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Abstract

Recent studies underscore that prostaglandin-E2 (PGE2) exerts mostly proinflammatory effects in 

chronic CNS and peripheral disease models, mainly through a specific prostanoid receptor EP2. 

However, very few highly characterized EP2 receptor antagonists have been reported until 

recently, when Pfizer and Emory University published two distinct classes of EP2 antagonists with 

good potency, selectivity and pharmacokinetics. The purpose of this article is to evaluate recently 

published patents WO 2012177618 A1 and US-2014/0179750 A1 from Emory, which describe a 

number of cinnamic amide- and amide-derivatives as a potent antagonists of EP2 receptor, and 

their neuroprotective effects in in vitro and in an in vivo model. A selected compound from this 

patent(s) also attenuates prostate cancer cell growth and invasion in vitro, suggesting these 

compounds should be developed for therapeutic use.
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1. Introduction

Cyclooxygenase-2 (COX-2) evolved as one of the major contributors to the inflammation 

following a brain or peripheral injury. Thus COX-2 inhibitors were developed and used in 

animal models and humans in the past1, 2. However, COX-2 catalyzes the synthesis of five 

prostanoids (PGD2, PGE2, PGF2, PGI2 and TXA2), which activate a total of 11 prostanoid 

receptors (DP1 and DP2 activated by PGD2; EP1, EP2 EP3 and EP4 by PGE2; FPα and FPβ 

by PGF2; IP by PGI2; TPα and TP by TXA2)3–5. Some of these receptors share common 

downstream signaling pathways. For example, EP2, EP4, DP1 and IP stimulate adenylate 

cyclase to elevate cAMP (via Gs coupled-protein), which promotes protein kinase A (PKA), 

and the exchange protein activated by cAMP (Epac) mediated signaling6, 7. Others such as 

DP2 and EP3 (via Gi coupled-protein) impede cAMP signaling; EP1, FP and TP receptors 
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promote (via Gq coupled-protein) calcium mediated signaling. Individually these receptors 

display ‘Jekyll and Hyde nature’, similar to COX-2, depending on the disease condition3, 4. 

Although, COX-2 inhibitors proved to be efficacious in ameliorating inflammation and pain 

in humans with osteoarthritis and rheumatoid arthritis8, 9, they have not provided a clear 

benefit to the rodent models of inflammatory neurodegenerative disease epilepsy10, and to 

humans with Alzheimer’s diseases11, 12 and ALS13. Instead, they resulted in adverse 

cardiovascular effects upon chronic use14. One of the important reasons for these adverse 

effects was due to inhibition of IP receptor15, 16. As a result, two COX-2 drugs rofecoxib 

(Vioxx) and valdecoxib (Bextra) were withdrawn from the USA market. Induction of COX-2 

following a brain injury or excessive neuronal activity in the brain is often associated with 

induction of a membrane bound prostaglandin E synthase-1 (mPGES-1), which produces 

PGE2 from COX-2 derived intermediate PGH2. Thus, it appears a future anti-inflammatory 

therapy should be targeted through a specific prostanoid receptor or a prostanoid synthase 

enzyme downstream of COX-2, rather than generic block of entire COX-2 cascade3, 4, 17–19.

PGE2 is the major product of COX-2, but, it activates four receptors EP1-EP4. Studies show 

that each of these four receptors display (‘yin-yang’ nature) either protective or deleterious 

role depending on disease model20. EP2 receptor is widely distributed in the brain and 

periphery21. In the brain, EP2 is expressed on both neurons and microglia cells19, 22. It has 

been demonstrated that acute activation of EP2 was beneficial in stroke and glaucoma 

models22, 23, whereas chronic activation was deleterious in models of Alzheimer’s, 

Parkinson’s and ALS diseases18, 19, 24. Furthermore, studies indicate that EP2 mediates 

tumorigenesis, and promotes tumor angiogenesis by attenuating apoptosis25–27. EP2 

inhibition has been shown to impair several cell survival pathways and activates apoptotic 

pathways in a model of endometriosis28 suggesting ‘Jekyll and Hyde’ nature either pro-

apoptotic, or anti-apoptotic signaling leading to a beneficial outcome in two different disease 

conditions. However, a vast majority of the studies are conducted with EP2 gene knockout 

models and use of poorly selective or in vivo unstable EP2 agonists (e.g. PGE2 and butaprost 

(Figure 1)). Pharmacological inhibition studies were limited until recently when a Emory 

University group published key results demonstrating proof of concept that a short term 

exposure of EP2 antagonist is anti-inflammatory in a pilocarpine induced acute brain injury 

model of status epilepticus29, and, is anti-proliferative in vitro cultures30, subsequent to the 

filing of the patents WO 2012/177618 A1 and US-2014/0179750 A131, 32, which are the 

subjects of current discussion below.

2 Chemistry

Initial hits 3 and 4 (Scheme 1) were identified though a high-throughput screening campaign 

by using a TR-FRET assay on human EP2 receptors expressed on C6-glioma cell line. These 

two compounds belong to a cinnamic amide chemical class, where one of amide (CONH2) 

proton is substituted by a two carbon linker with an indole ring at the end. Medicinal 

chemistry on these hits generated number of compounds with modification on phenyl ring 

replacing one or two methoxyl groups of 3 and 4 with one or two fluorines, or a chlorine, 

bromine, or methyl group. Indole ring was also decorated with one fluorine atom, a methyl 

or trifluoromethyl group. Interestingly, these modifications retained the EP2 potency at 

nanomolar level (Schild KB ≤ 50 nM).
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Cinnamic amides may act as Michael acceptors and pose a potential threat for drug 

development, thus investigators also developed several amide analogs as EP2 antagonists. 

About 150 analogs have been synthesized that fall in either one of the Markush structures 

M1–M6 (Figure 2). A majority of the structural modifications are envisioned, for example 

substitution on the indole ring and replacements for indole ring (M1 and M4), right side 

phenyl ring, and also at the linker region (M4 and M5). Compound(s) belongs to each claim 

(M1–M6) are synthesized and characterized by 1H-NMR, LCMS, HRMS, and elemental 

analysis.

The synthesis was straight forward and completed in 3 steps for 3, 4 and many other 

derivatives. Briefly, 2-methyl indole was alkylated using sodium hydride as a base, and the 

resulting cyanide product was reduced with lithium aluminum hydride to synthesize amine 

precursor which was used to couple to either substituted cinnamic acids or benzoic acids, 

benzamidazole- and quinoline-carboxylic acids to furnish final cinnamic amides or amides 

(Scheme 1). Moreover, isomeric 3-indole derivatives and synthetically challenging 

benzofuran replacements (belongs to M1–M3) were also synthesized. Furthermore, 

derivatives with one methylene and three methylenes (linker) between indole and cinnamic 

amide were also synthesized analogously.

It is noteworthy to draw few comparisons between structures from the Emory patents31, 32 to 

the structures previously published in patents from Bayer Schering Pharma34. As shown in 

Figure 3, Emory group also created several isomeric 3-indole derivatives as illustrated by 6 
and 7 (along with novel 1–indoles 3 and 4 derivatives), which partially overlap with 

previously published dimainopyrimidines (e.g. 8) with tryptamine moiety34. However, the 

cinnamic amide moiety makes 6, 7 and their derivatives structurally novel. Likewise, the 

only amide compound 5 partially overlaps with previously published structure 9 in an 

abandoned patent35 (personal communication from Emory University OTT). Nonetheless, 

structures such as 10 and 11, which emerged from the 5 by the SAR study, are completely 

novel and may serve as the leads for further development.

3. Biology

Unlike several other previous patents, particularly on the EP2 antagonists34–39, which 

reported relatively little or no biology, the Emory group31, 32 presented a significant 

biological data to suggest EP2 antagonists are therapeutically useful. First, a cAMP-

mediated TR-FRET assay was used to determine the potency. Schild KB which was defined 

as 2-fold rightward shift of PGE2 EC50 on human EP2 and EP4 receptors; or a rightward 

shift of BW25C (DP1 agonist) EC50 on DP1 receptors, expressed on C6-glioma cells was 

used to characterize the potency and selectivity of the compounds. The data indicate that 

several compounds including 3 are >10-fold selective to EP2 against DP1 receptor and 

>1000-fold selective against EP4 receptor. But recent reports from Emory laboratory suggest 

that the selectivity against DP1 receptor has been improved to 1000-fold40 and a vast 

majority of the compounds display high selectivity against EP4 and IP receptors and 

insignificant cytotoxicity on parent C6-glioma cells40, 41. However, only the compound 3 
and its trifluoromethylindole derivative 12 (Figure 4) were used to demonstrate a proof of 

concept either in vitro or in vivo models.
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Status epilepticus (SE), a continuous seizure activity for more than 30 min, causes a 

significant inflammatory injury to the brain and is associated with significant delayed 

mortality (30 day mortality is 35%) in humans and laboratory rodent models (30–40%). 

Mouse and rat models of SE exhibit higher levels of COX-2 (and hence PGE2) along with 

several inflammatory mediators, starting from 2h until 4 days. These agents play a 

deleterious role in over activation of brain resident macrophage microglia and astrocytes, 

subsequently leading to a robust neuronal death, memory, and behavioral deficits. Thus, SE 

model presents an opportunity to test whether EP2 receptor plays a proinflammatory role 

and whether an EP2 antagonist blunts EP2 mediated deleterious pathology after SE. The 

data presented in the patents31, 32 suggest that a brief exposure of EP2 antagonist an hour 

after mice entered into SE by pilocarpine (a muscarinic receptor agonist), suppresses the 

delayed mortality by 30%, accelerates the recovery of mice by day 4 (determined by weight 

regain and nest building), suppresses the upregulation of several proinflammatory mediators 

including IL-1β, IL-6 and TNF-α, breakdown of blood brain barrier and neurodegeneration 

(by 50–66%) in hippocampus sub-regions (CA1, CA3 and hilus), in comparison to a vehicle 

treatment suggesting EP2 antagonist is useful to mitigate the inflammatory response after 

brain injury. The details of the study were published recently29, 42.

A significant body of evidence suggests that upregulation of COX-2 correlates well with 

high levels of PGE2 in tumor tissues43–45, and administration of PGE2 enhances the colon 

cancer in an azoxymethane-induced colon tumor model46, suggesting antagonism of PGE2 

receptors could be a novel strategy for anti-cancer drug development. EP2 gene knockout 

models also established that EP2 receptor plays pivotal role in tumorigenesis and 

metastasis25–27. Thus, EP2 can be targeted by small molecule antagonist. While in vivo 
biological studies are still to be conducted, the early results presented in this patent and 

subsequently in a recent publication30 demonstrate that an EP2 antagonist 3 attenuates EP2 

agonist butaprost (Figure 1) mediated PC3 prostate cancer cell growth and invasion in vitro.

4. Expert opinion

The patents31, 32 from the Emory laboratory underscore the importance of EP2 antagonists 

for therapeutic discovery, but they also raise a number of issues to be resolved before an EP2 

antagonist is taken forward for human use. First, it should be determined whether a 

pharmacological inhibition of basal EP2 receptor activity in normal and healthy mice will 

have any detrimental effects, because EP2 global knockout mice displayed several adverse 

effects such as reduced fertility and pups with reduced litter size47, 48; systolic hypertension 

when fed high salt-diet48; cognitive, social memory deficits; impaired spatial learning49, 50, 

suggesting EP2 plays a physiological role. Thus, it is important to demonstrate whether 

chronic, study state exposure of EP2 antagonist in rodents will have any adverse effects on 

all these fronts, particularly on maintenance of arterial blood pressure, ovulation, and 

fertility. However, studies from the Dingledine laboratory51 established that EP2 inhibition 

recapitulates many features of COX-2 inhibition restricted to forebrain neurons in the SE 

model51; several other studies from the laboratories of Andreasson18, 19, 52, 53 and 

Montine54–56 demonstrated that EP2 exacerbates the inflammatory signaling and oxidative 

stress, drives brain micro environment for neurotoxicity and suppress the beneficial 

functions of microglia. Thus, EP2 antagonism should be explored as a novel therapeutic 
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strategy, not only for anti-inflammation and neuroprotection, but also for anti-cancer and 

endometriosis3, 4.

Until now, very few selective EP2 antagonists have been discovered, including a brain 

permeable compound 12 with brain-to-plasma ratio (1.7) and plasma half-life 1.7 h. In the 

SE model study, three injections of 12 at 4, 21 and 30 hrs (5 mg/kg, ip) after SE seem 

beneficial, but it is difficult to ascertain whether a steady state inhibition of EP2 receptor was 

achieved by this regimen. It is unclear whether the efficacy can be repeated in this model if 

and when a novel compound with a prolonged plasma half-life and brain pharmacokinetics 

is used. Moreover, from the bioactivity, compound 12 is only 10-fold selective to EP2 over 

DP1, thus it is also possible that 12 may be working through DP1 receptors. Furthermore, 

the data is insufficient to ascertain the biological effect by 12 in the SE model is only 

through its interaction with EP2 receptor. A related compound 14, which shares structural 

similarity with 12 (Figure 4) is also available for use in peripheral disease models. 

Compound 14 has a prolonged plasma half-life (2.7 h) and about 500-fold higher 

concentrations in plasma than its EP2 Schild KB (8.8 nM) until 8 h after ip injection57.

While Bayer Schering Pharma has not advanced any of their products, Pfizer seems to be a 

real competitor in the development of EP2 antagonists. Pfizer created a compound 13, an 

azetidine carboxylic acid derivative with high selectivity to EP2 against all other prostanoid 

receptors and showed that it attenuates a butaprost induced cutaneous blood flow in rats58. 

However, its brain penetration properties were not reported to suggest whether it will be a 

useful compound for in vivo use in brain injury models and it is unknown whether Pfizer is 

exploring EP2 antagonists in any CNS models.

Therapeutic applications of a clinically useful EP2 antagonist would be enormous. Although 

the lead antagonist 13 may potentially result in idiosyncratic drug reactions due to the 

acrylamide and the trimethoxyphenyl functional groups59, 60, the compounds 10 and 11 will 

not. Overall, as it was claimed in the patents31, 32, 34, an optimized EP2 antagonist may be 

useful for treating a variety of inflammatory diseases such as arthritis and IBD; 

neurodegenerative diseases such as SE, epilepsy, AD, PD, and ALS; women’s diseases such 

as menorrhagia, dysmenorrhea, and endometriosis; and other diseases such as cancer and 

COPD.
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cAMP cyclic adenosine monophosphate

ALS amyotrophic lateral sclerosis

TR-FRET time-resolved fluorescence resonance energy transfer
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OTT office of technology transfer

POC proof of concept

SE status epilepticus

AD Alzheimer’s disease

PD Parkinson’s disease

COPD chronic obstructive pulmonary disease

IBD inflammatory bowel disease
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Figure 1. 
Structures and bioactivity of EP2 receptor agonist PGE2 (endogenous) and synthetic 

derivative butaprost free acid. Values are obtained from33.
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Figure 2. 
Key Markush structures illustrated in the patent application31, 32 to cover the structural 

modifications possible on this scaffold to protect the intellectual property
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Figure 3. 
Structural comparison between compounds from the Emory patents31, 32 to the one 

published in patents from Bayer Schering Pharma34, 35. SAR = Structure activity 

relationship study. Filled green boxes are used to indicate similarity, whereas the unfilled red 

boxes are used to indicate the differences.
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Figure 4. 
Lead EP2 antagonists currently available for in vivo use. EP2 Schild KB (derived from a 

cAMP-mediated-TR-FRET assay) and pharmacokinetics are shown in inset box. Blue boxes 

are used to indicate the similarity.
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Scheme 1. 
Synthesis of 1-indole cinnamic amide and amide EP2 antagonists. Reagents and conditions: 

a. NaH, bromoacetonitrile, DMF, 75% b. Lithium aluminum hydride (LAH), tetrahydrofuran 

(THF), c. a substituted cinnamic acid or a benzoic acid or a heterocyclic acid, 1-ethyl-3-(3-

dimethylaminopropyl)-carbodiimide hydrochloride (EDCI), dimethylaminopyridine 

(DMAP), CH2Cl2, 70–80%.
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