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Breast cancer is more common in European Americans (EAs) than in African Americans (AAs) but mortality from breast
cancer is higher among AAs. While there are racial differences in DNA methylation and gene expression in breast tumors,
little is known whether such racial differences exist in breast tissues of healthy women. Genome-wide DNA methylation
and gene expression profiling was performed in histologically normal breast tissues of healthy women. Linear regression
models were used to identify differentially-methylated CpG sites (CpGs) between EAs (n D 61) and AAs (n D 22).
Correlations for methylation and expression were assessed. Biological functions of the differentially-methylated genes
were assigned using the Ingenuity Pathway Analysis. Among 485 differentially-methylated CpGs by race, 203 were
hypermethylated in EAs, and 282 were hypermethylated in AAs. Promoter-related differentially-methylated CpGs were
more frequently hypermethylated in EAs (52%) than AAs (27%) while gene body and intergenic CpGs were more
frequently hypermethylated in AAs. The differentially-methylated CpGs were enriched for cancer-associated genes with
roles in cell death and survival, cellular development, and cell-to-cell signaling. In a separate analysis for correlation in EAs
and AAs, different patterns of correlation were found between EAs and AAs. The correlated genes showed different
biological networks between EAs and AAs; networks were connected by Ubiquitin C. To our knowledge, this is the first
comprehensive genome-wide study to identify differences in methylation and gene expression between EAs and AAs in
breast tissues from healthy women. These findings may provide further insights regarding the contribution of epigenetic
differences to racial disparities in breast cancer.

Introduction

Breast cancer is a complex and heterogeneous disease at the
molecular level, characterized by complex patterns of genetic and
epigenetic alterations. In the United States, breast cancer inci-
dence rates are higher in European-Americans (EAs) relative to
African-Americans (AAs) 1; however, AAs are at greater risk of
aggressive phenotypes and higher breast cancer mortality (http://
www.cancer.gov/about-nci/organization/crchd/cancer-health-dis-
parities-fact-sheet) . There are documented differences in molec-
ular markers in tumors for EAs compared to AAs, possibly due to
differences in breast cancer etiology between races.2

Epigenetic markers of DNA methylation are among
such important differences in tumors for EAs and AAs.2,3

Hypermethylation of DNA in promoter regions of tumor sup-
pressor genes (TSG) such as p16, ER-a, PR, BRCA1, GSTP1,
TIMP-4, and CDH1 is known to be a major event in breast carci-
nogenesis.4 Several breast cancer risk factors,5-8 including race,2,9

have been reported to increase the risk of altered DNA methyla-
tion in breast tumors.

Hypermethylation is hypothesized to be an early event that
occurs in healthy women many years before clinically detect-
able breast cancer 10; however, little is known about what fac-
tors increase the risk of these events. There are data that
suggest that low breast folate and alcohol consumption are
associated with p16 gene hypermethylation 11; genetic varia-
tion in genes for one-carbon metabolism may affect global
methylation in normal tissues from healthy individuals.12 To
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date, however, few studies have examined differential methyl-
ation by race in histologically normal tissues.13-15 Among
them, analyses have been limited to global methylation and
to blood specimens.13,14 In one study to examine genome-
wide methylation differences by race, Adkins et al. reported
3,623 loci in DNA significant differentially methylated
between AAs and EAs at birth using umbilical cord blood.15

However, to our knowledge, no study has comprehensively
examined differences in methylation by race of genome-wide
DNA methylation in normal breast tissues.

Similar to DNA methylation, differential gene expression in
breast tumors is well-studied. Several researchers have reported
differential expression in breast tumors compared to adjacent
normal tissues, and gene expression profiling has been used to
classify molecular subtypes of disease.16 Several studies have
reported associations between gene expression and breast cancer
risk factors in both tumor and normal breast tissues.17-20 Authors
reported differences in gene expression by age,17 body mass
index,18 parity,19 and breast density.20 There is less known about
factors affecting gene expression in normal tissues from healthy
individuals. In particular, little is known about associations of
gene expression with race in breast tissues of women without
breast cancer.

The study of normal tissues is distinguished from breast
tumor analysis because it provides insights into breast cancer
mechanisms unperturbed by major genomic changes and
early breast carcinogenesis. Here, we aimed to assess differen-
ces by race for genome-wide DNA methylation and gene
expression in healthy women with no prior history of breast
cancer. Although there are studies of gene methylation and
expression in breast cancer, ours is the first study to provide
comprehensive genome-wide analysis in histologically-con-
firmed normal breast tissues.

Materials and Methods

Study subjects and tissue collection
Detailed study methods for subject accrual have been

described elsewhere.10,21 Briefly, women who underwent reduc-
tion mammoplasty at Georgetown University Medical Center
(Washington, DC), the University of Maryland (College Park,
MD), the Washington Hospital Center (Washington, DC) and
the Center for Plastic Surgery (Buffalo, NY) between 1997 and
2009 were included in this study. All women in the study gave
written informed consent and the Institutional Review Boards at
all the participating institutions approved this study. Recorded
data by personal interview included demographics, lifestyle,
reproductive, and family medical history, diet, medication use,
and other exposures. Race was determined by self-report. Breast
tissues were surgically removed, evaluated and determined to be
free from gross and microscopic histopathological abnormalities
by a certified pathologist. Tissues were blunt-dissected to remove
adipose tissue, part of the tissue being rapidly frozen in Liquid
Nitrogen and part of it being submersed in RNA later�

(Ambion, Inc., Austin, Texas) and stored at ¡80�C.

Methylation analysis
DNA was extracted from dissected frozen fresh breast tissue using

a MasterPureTM DNA purification kit (Epicenter, Madison, WI)
according to the manufacturer’s specifications. Following bisulfite
treatment of DNA using the EZ DNA Methylation kit (Zymo
Research, Irvine, CA), the bisulfite-converted DNA was hybridized
onto the HumanMethylation450 BeadChips (Illumina, San Diego,
CA) (HM450), following the Illumina Infinium HD Methylation
protocol in the Genomics Core Facility at Roswell Park Cancer
Institute (Buffalo, NY).2 Briefly, this consisted of a whole genome
amplification step followed by enzymatic end-point fragmentation,
precipitation and resuspension. The Illumina iScan SQ scanner was
used to create images of the single arrays and the intensities of the
images were extracted using GenomeStudio (v.2011.1) Methylation
module (v.1.9.0) software. About 20% of samples (16/83) were
duplicated as internal quality controls (QCs). The scatter plot with
the linear regression line of multiple QC experiments showed a
highly significant correlation (rD0.99) between duplicate signal
intensities in the arrays.

Probe quality of Infinium HumanMethylation450 BeadChip

Raw intensity data as IDAT files were imported into Partek
Genomics SuiteTM 6.6 (Partek Inc., St. Louis, MO). The data
was normalized using the Subset-quantile Within Array Normali-
zation (SWAN).22 Any probes with detection P > 0.05 were fil-
tered out before further analysis (n D 4,242). Sex-chromosome-
linked probes (n D 11,650) were also removed. We further
excluded probes including SNPs in the target CpG (n D
115,996) or within 10 base pairs (bps) of the target CpGs (n D
145,116) based on NCBI dbSNP build 138 to avoid any poten-
tial effect of SNPs. In addition, problematic probes (non-specific
probes) described in 2 recent studies to hybridize to multiple
genomic locations by in silico analysis were excluded 23,24 in
order to remove potential bias measurements of DNA methyla-
tion. GRCh37/hg19 (Human Genome version 19) was used as
reference genome for this study. The final dataset contained
247,456 CpGs across 83 samples (61 EAs and 22 AAs).

Locus-by-locus analysis to identify differential methylation
between AAs and EAs

Partek Genomics SuiteTM 6.6 (Partek) was used for the statistical
analysis of differential methylation and visualization unless otherwise
specified. b-values ranging from 0 (100% unmethylated) to 1
(100% methylated) were determined for of the methylated probe
intensity and total probe intensities. For the statistical modeling pur-
pose, b values were converted to M-values by logit-transformation
(log2 ratio of methylated probe intensity and unmethylated probe
intensity). It is because b-values have severe heteroscedasticity for
highly methylated or unmethylated CpG sites.25 For identification
of patterns in DNA methylation, unsupervised analysis including
unsupervised hierarchical clustering 26 and Principal Component
Analysis (PCA) 27 were performed. For heatmaps, the Euclidian dis-
tance between the 2 groups of samples (EAs and AAs) was calculated
by the average linkage.
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To characterize the methylation patterns, the DM CpGs were
divided by functional roles according to their genomic locations
such as promoter: within 1500 bps of a transcription start site
(TSS) (TSS1500); within 200 bps of a TSS (TSS200); 5’
untranslated regions (5’UTR); first exon (1stExon); body (non-
promoter); 3’UTR (non-promoter); and intergenic regions.28

Human transcriptome array
Total RNA was extracted directly from frozen tissue stored in

RNAlater (Ambion) using 1.5 mm Triple-Pure Zirconium Beads
(Benchmark Scientific, Edison, NJ) and RNeasy Plus Mini Kit
(Qiagen, Valencia, CA), according to the manufacturer’s proto-
col. The gene expression microarray was performed on Gen-
eChip� Human Transcriptome Array 2.0 (Affymetrix Inc., Santa
Clara, CA) by the Nucleic Acid Shared Resource at The Ohio
State University. Because some samples did not pass quality
checks, we were only able to analyze 75 samples (56 EAs and 19
AAs) among the 83 samples which were also analyzed by
HM450. The arrays were scanned on an Affymetrix GeneChip
scanner 3000 using the AGCC Software (Affymetrix GeneChip�

Command Console�). The CEL files generated by the arrays
were imported into the Affymetrix Expression Console� Soft-
ware (version 1.3.1) for log2 transformation and quantile normal-
ization. 10 percent of samples were duplicated as QCs. The
scatter plot and linear regression of multiple QC experiments
showed a highly significant correlation (r D 0.99) between dupli-
cate signal intensities in the arrays.

Correlation analysis between methylation and gene
expression

Spearman correlation coefficients were used to examine the asso-
ciation between the DM CpGs (M-value) from the methylation
array and matched gene expression (log2 transformed intensity)
based on genomic location of probes provided by annotation files
from the HM450 and Affymetrix using Partek Genomics SuiteTM

6.6 (Partek). We first matched the exact gene names for statistically
significant 485 DM CpGs (FDR q< 0.05) from the HM450 (Illu-
mina) and mRNA expression (Affymetrix) arrays. The CpGs located
up to 1500 bps upstream of the gene as well as gene body and
3’UTR were included in the analysis. Spearman correlation
P< 0.05 were considered statistically significant.

Statistical methods
Tests for independence comparing participants’ characteristics

and race were tested using chi-square or the Mann-Whitney rank
test for categorical and continuous variables, respectively.

A generalized linear regression model was used to identify the
DM CpGs by race after adjusting for BMI and age; these three
variables, but not smoking status, alcohol use, age at menarche,
age at first live birth contributed to the variance in data (Data
not shown). Multiple testing correction was performed using the
Benjamini and Hochberg False Discovery Rate (FDR) with sig-
nificantly differential methylation defined at corrected P < 0.05
which is corresponding to raw P < 1.35 £ 10¡4. Differential
methylation linked to CpG islands (UCSC genome browser 29),
shore (0-2 kb from CpG island), or shelves (2-4 kb from CpG

island) by functional location between EAs and AAs: We defined
hypermethylated CpGs as the average methylation levels if the
CpGs of EAs were higher than AAs, respectively and vice versa.

Welch’s t-test was performed to test differential gene expression
between EAs and AAs. A P < 0.05 was considered statistically
significant.

To examine if differences by race in correlations existed
between methylation and gene expression, interaction analysis
after adjusting for age and BMI was performed using JMP

�
v10

(JMP, Cary, NC). A cross-product term for race ¡ CpG methyl-
ation was included in adjusted correlation models.

Ingenuity pathway analysis
The genes corresponding to promoter CpGs among the sig-

nificant DM CpGs were analyzed for their potential biological
implications using Ingenuity Pathway Analysis (IPA). Also, the
DM genes that were significantly correlated between methylation
and gene expression were separately analyzed for networks. The
genes were sorted based on reported or suggested biological and
molecular functions and diseases in IPA. The identified genes
were mapped to networks available in the IPA and then ranked
by score. The score [scoreD ¡log10(P-value)] computed by IPA
is according to the probability of the set of identified genes and a
list of biological functions stored in the IPA knowledge base
(IPKB). A score >3 represents a corresponding P <0.0001 that a
gene network was not generated by chance alone.

Validation of differentially-methylated CpGs by
Pyrosequencing

Validation of HM450 results was performed using Pyrose-
quencing of the specific CpGs. Bisulfite conversion was per-
formed using EZ DNA Methylation Gold Kit (Zymo research,
Orange, CA) according to the manufacturer’s instructions. Two
primer sets were designed to amplify each locus interrogated on
the array for each target. Primer sequences can be found in
Table S1. PCR was performed in 20 ml volume reactions con-
taining 2 ml (about 20-25 ng) of converted DNA, 0.2 mM pri-
mers, and AmpliTaq Gold PCR kit (Applied Biosystems,
Branchburg, NJ). PCR amplicons were processed for Pyrose-
quencing analysis according to the manufacturer’s standard pro-
tocol (Qiagen, Valencia, CA) using a PyroMark MD system
(Qiagen) with Pyro Q-CpG 1.0.9 software (Qiagen) for CpG
methylation quantification. A total of 80 EAs and 40 AAs sam-
ples were used for validation, which include (1) 57 EAs and 22
AAs fresh frozen breast tissues that were analyzed by HM450
(defined as technical validation) and (2) 23 EAs and 18 AAs fresh
frozen breast tissues that were not analyzed by HM450 (defined
as biological validation).

Results

Participants’ characteristics
Characteristics of study participants are shown in Table 1.

Biospecimens from 83 (61 EAs and 22 AAs) and 41 (23 EAs and
18 AAs) study participants were available for HM450 and
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Pyrosequencing validation of differentially-methylated CpGs,
respectively. Among biospecimens included in HM450 analysis,
the mean age for EAs and AAs was 40.7 (SD §13.3) and 34.4
(SD §7.5), respectively. Among biospecimens included in Pyro-
sequencing, the median age for EAs and AAs was 37.5 (SD
§14.9) and 37.61 (SD §8.9), respectively. Between EAs and
AAs, BMI (P D1.04x10¡6) differed most significantly for
HM450. Alcohol status (P D 0.01) was significantly different
between the groups for the Pyrosequencing validation set.

Identification of differentially-methylated CpGs by race
There were 485 CpGs differentially-methylated (DM)

between EAs and AAs at a FDR q <0.05. The magnitude of dif-
ferential methylation levels (delta-b, x-axis) against raw P values
(y-axis) are shown in a Volcano plot for all 247,456 CpGs
(Fig. 1A). Among the 485 DM CpGs, 11% (52/485) had �10%
methylation differences between the races (Delta-b values �|
0.1|), while the majority (89%) of the DM CpGs presented rela-
tively small differences (Delta-b values �|0.1|) (Fig. 1A). The
Manhattan plot in Figure. 1B indicates that the DM CpGs are
spread across all autosomes. Of the 485 DM CpGs, 348 DM
CpGs (71.8%) were linked to 182 specific genes (on average 1.9
CpGs/gene). Among these genes, 30 had more than >1 DM
CpG and 10 had �3 DM CpGs (Table S2, yellow marked):
C3orf24 (6 CpGs in chromosome 3); C6orf27 (3 CpGs in chro-
mosome 6); DIP2C (3 CpGs in chromosome 1); HSP90AA1 (3

CpGs in chromosome 1); KCNK15 (3 CpGs in chromosome
20); OPCML (3 CpGs in chromosome 11); PACS2 (3 CpGs in
chromosome 14); PM20D1 (3 CpGs in chromosome 1);
RNF219 (3 CpGs in chromosome 13); and SEPT8 (8 CpGs in
chromosome 5). C3orf24 and SEPT8 are indicated in Figure 1B.

To determine methylation signal clustering of the samples
by race, we performed unsupervised analysis including Princi-
pal Component Analysis (PCA) (Fig. 1C-E) and hierarchical
clustering (Fig. 1D-F). Both PCA and the heatmap resulting
from hierarchical clustering analysis showed clear and distinct
methylation patterns between EAs and AAs using the 485 DM
CpGs identified at FDR q <0.05 (Fig. 1E-F) compared to the
results using the entire CpGs analyzed (Fig. 1C-D). The first
component of variance for the autosomal DM CpGs, account-
ing for 25.3% of the overall variation in methylation, distin-
guished samples based on race (Fig. 1E). In order to
investigate effects of potential confounding factors (Table 1)
in the methylation levels of 485 DM CpGs, PCA was used.
The PCA showed that the separation between EAs and AAs
using the 485 DM CpGs were not associated with breast can-
cer risk factors including age at menarche, age at first live
birth, alcohol consumption history, breast biopsies, family his-
tory of breast cancer, menopausal status, and smoking status
(Fig. S1). A full list of the 485 DM CpGs including detailed
information such as Probe ID (Target ID), b-values, P values,
and genomic location is provided in Table S2.

Table 1. Characteristics of study participants.

Genome-wide (Illumina HM450) Validation (Pyrosequencing)

Characteristic White (n D 61) Black (n D 22) P value* White (n D 23) Black (n D 18) P-value*

Age, years, mean§ SD 40.7 § 13.3 34.4 § 7.5 0.039 37.5 § 14.9 37.61 § 8.9 0.77
Age at menarche, years, mean§ SD 12.6 § 1.6 12.4 § 1.7 0.87 12.4 § 1.5 11.9 § 1.6 0.44
Unknown 7 5 11 7
Age at first live birth, years, mean§ SD 27.9 § 6.4 23.8 § 3.3 0.10 26 § 1.4 24.8 § 4.5 1
Unknown 60 16 21 17
BMI (kg/m2), mean§SD 27.5 § 4.7 34.6 § 5.3 1.04 ¡ 10¡6 28.8 § 6.9 32.4 § 4.5 0.07
Alcohol status, n (%)
Ever drinker 53 (87.9) 15 (83.3) 0.70 21 (100.0) 11 (73.3) 0.01
Never drinker 8 (13.1) 3 (16.7) 0 (0.0) 4 (27.7)
Unknown 0 4 2 3
Smoking status, n (%) 0.99 0.17
Current smoker 3 (5.1) 1 (5.9) 0 (0.0) 1 (9.1)
Former smoker 17 (28.8) 5 (29.4) 5 (38.5) 1 (9.1)
Never smoker 39 (66.1) 11 (64.7) 8 (61.5) 9 (81.8)
Unknown 2 5 9 7
Menopausal status, n (%) 0.023 0.91
Premenopausal 40 (65.6) 20 (90.9) 17 (81.0) 14 (82.4)
Postmenopausal 21 (34.4) 2 (9.1) 4 (19.0) 3 (17.6)
Unknown 0 0 2 1
1st degree relatives with breast cancer, n (%) 0.24 -
No 50 (90.9) 12 (80.0) 13 (100.0) 8 (100.0)
Yes 5 (9.1) 3 (20.0) 0 (0.0) 0 (0.0)
Unknown 6 7 10 10
Breast biopsies, n (%) 0.31 0.03
No 45 (88.2) 8 (100.0) 13 (100.0) 6 (66.7)
Yes 6 (11.8) 0 (0.0) 0 (0.0) 3 (33.3)
Unknown 10 14 10 9

*Mann–Whitney rank test for continuous variables, Chi-square for categorical variables
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Characterization of Differentially-Methylated CpGs

Of the 485 DM CpGs identified after correction for multiple
comparisons, 203 (42%) of DM CpGs were hypermethylated in
EAs compared to AAs and 282 (58%) were hypermethylated in
AAs relative to EAs (Fig. 2). Among the hypermethylated CpGs
in EAs, 48% were localized in the promoter regions that

correspond to regions TSS1500, TSS200, 5’UTR, and 1stExon
(Fig. 3A, left side). In contrast, the hypermethylated DM CpGs
in AAs were mostly localized to gene body (39%), followed by
31% in Intergenic and 27% in promoter regions (Fig. 2A, right
side). Regardless of functional locations, methylation levels were
up to 3.6-fold higher (56%-207% higher b-values) in AAs (range
of b-values: 0.58-0.78) compared to the hypermethylated ones in

Figure 1. Differentially-methylated CpGs among 247,456 CpGs. (A) A volcano plot showing differential methylation [delta-b (average b-values of
EAs)-(average b-values of AAs)] (x-axis) with corresponding ¡log10P-value (y-axis) by race after adjusting for age and BMI. Red dots (+ figures on x-axis)
indicate hypermethylated CpGs in EAs compared to AAs while blue dots (- figures on x-axis) represent hypermethylated CpGs in AAs relative to EAs. (B)
The significance ¡log10P-value of the associations by chromosomes is shown in Figure. 1B in a Manhattan plot. CpGs for C3orf24 (6CpGs) in chromo-
some 3 and SEPT8 (8 CpGs) in chromosome 5 are marked as red boxes. The genome-wide significance level of 1.35x10¡4 is indicated by the horizontal
line in both Volcano (A) and Manhattan plots (B). Unsupervised analysis for entire 247,456 CpGs (C and D) and 485 differentially-methylated CpGs (E
and F) are shown. (C and E) Principal component analysis (PCA) of the methylation data are plotted using the first 3 principal components. Data from
EAs are shown in blue and data from AAs are in red. (D and F) Unsupervised hierarchical clustering of b-values for CpGs (rows) in 83 samples (columns).
Blue and red blocks on the top of the maps represent 61 EAs and 22 AAs. While purple for the CpGs represents hypermethylation and green for CpGs
represent hypomethylation.
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EAs (range of b-values: 0.16-0.56) (Fig. 2B). Similarly, in the
heatmap in Figure. 1F, rows were more consistently purple, cor-
responding to higher methylation among AAs compared to EAs.

There were 341 (70%) DM CpGs that were linked to CpG
islands and surrounding areas as follows, namely N_Shelf (4 kb
upstream of CpG island; n D 21), N_Shore (0–2 kb upstream of
the CpG islands; n D 72), CpG island (nD160), S_Shore (0–
2 kb downstream of the CpG islands; n D 74), S_Shelf (2–4 kb
downstream of the CpG islands; n D 14), and Open sea (more
than 4kb away from the CpG island; n D 144) locations. They
were further divided into 3 categories by functional roles accord-
ing to their genomic locations such as promoters (n D 177
CpGs; Figure. 3A), non-promoters (n D 193; Fig. 3B), and
intergenic regions (n D 137; Fig. 3C). A larger variation was
observed in promoters (Fig. 4A) followed by non-promoters
(Fig. 3B) and relatively consistent methylation levels were found
in intergenic regions (Fig. 3C) in both EAs and AAs. Overall,
similar methylation levels were observed between promoters and
non-promoters related DM CpGs in both EAs and AAs. How-
ever, significantly lower methylation levels were observed in both
EAs (67% lower) and AAs (69% lower) among promoter CpG

islands compared to non-pro-
moter ones (P <0.0001)
(Fig. 3A-B). The DM CpGs in
S_Shelf tended to have higher
methylation levels with larger var-
iation across the samples in both
EAs and AAs, especially in non-
promoter regions (Fig. 3).

Correlation with DM CpGs
and Their Gene Expression

Among 485 DM CpGs

The Spearman correlation for
each DM CpG and transcript
pair was analyzed in EAs and AAs
separately. The full list of correla-
tion result is given in Table S3.
In EAs and AAs, respectively, 24
pairs (24 CpGs and 22 matched
genes) and 26 pairs (26 CpGs
and 22 matched genes) were sig-
nificantly correlated (positively or
negatively) between methylation
and gene expression at P <0.05.
None of the pairs was found in
both AAs and EAs (Table S3).
While a majority (71%) of the 24
pairs from EAs were negatively
correlated, a high proportion of
positive correlations (73%) were
found among the 26 pairs in AAs
(Table S3). The patterns of corre-
lation for 2 genes (DPEP3 and
GNG7) found in EAs were signif-

icantly different from ones in AAs at P interaction <0.05
(Table 2). Among 26 significantly correlated pairs in AAs, the
correlation patterns of 9 pairs (ANK1, APOC3, CARS2, FLG,
GPX1, PLA2G4C, and RHBDL1) were significantly different
from those in EAs at Interaction P <0.05 (Table 2 and Fig. S2).
The correlation pattern of ANK1 was the most significantly dif-
ferent between the groups (Interaction P D 0.0066).

Among the significantly correlated DM genes between gene
expression and methylation, 2 genes, GPX1 (Fig. S3, Upper right)
and PLA2G4C (Fig. S3, Lower right), were also significantly dif-
ferentially expressed between the EAs and AAs at P<0.05.

Potential biological roles of DM CpGs
To investigate the possible biological implications of the DM

CpGs by race, we focused on 177 of the 485 DMCpGs DMCpGs
that were located in promoter regions. These CpGs were co-local-
ized in 181 unique genes (one CpG can reside in more than one
transcript variants of the same gene or different genes). IPA revealed
enrichment for genes (75%, 136/181) involved in cancer as follows
for the top 3 networks (Table S4): (1) Cell Death and Survival,

Figure 2. Landscape of differentially methylated CpGs. (A) The percentages of hypermethylated in EAs
compared to AAs (Left) and in AAs compared to EAs (Right) are shown. The functional promoters CpGs are
separated by a bold line. (B) The methylation levels of hypermethylated CpGs are shown by functional loca-
tion including TSS1500, TSS200, 5’UTR, 1stExon, Body, and 3’UTR and intergenic in EAs (blue bar) and AAs
(red bar).

1182 Volume 10 Issue 12Epigenetics



Embryonic Development, Organ-
ismal Development (Score D 47);
(2) Cellular Compromise, Cell-To-
Cell Signaling and Interaction,
Hematological System Develop-
ment and Function (Score D 40);
and (3) Cellular Development,
Hematological System Develop-
ment and Function, Hematopoiesis
(Score D 34). We also performed
IPA on the subset of the genes
whose expression levels were signifi-
cantly correlated with methylation
levels in EAs or AAs separately to
identify the biological difference or
similarity between groups. The top
network of functional associations
was “Lipid Metabolism, Molecular
Transport, Small Molecule Bio-
chemistry” and “Infectious disease,
Amino Acid Metabolism, Protein
Synthesis” (Fig. 4A) for the genes
that were significantly correlated
with methylation levels in EAs and
AAs, respectively. Interestingly, 2
networks were connected through
Ubiquitin C (UBC) (Fig. 4A-B)
although the genes involved are dif-
ferent between the networks. The
“Lipid Metabolism, Molecular
Transport, Small Molecule Bio-
chemistry” network in EAs were
characterized by genes that play in
Signaling by Rho Family GTPase,
Breast cancer regulation by Stath-
min1, RhoA Signaling,Wnt/b-cat-
enin Signaling, and NF-kB
Signaling (Fig. 4A). In contrast,
genes involved in Clathrin-medi-
ated endocytosis Signaling, Oxida-
tive phosphorylation, Xenobiotic
Metabolism Signaling, eNOS Sig-
naling, and FXR/RXR Activation
are essential for the “Infectious dis-
ease, AminoAcidMetabolism, Pro-
tein Synthesis” network in AAs
(Fig. 4B).

Technical and biological
validation using pyrosequencing

Fifteen DM CpGs were
selected based on their involve-
ment in breast cancer or other
cancers in general for validation
using 12 Pyrosequencing assays.
This included 14 DM CpGs

Figure 3. Differential methylation levels stratified by location of interrogated CpGs. Average methyla-
tion levels at CpGs within CpG islands and surrounding regions are shown in promoters (A), non-promoters
(B), and intergenic regions (C). Differences between EAs and AAs were tested using Unpaired t test with
Welch’s t-test (**** P<0.0001, *** 0.001 to 0.001, ** 0.001 to 0.01, * 0.01 to 0.05, NS not significant).
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harbored by 11 genes (ANK1, ATP5B, CARS2, ESYT3, HIPK2,
OPCML, PM20D1, PTH1R, RNF135, TRPV3, and ZNF710)
and one (cg06486129) in an intergenic region. For technical vali-
dation (57 EAs and 22 AAs subjects), a very strong positive corre-
lation was found (Spearman correlation rD0.96, P <1.0x10¡45),
showing that all DM CpGs were technically validated (Fig. 5).
The highest concordance between the 2 methods (r D 0.89, P D
1.36x10¡11) was observed for cg07167872 (PM20D1), which
had the biggest difference in methylation level between EAs
(average b-values: 0.37) and AAs (average b-values: 0.61) in
HM450 (Table S2). Six out of 14 CpGs (CARS2, HIPK2,
PTH1R, RNF135, TRPV3, and ZNF710) were also biologically
validated in 41 samples (23 EAs and 18 AAs) to be differentially-
methylated by race at P <0.05 (Table S5). All 14 DM CpGs
were significantly different between EAs and AAs in pooled sam-
ples (80 EAs and 40 AA) that included the initial sample set (57

EAs and 22 AAs) and the independent sample set (23 EAs and
18 AAs) (Table S5).

Discussion

DNAmethylation has been shown to be a molecular epigenetic
marker that differs in breast tumors among EAs and AAs.2,3 There
is little information about when the differences occur in the carci-
nogenic process. In this study of women who have never had can-
cer and who underwent breast reduction surgery, we found
genome-wide differential methylation between EAs and AAs.
There were a total of 485 differentially methylated loci after cor-
rection for multiple testing. Promoter-related hypermethylated
DM CpGs were about twice as frequent among EAs relative to
AAs in promoters while DM CpGs among AAs were more likely

Figure 4. The top network of genes correlated with methylation in EAs only (A) or AAs only (B). Genes encoding for molecules in red are positively
correlated while those in green are negatively correlated between methylation and gene expression. In both networks, the proteins are connected
through Ubiquitin C (UBC). The nodal relationships indicated in solid lines denote direct while those in dashed denote indirect interactions. Different
shapes represent the functional classes of proteins. The length of a line reflects published evidence supporting the node-to-node relationship concerned.
The shapes of each node represent the molecule classes can be found in http://ingenuity.force.com/ipa/IPATutorials?idDkA250000000TN2wCAG.

Table 2. A list of CpGs that are significantly correlated with gene expression levels in AAs or EAs and interaction P-value.

AAs EAs

Gene
Functional
location

CpG
Island

Target ID
(HM450)

Probe ID
(Affymetrix) r P r P Interaction P

Significantly correlated in AAs only

ANK1 Body Island cg18614735 TC08001171.hg.1 0.55 0.015 ¡0.19 0.15 0.0066
ANK1 Body Island cg19537719 TC08001171.hg.1 0.46 0.048 ¡0.15 0.25 0.021
APOC3 TSS1500 Open sea cg03742763 TC11001042.hg.1 0.55 0.014 ¡0.08 0.55 0.013
CARS2 Body N_Shelf cg03734594 TC13000876.hg.1 0.65 0.0024 ¡0.10 0.46 0.017
CARS2 Body N_Shelf cg11555438 TC13000876.hg.1 0.64 0.0033 ¡0.11 0.41 0.036
FLG TSS200 Open sea cg19855573 TC01003245.hg.1 0.54 0.017 ¡0.02 0.87 0.0076
GPX1 TSS200 Island cg11597332 TC03001407.hg.1 0.55 0.015 ¡0.07 0.60 0.0034
PLA2G4C Body Island cg14780446 TC19001674.hg.1 0.70 0.00092 0.00 1.00 0.011
RHBDL1 Body N_Shelf cg03079132 TC16000022.hg.1 0.46 0.050 ¡0.25 0.07 0.042
Significantly correlated in EAs only
DPEP3 TSS200 S_Shore cg21695020 TC16001200.hg.1 0.06 0.81 0.37 0.0048 0.049
GNG7 5’UTR Island cg21462934 TC19001032.hg.1 0.14 0.58 0.51 0.00005 0.03
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to be in the gene body or in intergenic regions. We also found dif-
ferent correlation patterns between methylation levels of DM
CpGs and gene expression by race. Gene network analysis showed
that CpGs that were hypermethylated in AA or EA shared biologi-
cal pathways although the genes involved in 2 networks were dif-
ferent. To our knowledge, the present study is the first to
comprehensively examine genome-wide differential DNA methyl-
ation between EAs and AAs in histologically normal breast tissues.

Racial differences in breast cancer incidence and mortality
among US women are well documented. EAs have the highest
incidence rate while AAs have poorer survival rates.1 This dis-
parity in breast cancer is believed to be a complex combination
of breast cancer risk factors including environment, socioeco-
nomic status, and genetics.12 Previous studies have shown bio-
logical differences of DNA methylation in breast cancers by
races,3 suggesting the impact of race on molecular pathways in
cancers. However, these studies have been limited by a focus on
tumor suppressor genes (e.g., CDH13, HIN-1, TWIST1,
CCND2, and RASSF1A). Recently, Ambrosone et al. reported
genome-wide differential methylation between EAs and AAs
among women diagnosed with breast cancer (ER-negative can-
cer in particular), suggesting methylation may provide, a least in
part, a biologic basis for the observed racial disparity.2 It
remains unclear if such differences are present in normal breast
tissues; such differences could be potentially useful to under-
stand epigenetic predisposition that influences racial disparities
for the disease.

In the current study, 485 CpGs were identified as differen-
tially-methylated between EAs and AAs. By detailed characteriza-
tion of the 485 DM CpGs, the highest frequency of
hypermethylated CpGs were observed in promoter regions and

gene body in EAs and AAs, respectively, suggesting that these
DM CpGs may possibly play different roles in gene regulation.
Similarly, there was approximately twice the frequency of hyper-
methylated CpGs in promoter regions in EAs (22%) compared
to AAs (12%) in ER negative breast tumors.2

Understanding how differences in DNA methylation relate to
gene expression is important. However, it can be challenging to
understand given the complex association of DNAmethylation with
gene expression. For examples, dense intragenic DNA methylation
alters chromatin structure that reduces the efficiency of Polymerase
II elongation,30 the rate of transcriptional elongation regulating
alternative splicing 31; transcription influenced by DNAmethylation
via chromatin remodeling 32; and methylation of gene bodies lead
alternative splicing and disease-causing mutations.33

In this study, 10% of the DM CpGs were significantly corre-
lated with the gene expression. This figure is similar to previous
genome-wide studies in primary fibroblast samples (8.9%),34

ductal carcinoma in situ (DCIS) of the breast (10.5%) 35 and
considerably higher than other studies in breast tumors (The
Cancer Genome Atlas (TCGA) breast cancer data set) (3.3%)
(35). Taken together, these data suggest that associations of
methylation to gene expression vary by tissue type. The observed
10% of the CpGs correlated with expression suggests that the
expression is likely affected by other biological mechanisms such
as other epigenetic factors (e.g., noncoding RNAs and histone
modification) and DNA sequence variation.

Biological networks of the DM genes showed different top
networks involved for correlated genes in EAs and AAs, but both
networks were connected through Ubiquitin C, suggesting there
may be common biological roles of the DM CpGs in breast tis-
sues between EAs and AAs. Ubiquitin is a small regulatory

Figure 5. Validation results of 15 differentially-methylated CpGs by Pyrosequencing. Gene name, TargetID (probe ID) by Illumina, correlation effi-
cient (r) and p-value are presented. b-values for each individual samples are presented by different colored dots by different assays. The x-axis and y-axis
indicates the b-value from the Illumina HumanMethylation450 BeadChip and % of methylation by Pyrosequencing, respectively.
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protein with multiple important functions including roles in pro-
tein degradation, DNA repair, cell cycle regulation, kinase modi-
fication, and cell signaling pathways.36 A ubiquitin-proteasome
pathway involving ubiquitin in breast cancer was emphasized in
the regulation of proteins stability including breast cancer sup-
pressor such as BRCA1-BARD1, ErbB2/HER2/Neu.37 Recently,
an ubiquitin gene network was suggested as a potential prognos-
tic biomarker for multiple breast cancer subsets.38 Additional
studies are needed to clarify whether the different gene networks
for correlated genes by race impacts breast cancer disparity, and
if this difference is somehow associated with Ubiquitin C.

We also searched the literature for the 23 most relevant DM
CpGs at a significance level surpassing Bonferroni correction for
all tested probes (P <1.66£10¡7) to investigate if the DM CpGs
may have important roles in cancer development. About 26% of
the DM CpGs related genes have been studied in cancer (includ-
ing breast cancer) and include one oncogene (TNK2) and 4
TSGs (AHRR, OPCML, PACS2, and HIPK2). TNK2, an onco-
genic kinase, has been shown to enhance migration and invasion
of breast cancers 39 and promote the growth of tamoxifen-resis-
tant breast cancer.40 The lost or reduced expression of AHRR has
been observed in multiple human malignant tissues including
breast cancers, and knockdown of this gene in in vitro experi-
ments conferred resistance to apoptotic signals, enhanced motil-
ity and angiogenic potential. OPCML gene was found to be
regulated by hypermethylation in breast cancer.41,42 PACS2 and
HIPK2 may play important roles in the DNA damage signaling
by modulation of SIRT1-mediated deacetylation of p53 and co-
localization and phosphorylation of p53.43 Thus, it is conceiv-
able, with the data reported herein, that these genes may influ-
ence racial disparities in breast cancer etiology and prognosis.

This study had several strengths. It is the first to profile methyla-
tion differences between EAs and AAs in normal breast tissues,
before morphological changes occur during carcinogenesis. While
studies of breast cancer patients, and their tumor and adjacent mor-
phologically normal tissues indicate a field effect, it may be that
those field effects represent a very early carcinogenic process. Sepa-
rately, in order to profile the methylation differences by race, we
excluded probes containing single nucleotide polymorphisms or
weak binding. Understanding factors related to those early changes
may provide insight into the early carcinogenic process. Addition-
ally, we were able to validate methylation with gene expression and
propose plausible biological implications of our finding.

This study also had some limitations. First, we were limited by
the small sample size (and a low number of AAs women in particu-
lar) limited a statistical power; there may be additional DM CpGs
between EAs and AAs that we were not able to identify. In addition,
our participants underwent elective reduction mammoplasty, so our
findings may not be generalizable to other women. However, this
limitation was tempered by multivariable adjustment analysis for
age and BMI. Another is a methodological limitation that bisulfite
treatment-based HM450 is unable to distinguish between 5mC and
5-hydroxymethylcytosine (5hmC), an important emerging site for
methylation.44 A final limitation is that we have not yet linked the
identified DM with known other breast cancer risk factors, available
from epidemiological questionnaires.

In summary, we report for the first time a comprehensive
analysis of genome-wide differential methylation between EAs
and AAs in histologically normal breast tissues from cancer-free
women. Despite limitations in sample size, we observed signifi-
cantly different methylation levels coupled with gene expression
between the races. Our findings indicate that racial differences in
DNA methylation exist among healthy women and that those
methylation differences are correlated with gene expression at
some levels, suggesting a contribution to racial disparities in
breast cancer. Confirmation of these findings is warranted as well
as future studies to investigate if differential methylation by race
is associated with other breast risk factors.
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