDee D,
Tanaka T, Wang T, He C, Zhong S. Spatiotemporal
clustering of the epigenome reveals rules of dynamic
gene regulation. Genome Res 2013; 23:352-64;
PMID:23033340; http://dx.doi.org/10.1101/
gr.144949.112

61. Stadler MB, Murr R, Burger L, Ivanek R, Lienert F,
Scholer A, van Nimwegen E, Wirbelauer C, Oakeley
EJ, Gaidatzis D, et al. DNA-binding factors shape the
mouse methylome at distal regulatory regions. Nature
2011; 480:490-5; PMID:22170606

62. Avidan N, Le Panse R, Berrih-Aknin S, Miller A.
Genetic basis of myasthenia gravis - a comprehensive
review. J Autoimmun 2014; 52:146-53;
PMID:24361103; http://dx.doi.org/10.1016/j.
jaut.2013.12.001

63. Jansen R, Batista S, Brooks AI, Tischfield JA, Willem-
sen G, van Grootheest G, Hottenga JJ, Milaneschi Y,
Mbarek H, Madar V, et al. Sex differences in the
human peripheral blood transcriptome. BMC Geno-
mics 2014; 15:33; PMID:24438232; http://dx.doi.org/
10.1186/1471-2164-15-33

64. Carrel L, Willard HF. X-inactivation profile reveals
extensive variability in X-linked gene expression in
females. Nature 2005; 434:400-4; PMID:15772666;
http://dx.doi.org/10.1038/nature03479

65. Bermejo-Alvarez P, Rizos D, Lonergan P, Gutierrez-
Adan A. Transcriptional sexual dimorphism during
preimplantation embryo development and its conse-
quences for developmental competence and adult
health and disease. Reproduction 2011; 141:563-70;
PMID:21339284; http://dx.doi.org/10.1530/REP-10-
0482

66. Liu J, Morgan M, Hutchison K, Calhoun VD. A study
of the influence of sex on genome wide methylation.
PLoS One 2010; 5:e10028; PMID:20386599; http://
dx.doi.org/10.1371/journal.pone.0010028

67. McCarthy NS, Melton PE, Cadby G, Yazar S, Fran-
china M, Moses EK, Mackey DA, Hewitt AW. Meta-
analysis of human methylation data for evidence of sex-
specific autosomal patterns. BMC Genomics 2014;
15:981; PMID:25406947; http://dx.doi.org/10.1186/
1471-2164-15-981

68. Boks MP, Derks EM, Weisenberger DJ, Strengman E,
Janson E, Sommer IE, Kahn RS, Ophoff RA. The rela-
tionship of DNA methylation with age, gender and
genotype in twins and healthy controls. PLoS One
2009; 4:e6767; PMID:19774229; http://dx.doi.org/
10.1371/journal.pone.0006767

69. Ghahramani NM, Ngun TC, Chen PY, Tian Y,
Krishnan S, Muir S, Rubbi L, Arnold AP, de Vries GJ,
Forger NG, et al. The effects of perinatal testosterone
exposure on the DNA methylome of the mouse brain
are late-emerging. Biol Sex Differ 2014; 5:8;

956 Volume 10 Issue 10Epigenetics



PMID:24976947; http://dx.doi.org/10.1186/2042-
6410-5-8

70. Laguna-Barraza R, Bermejo-Alvarez P, Ramos-Ibeas P,
de Frutos C, Lopez-Cardona AP, Calle A, Fernandez-
Gonzalez R, Pericuesta E, Ramirez MA, Gutierrez-
Adan A. Sex-specific embryonic origin of postnatal phe-
notypic variability. Reprod Fertil Dev 2012; 25:38-47;
PMID:23244827; http://dx.doi.org/10.1071/
RD12262

71. Arnold AP. The end of gonad-centric sex determination
in mammals. Trends Genet 2012; 28:55-61;
PMID:22078126; http://dx.doi.org/10.1016/j.
tig.2011.10.004

72. Adkins RM, Thomas F, Tylavsky FA, Krushkal J.
Parental ages and levels of DNA methylation in the
newborn are correlated. BMC Med Genet 2011;
12:47; PMID:21453505; http://dx.doi.org/10.1186/
1471-2350-12-47

73. Logan PC, Ponnampalam AP, Steiner M, Mitchell
MD. Effect of cyclic AMP and estrogen/progester-
one on the transcription of DNA methyltransferases
during the decidualization of human endometrial
stromal cells. Mol Hum Reprod 2013; 19:302-12;
PMID:23233487; http://dx.doi.org/10.1093/
molehr/gas062

74. Keramari M, Razavi J, Ingman KA, Patsch C,
Edenhofer F, Ward CM, Kimber SJ. Sox2 is essential
for formation of trophectoderm in the preimplantation
embryo. PLoS One 2010; 5:e13952; PMID:21103067;
http://dx.doi.org/10.1371/journal.pone.0013952

75. Shimozaki K. Sox2 transcription network acts as a
molecular switch to regulate properties of neural stem
cells. World J Stem Cells 2014; 6:485-90;
PMID:25258670; http://dx.doi.org/10.4252/wjsc.v6.
i4.485

76. Dahlhoff M, Pfister S, Blutke A, Rozman J, Klingens-
por M, Deutsch MJ, Rathkolb B, Fink B, Gimpfl M,
Hrabe de Angelis M, et al. Peri-conceptional obeso-
genic exposure induces sex-specific programming of
disease susceptibilities in adult mouse offspring. Bio-
chim Biophys Acta 2014; 1842:304-17;
PMID:24275555; http://dx.doi.org/10.1016/j.
bbadis.2013.11.021

77. Chawengsaksophak K, Svingen T, Ng ET, Epp T,
Spiller CM, Clark C, Cooper H, Koopman P. Loss of
Wnt5a disrupts primordial germ cell migration and
male sexual development in mice. Biol Reprod 2012;
86:1-12; PMID:21900680; http://dx.doi.org/10.1095/
biolreprod.111.095232

78. Cunningham M, Gilkeson G. Estrogen receptors in
immunity and autoimmunity. Clin Rev Allergy Immu-
nol 2011; 40:66-73; PMID:20352526; http://dx.doi.
org/10.1007/s12016-010-8203-5

79. Vina J, Gambini J, Lopez-Grueso R, Abdelaziz KM,
Jove M, Borras C. Females live longer than males: role
of oxidative stress. Curr Pharm Des 2011; 17:3959-65;
PMID:22188448; http://dx.doi.org/10.2174/
138161211798764942

80. Touleimat N, Tost J. Complete pipeline for Infinium
((R)) Human Methylation 450K BeadChip data proc-
essing using subset quantile normalization for accurate
DNA methylation estimation. Epigenomics 2012;
4:325-41; PMID:22690668; http://dx.doi.org/
10.2217/epi.12.21

81. McCulloch CE, Searle SR, Neuhaus JM. Generalized,
linear, and mixed models. Hoboken, N.J.: Wiley; 2008.

82. Henig N, Avidan N, Mandel I, Staun-Ram E, Ginz-
burg E, Paperna T, Pinter RY, Miller A. Interferon-
beta induces distinct gene expression response patterns
in human monocytes versus T cells. PLoS One 2013;

8:e62366; PMID:23626809; http://dx.doi.org/
10.1371/journal.pone.0062366

83. Reiner A, Yekutieli D, Benjamini Y. Identifying differ-
entially expressed genes using false discovery rate con-
trolling procedures. Bioinformatics 2003; 19:368-75;
PMID:12584122; http://dx.doi.org/10.1093/
bioinformatics/btf877

84. McCormack T, Frings O, Alexeyenko A, Sonnhammer
EL. Statistical assessment of crosstalk enrichment
between gene groups in biological networks. PLoS One
2013; 8:e54945; PMID:23372799; http://dx.doi.org/
10.1371/journal.pone.0054945

85. Kramer A, Green J, Pollard J, Jr., Tugendreich S.
Causal analysis approaches in Ingenuity Pathway Anal-
ysis. Bioinformatics 2014; 30:523-30;
PMID:24336805; http://dx.doi.org/10.1093/
bioinformatics/btt703

86. Spurgeon SL, Jones RC, Ramakrishnan R. High
throughput gene expression measurement with real
time PCR in a microfluidic dynamic array. PLoS One
2008; 3:e1662; PMID:18301740; http://dx.doi.org/
10.1371/journal.pone.0001662

87. Singh RR, Patel KP, Routbort MJ, Reddy NG, Barkoh
BA, Handal B, Kanagal-Shamanna R, Greaves WO,
Medeiros LJ, Aldape KD, et al. Clinical validation of a
next-generation sequencing screen for mutational hot-
spots in 46 cancer-related genes. J Mol Diagn 2013;
15:607-22; PMID:23810757; http://dx.doi.org/
10.1016/j.jmoldx.2013.05.003

88. Thorvaldsdottir H, Robinson JT, Mesirov JP. Integra-
tive Genomics Viewer (IGV): high-performance geno-
mics data visualization and exploration. Brief
Bioinform 2013; 14:178-92; PMID:22517427; http://
dx.doi.org/10.1093/bib/bbs017

www.tandfonline.com 957Epigenetics


