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Abstract

Background—Few studies have evaluated associations between low to moderate arsenic levels 

and chronic kidney disease (CKD). The objective was to evaluate the associations of inorganic 

arsenic exposure with prevalent and incident CKD in American Indian adults.

Methods—We evaluated the associations of inorganic arsenic exposure with CKD in American 

Indians who participated in the Strong Heart Study (SHS) in 3,851 adults aged 45–74 years in a 

cross-sectional analysis, and 3,119 adults with follow-up data in a prospective analysis. Inorganic 

arsenic, monomethylarsonate, and dimethylarsinate were measured in urine at baseline. CKD was 

defined as eGFR≤60 mL/min/1.73m2, kidney transplant or dialysis.
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Results—CKD prevalence was 10.3%. The median (IQR) concentration of inorganic plus 

methylated arsenic species (total arsenic) in urine was 9.7 (5.8, 15.7) μg/L. The adjusted OR (95% 

CI) of prevalent CKD for an interquartile range in total arsenic was 0.7 (0.6, 0.8), mostly due to an 

inverse association with inorganic arsenic (OR 0.4 (0.3, 0.4)). Monomethylarsonate and 

dimethylarsinate were positively associated with prevalent CKD after adjustment for inorganic 

arsenic (OR 3.8 and 1.8). The adjusted HR of incident CKD for an IQR in ΣAs was 1.2 (1.03, 

1.41). The corresponding HR for inorganic arsenic, monomethylarsonate and dimethylarsinate 

were 1.0 (0.9, 1.2), 1.2 (1.00, 1.3) and 1.2 (1.0, 1.4).

Conclusions—The inverse association of urine inorganic arsenic with prevalent CKD suggests 

that kidney disease affects excretion of inorganic arsenic. Arsenic species were positively 

associated with incident CKD. Studies with repeated measures are needed to further characterize 

the relationship between arsenic and kidney disease development.

INTRODUCTION

Strong evidence suggests that chronic exposure to arsenic from drinking water1 and food2 is 

involved in the development of cancer3 and cardiovascular disease.4–7 Other health 

outcomes that have been associated with arsenic exposure include type 2 diabetes,8–10 

respiratory outcomes,11 and neurodevelopmental and reproductive abnormalities.12, 13 Fewer 

epidemiologic studies have evaluated associations between arsenic and chronic kidney 

disease (CKD).14 Most studies on arsenic and renal outcomes have focused on proteinuria, 

showing that high arsenic exposure levels15 and low arsenic exposure levels16 are associated 

with increased albuminuria or proteinuria. In two small studies from Taiwan (Taipei and 

Central Taiwan), moderate arsenic exposure levels were associated with prevalent CKD, 

defined as estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2.17, 18 In 

Southeastern Michigan, an ecologic study found a positive association between moderate 

arsenic concentrations in drinking water (mean 11 μg/L) and kidney disease mortality.19 

Little is known, however, about the association between arsenic and CKD at low-moderate 

levels of exposure.

The objective of this study was to investigate the association between inorganic arsenic 

exposure, by measuring inorganic (arsenite and arsenate) and methylated 

(monomethylarsonate and dimethylarsinate)) arsenic species in urine, and CKD, defined as 

eGFR <60 mL/min/1.73 m2, kidney transplant, or dialysis. The sum of inorganic and 

methylated arsenic species in urine is an established biomarker of recent and ongoing 

arsenic exposure.20 Because kidney excretion is the primary route for arsenic elimination,20 

it is possible that kidney function affects excretion and concentrations of arsenic species in 

urine.21, 22 Little is known, however, about how the inorganic and methylated species are 

excreted in the kidney or if they are affected by GFR. In this study, we evaluated the cross-

sectional association of baseline urine arsenic concentrations with prevalent CKD and the 

prospective association of baseline urine arsenic concentrations with incident CKD among 

participants free of CKD at baseline. The study was conducted using data from the Strong 

Heart Study, a population-based study in American Indian communities from Arizona, 

Oklahoma and North and South Dakota.23 The study population is characterized by low to 

moderate levels of arsenic exposure through drinking water and food.24 Water arsenic levels 

Zheng et al. Page 2

Epidemiology. Author manuscript; available in PMC 2016 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in the study areas also include some levels that are higher than the national average as well 

as the above the current arsenic standard of 10 μg/L. Additionally, due to the high prevalence 

of diabetes in the Strong Heart Study, the participants are at increased risk for developing 

CKD. In a previous study, we confirmed that the sum of inorganic and methylated arsenic 

concentrations measured in urine samples collected as baseline was an appropriate 

biomarker of arsenic exposure over a 10-year period in our study population.24 We have also 

previously reported that urine arsenic was associated with prevalent albuminuria, with no 

difference for inorganic or methylated arsenic species.16

METHODS

Study population

The Strong Heart Study was originally funded by the National Heart Lung and Blood 

Institute to evaluate risk factors for cardiovascular disease in American Indian 

communities.23, 24 Men and women 45–74 years of age from 13 tribes and communities in 

Arizona, Oklahoma, and North and South Dakota were invited to participate.23, 25 A total of 

4,549 participants were recruited (62% response rate). The baseline visits took place 

between 1989 and 1991 and two follow-up visits took place in 1993–1995 and 1997–1999. 

The response rates among participants who were alive at the time of the visits were 88% and 

89% at visits 2 and 3, respectively.

We used data from 3,974 Strong Health Study participants in whom we have measured urine 

arsenic at the baseline visit. We excluded 78 participants missing serum creatinine, 7 

participants missing fasting glucose, and 38 participants missing other variables of interest, 

leaving 3,851 participants for the cross-sectional analysis. For the prospective analyses, we 

further excluded the 395 participants who had CKD (eGFR≤60 ml/min/1.73m2, dialysis or 

kidney transplant) at baseline as well as 331 participants who missed both follow-up visits, 

leaving 3,119 participants for the prospective analyses. The Strong Health Study protocol 

and consent form were approved by local institutional review boards, participating tribes and 

the Indian Health Service. All participants provided informed consent.

Urine arsenic

Urine collected at baseline was frozen and shipped to the MedStar Health Research Institute, 

Washington DC where it was stored at −80°C. In 2009, up to 1 mL urine sample aliquots 

were shipped to the Trace Element Laboratory at Graz University, Austria for arsenic 

analyses. The analytical methods and quality control criteria for the measurement of urine 

arsenic in the Strong Heart Study have been described in detail.26 In summary, inorganic 

arsenic species (arsenite and arsenate, measured together under oxidized conditions), 

methylated arsenic species (monomethylarsonate and dimethylarsinate) and arsenobetaine 

plus other arsenic cations were determined by high performance liquid chromatography 

(HPLC; Agilent 1100, Agilent Technologies, www.agilent.com) coupled to inductively 

coupled plasma - mass spectrometry (ICP-MS) (Agilent 7700x ICPMS). The inter-assay 

coefficient of variation was below 5% for all arsenic species. The limit of detection was 0.1 

μg/L for inorganic arsenic, monomethylarsonate, dimethylarsinate, and arsenobetaine and 

other arsenic cations. The percentage of samples below the limit of detection was 5.2% for 
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inorganic arsenic, 0.8% for monomethylarsonate, 0.03% for dimethylarsinate, and 2.1% for 

arsenobetaine and other arsenic cations. Samples below the limit of detection were replaced 

by the limit of detection divided by the square root of two.

We used the sum of inorganic (arsenite, arsenate) and methylated (monomethylarsonate, 

dimethylarsinate) arsenic species as our biomarker of inorganic arsenic exposure. In 

addition, we evaluated inorganic arsenic, monomethylarsonate, and dimethylarsinate 

separately, as well as arsenobetaine, an arsenical found in seafood that is characterized by 

very low toxicity. Urine arsenic concehntrations (μg/L) were divided by urine creatinine 

concentrations (g/L) to account for urine dilution and expressed in μg/g creatinine. The 

Spearman’s correlation coefficient of inorganic arsenic (arsenate, arsenite) with 

monomethylarsonate, dimethylarsinate and arsenobetaine were 0.84, 0.73, and 0.01, 

respectively.

Plasma and urine creatinine measures

Serum creatinine was measured in fasting venous blood samples by an automated alkaline-

picrate rate method (Roche Diagnostics, www.rocheusa.com/portal/usa) using Hitachi 717 

platform (Hitachi Ltd, www.hitachi.com) at all visits.27 eGFR was calculated from 

creatinine, age, and sex using the Modification of Diet in Renal Disease equation without the 

ethnicity factor.28 Prevalent CKD was defined as eGFR ≤60 ml/min/1.73 m2 or presence of 

kidney transplant or dialysis at baseline.29 Incident CKD was defined as eGFR ≤60 ml/min/

1.73 m2 or presence of kidney transplant or dialysis at either follow-up visits.

Urine creatinine was measured in spot urine samples collected during the baseline visit at 

the Laboratory of the National Institute of Diabetes and Digestive and Kidney Diseases 

Epidemiology and Clinical Research Branch, Phoenix, Arizona by an automated alkaline 

picrate methodology.23

Other variables

Information on age, gender, education, smoking status, hypertension medication use, 

dialysis, and kidney transplant was collected by trained and certified interviewers using 

standardized questionnaires.23 Physical exam measures (height, weight, systolic, and 

diastolic blood pressure) were performed by trained nurses and medical assistants following 

a standardized protocol. Methods to measure blood pressure, body mass index, fasting 

glucose, 75-g oral glucose tolerance test, and hemoglobin A1c (HbA1c) have been 

described.23 Diabetes was defined as a fasting glucose ≥126 mg/dL, a 2-h post-load plasma 

glucose ≥200 mg/dL, an HbA1c ≥6.5%, or the use of insulin or an oral hypoglycemic 

agent.30

Statistical analyses

Statistical analyses were performed in Stata 11.2 (Stata Corporation, www.stata.com) and R 

2.15.2 (R Project, www.r-project.org). Urine arsenic concentrations were right skewed and 

natural log transformed. Quartiles were generated based on the distribution of urine arsenic 

concentrations in the overall study sample.
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For the cross-sectional analysis, we used logistic regression models to estimate adjusted 

odds ratios for prevalent CKD by urine arsenic concentrations at baseline. For the 

prospective analysis, we used Cox proportional hazards models stratified by study location 

with age as time scale and age at baseline treated as staggered entries. Follow up time was 

calculated in years from the date of the baseline visit to the date at the first visit with CKD 

for participants with incident CKD, and to the date at the last visit for those without incident 

CKD. This follow up time was added to the participant’s age at the baseline visit. In both 

logistic and Cox proportional hazards regression models, arsenic concentrations were 

entered as quartiles (comparing quartiles 2–4 to the lowest quartile), as log-transformed 

continuous variables (comparing an interquartile range in log-transformed arsenic levels), 

and as restricted quadratic splines in separate models. P-values for linear trend were 

obtained by including a continuous variable with the medians corresponding to each quartile 

of the arsenic distribution in the regression models.31

Models were progressively adjusted. Initially, we adjusted for age (only for logistic models 

as Cox models already accounted for age), gender, study location (only for logistic models 

as Cox models were stratified by location), education, body mass index, smoking status, 

systolic blood pressure, and hypertension medication (Model 2 in prospective models only). 

Because arsenic has been associated with diabetes prevalence and poor diabetes control in 

our population,30 we ran additional models adjusting for diabetes and fasting glucose levels 

(Model 3). Results were similar adjusting for HbA1c instead of fasting glucose levels (data 

not shown). For the prospective association between baseline urine arsenic and incident 

CKD, because glomerular filtration rate could interfere with arsenic excretion in urine,32 a 

possibility further supported by our cross-sectional findings especially for inorganic arsenic 

species, in Model 2 we also adjusted for baseline eGFR. This is a common approach to look 

at CKD progression. In this model, we are evaluating the association between urine arsenic 

concentrations in urine with incident CKD that are independent of baseline eGFR.

In sensitivity analyses, we accounted for urine dilution adjusting for urine creatinine instead 

of dividing arsenic by creatinine,33 and adjusting for specific gravity.34 In analyses adjusted 

for specific gravity, we also excluded participants with prevalent diabetes and albuminuria. 

The results of the sensitivity analyses were similar (Supplemental Table 1). To account for 

high mortality rates in the study population,35 we fitted Cox proportional hazards models 

using the Fine and Gray method of handling competing risks36 with death as the competing 

event with similar findings (data not shown). Because the exact date of CKD development 

was unknown and our ascertainment of the study outcome was only available at three visits, 

we used Poisson regression as an alternative modeling strategy with consistent findings. 

Using Poisson regression we also estimated absolute incidence rates across arsenic quartile 

categories given mean values of covariates (model 3 and model 4).

RESULTS

Cross-sectional findings

The prevalence of CKD at baseline was 10.3% (395/3,851). Participants with prevalent CKD 

were more likely to be older, female, from Arizona, less educated and former smokers 

(Table 1). Participants with prevalent CKD were also more likely to have diabetes and higher 
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fasting glucose levels, to use anti-hypertensive medication, and to have higher blood 

pressure levels. Median (IQR) urine inorganic plus methylated arsenic concentrations were 

lower in participants with CKD (8.9 (5.2, 14.6) μg/g) compared to participants without CKD 

(9.8 (5.9, 15.7) μg/g). Inorganic arsenic, monomethylarsonate, and dimethylarsinate 

concentrations were also lower in participants with CKD (Table 1). Arsenobetaine 

concentrations were similar in participants with and without CKD(Table 2).

The OR for CKD comparing the 75th to the 25th percentile of inorganic plus methylated 

arsenic was 0.7 (0.6, 0.8) after adjusting for sociodemographic and CKD risk factors (Table 

3). In separate analyses for each arsenic species, a markedly strong inverse association was 

observed for inorganic arsenic (OR for CKD comparing the 75th to the 25th percentile was 

0.4 (0.3, 0.4). For monomethylarsonate and dimethylarsinate, the inverse associations were 

weaker and they became positive after adjustment for inorganic arsenic (OR (95% CI) 3.8 

(2.8, 5.1) for monomethylarsonate, and 1.8 (1.4, 2.3) for dimethylarsinate). Urine 

arsenobetaine was not associated with prevalent CKD. In restricted quadratic spline models, 

we observed an inverse association between the sum of inorganic and methylated arsenic 

concentrations and prevalent CKD, which was mostly driven by a strong inverse association 

with inorganic arsenic (Figure 1). For monomethylarsonate and dimethylarsinate the inverse 

association was weaker and it could be related to the correlation between inorganic arsenic 

and monomethylarsonate and dimethylarsinate species. After adjustment for inorganic 

arsenic levels, the associations between monomethylarsonate and prevalent CKD, and 

dimethylarsinate and prevalent CKD became strongly positive (Figure 1). The inverse 

association for the sum of inorganic and methylated arsenic species was observed in all 

participant subgroups evaluated, except in participants younger than 55 years of age (Figure 

2).

Modeling eGFR as a continuous variable, higher urine arsenic was associated with higher 

eGFR levels in all models. After adjustment for all variables in model 3 (Supplemental Table 

2), an interquartile range in urine arsenic levels was associated with a mean difference of 5.2 

(95% CI 4.1, 6.3) ml/min/1.73 m2 for the sum of inorganic and methylated arsenic, 7.9 (6.9, 

9.0) ml/min/1.73 m2 for inorganic arsenic, 3.0 (1.9, 4.0) ml/min/1.73 m2 for 

monomethylarsonate and 4.8 (3.7, 5.8) ml/min/1.73 m2 for dimethylarsinate. After adjusting 

for inorganic arsenic concentrations, the corresponding mean difference in eGFR was −0.1 

(−1.4, 1.1) for monomethylarsonate and 2.5(1.2, 3.7) ml/min/1.73 m2 for dimethylarsinate. 

In analyses restricted to 3,456 participants without CKD and in 1,356 participants with 

eGFR ≥90 ml/min/1.73m2, the mean difference in eGFR for an interquartile range in 

inorganic plus methylated arsenic concentrations were 4.4 (3.4, 5.5) ml/min/1.73 m2 and 3.4 

(1.5, 5.5) ml/min/1.73 m2, respectively.

Prospective findings

The incidence rate of CKD over the study period was 23.5 per 1,000 person-years. Mean 

follow-up time was 6.86 years. Similar to the cross-sectional analysis, participants who 

developed CKD were more likely to be older, female, from Arizona, less educated, former 

smokers, and more likely to have diabetes, use anti-hypertension medication, and have 

higher blood pressure and higher fasting glucose levels (Table 1). Participants with incident 
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CKD had higher inorganic plus methylated arsenic concentrations in baseline urine (median 

11.2 (interquartile range 6.2, 18.2) μg/g creatinine) compared to those without incident CKD 

(9.5 (5.7, 15.4) μg/g creatinine). Looking at the individual species, baseline 

monomethylarsonate and dimethylarsinate concentrations were higher in participants with 

than without incident CKD. Baseline inorganic arsenic species and arsenobetaine 

concentrations were similar in participants with and without incident CKD.

The hazard ratio (95%CI) for incident CKD comparing the 75th to the 25th percentile of 

inorganic plus methylated arsenic species was 1.2 (1.0, 1.4) after adjusting for all 

sociodemographic and kidney disease risk factors evaluated (Table 4, model 3). In analyses 

of the individual species separately, the corresponding hazard ratios were 1.0 (0.9, 1.2) for 

inorganic arsenic, 1.2 (1.00, 1.3) for monomethylarsonate and 1.2 (1.0, 1.4) for 

dimethylarsinate. In flexible dose-response models, a positive prospective association with 

CKD was observed for the sum of inorganic and methylated arsenic species, as well as for 

monomethylarsonate and especially for dimethylarsinate (Figure 3); by contrast, there was 

no association for inorganic arsenic. The association between the sum of inorganic and 

methylated arsenic species and incident CKD was similar across participant characteristics 

(Figure 2).

DISCUSSION

In this population, primarily from rural communities in the western United States, 

participants with prevalent CKD had lower concentrations of inorganic plus methylated 

arsenic species measured in baseline urine, which was mostly explained by a strong inverse 

association with inorganic arsenic. This finding suggests that glomerular filtration 

contributes importantly to inorganic arsenic excretion. For urinary monomethylarsonate and 

dimethylarsinate, we found a positive association with prevalent CKD after adjustment for 

inorganic urinary arsenic concentrations. Prospectively, baseline urine concentrations of 

inorganic plus methylated arsenic species were associated with incident CKD. The 

prospective association between arsenic and CKD remained after adjustment for 

sociodemographic and CKD risk factors, including baseline eGFR, as well as in most 

participant subgroups. In analyses of the individual species, the prospective associations 

remained present for monomethylarsonate and dimethylarsinate but no association was 

observed with inorganic arsenic concentrations.

The major route of arsenic excretion is through the kidneys.20 Little is known, however, 

about the precise pathways of excretion for the different arsenic species. In an experiment in 

dogs, arsenate and arsenite were filtered through the glomeruli and partly reabsorbed by the 

tubules.37 Arsenic excretion was decreased in several studies of animals with impaired 

kidney function. In rabbits, arsenic excretion was reduced in a dose-responsive manner 

following partial and subtotal nephrectomy.38 None of those animal studies have evaluated 

the impact of kidney function on the methylated arsenic species.

Few human studies have evaluated arsenic excretion in the presence of impaired kidney 

function. Dialysis was needed to remove sodium arsenite from blood in 2 patients with acute 

sodium arsenite intoxication and acute kidney failure.39 When kidney function recovered, 
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urine total arsenic excretion increased.39 A pharmacologic study of arsenic trioxide 

treatment in 20 cancer patients with varying kidney function levels found that total arsenic 

excretion was reduced in patients with impaired kidney function.32 Impaired kidney function 

also resulted in decreased percentage of total arsenic excreted as arsenite as well as with an 

increase in plasma monomethylarsonate and dimethylarsinate concentrations.32 However, 

only in cases of severe renal impairment did the internal dose of arsenite increase.32 In a 

cancer patient on hemodialysis treated with arsenic trioxide, plasma total arsenic 

concentration increased in the presence of arsenic trioxide treatment and hemodialysis was 

not sufficient to reduce plasma arsenic concentrations.40

Our cross-sectional findings suggest that chronically reduced glomerular function reduces 

the excretion of inorganic arsenic but not of monomethylarsonate or dimethylarsinate, or of 

arsenobetaine. These findings are thus consistent with reverse causation, in which CKD and 

decreased GFR impair urine arsenic excretion, specifically inorganic arsenic exposure. 

Decreased inorganic arsenic elimination through the kidneys could result in increased 

arsenic internal dose and higher risk of arsenic related health effects among individuals with 

CKD. In blood, the longer retention of inorganic arsenic species would allow them to be 

further methylated. In our study, however, we have no measurements of arsenic species in 

blood. Several small studies in patients with CKD, including participants on dialysis, have 

shown increased arsenic concentrations in serum compared to healthy controls, although 

levels of urine arsenic were not reported (and urine assessment can be difficult to do in 

patients on dialysis).21, 22, 41, 42 The impact could occur across the range of kidney filtration, 

rather than just with CKD, since the association between arsenic, especially inorganic 

arsenic, and eGFR was present even at eGFR levels > 90 mL/min/1.73 m2. The marked 

change in the direction of the association between monomethylarsonate and 

dimethylarsinate after adjustment for inorganic arsenic needs to be interpreted cautiously. 

Although our analysis can support that the evidence that methylated species are a risk factor 

for CKD and the result is consistent with the prospective analyses, we cannot rule out that 

the moderate to strong correlation between the inorganic and methylated arsenic species 

results in an artifact.

A second possible explanation for the observed inverse association between arsenic and 

prevalent CKD that becomes positive with incident CKD is hyperfiltration. Hyperfiltration is 

the presence of an elevated GFR in the early stages of kidney disease before a decline in 

GFR in later stages of kidney disease. Hyperfiltration is well established in the early stages 

of kidney diseases associated with diabetes and obesity,43 and with sickle cell disease.44 It 

has also been proposed for environmental nephrotoxicants such as lead 45, 46. A caveat to 

this hypothesis is that little is know about whether arsenic could induce hyperfiltration; as no 

human or animal studies, to our knowledge, have evaluated the possible role of arsenic 

exposure in hyperfiltration.

Few experimental studies have evaluated the role of arsenic in kidney disease development. 

In vitro and animal studies support the role of high arsenic exposure levels in kidney 

damage,47, 48 although the relevance of those studies is unclear as arsenic concentrations 

were very high. For instance, subcytotoxic but still high arsenite (10 μmol/L) and arsenate 

(25 μmol/L) concentrations inhibited mitochondrial metabolism in proximal tubule cells.49 
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Arsenic can also influence inflammatory processes in in vitro models, as measured by 

increased IL-6 and IL-8 expression,50 and reactive oxygen species pathways.51 In rodents 

exposed to 5 mg/kg arsenic trioxide, markers of kidney function (serum urea nitrogen and 

serum creatinine), markers of kidney injury (urine N-acetyl- β -D-glucosaminidase), and 

markers of reactive oxygen species increased in arsenic trioxide treated kidney tissue 

compared to controls.52 Through these mechanisms, arsenic could also play a role in arseni- 

related kidney damage.53

In human populations, ecologic studies estimating standardized mortality ratios (SMRs) 

have found associations between high arsenic levels in drinking water and kidney disease 

mortality including evidence from Antofagasta, Chile54 and Southwestern Taiwan.55 At 

lower levels of arsenic exposure, an ecological study in Southeastern Michigan (mean water 

arsenic 11 μg/L) found elevated kidney disease mortality compared to the rest of Michigan 

in both men (SMR 1.28, 95% CI 1.15–1.42) and women (SMR 1.38, 95% CI 1.25–1.52).19 

In another ecological study of residents of Millard County in Utah (median arsenic 

concentrations ranging from 14 to 166 μg/L in selected towns), the SMR for mortality due to 

nephritis and nephrosis was increased among men (SMR 1.72, 95% CI 1.13 – 2.50), but 

non-increased among women (SMR 1.21, 95% CI 0.66– 2.03).56 In a systematic review, the 

overall pooled SMR was 1.29 (95% CI 1.10 – 1.51).14 Our prospective results are consistent 

with those ecologic findings.

The major strengths of our study were the availability of arsenic speciation and the ability to 

compare cross-sectional and prospective findings. The laboratory techniques for assessing 

urine arsenic are state-of-the art and highly sensitive, resulting in few participants below the 

limit of detection (less than 6% for inorganic arsenic).26 The speciation of arsenic in urine 

allowed us to distinguish exposure to inorganic arsenic, confirm that organic arsenic from 

seafood was low, and evaluate different associations with different species. The protocols for 

recruitment, interviews, examinations, and collection and storage of biological samples were 

highly standardized. The losses to follow-up were low and we had little missing data.

Our study has several limitations. First, eGFR levels were only measured at baseline and two 

follow-up visits. Therefore, the exact date of CKD development was unknown. Second, as 

the direct determination of GFR is not feasible in large population studies, we estimated 

GFR using the CKD-EPI equation for baseline and cross-sectional analyses and the MDRD 

equation for follow-up assessment of incident CKD. The MDRD equation was developed in 

individuals with kidney disease, and as a result, the equation has greater imprecision and 

underestimates GFR in individuals with GFR> 60 ml/min/1.73m2.57 In the Strong Heart 

Study, the isotope dilution mass spectrometry (IDMS)-calibrated serum creatinine measures 

required for the CKD-EPI were only available at baseline, so that it could not be used for 

outcome assessment. Third, we used spot urine samples to measure arsenic exposure, which 

must be adjusted for urine dilution. Our main analysis divided by urine creatinine to account 

for urine dilution. In sensitivity analyses, we adjusted for specific gravity, with consistent 

findings (Table S1). Also, we could not evaluate arsenite and arsenate separately, as both 

species were measured simultaneously under oxidized conditions.26 Fourth, our study 

population has a high burden of obesity, diabetes and CKD. Generalization to a population 

with a different disease profile may be limited. However, the prospective associations 
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remained after adjustment for CKD risk factors, including diabetes and fasting glucose 

levels, which have been associated with arsenic in the Strong Heart Study population30 and 

other studies in American Indians8 and Northern Mexicans,58 and could be potential 

mediators of the association between arsenic and CKD. Finally, competing risks such as 

censoring by death could be a problem in this study population, characterized by a high 

burden of disease.35 Our sensitivity analyses using the Fine and Gray method to handle 

competing risks resulted in similar findings.

CONCLUSIONS

Prevalent CKD was inversely associated with the sum of inorganic and methylated arsenic 

concentrations in urine, and particularly with inorganic arsenic concentrations. These cross-

sectional findings suggest that kidney disease is associated with the excretion of inorganic 

arsenic species. Prospectively, inorganic plus methylated urine arsenic concentrations, 

especially monomethylarsonate and dimethylarsinate concentrations, were positively 

associated with incident CKD. These findings could support the hypothesis that arsenic is a 

kidney disease risk factor. Studies with repeated measures of arsenic species in urine and 

blood as well as renal dysfunction endpoints are needed to further characterize the 

association between arsenic exposure, excretion of the arsenic species, and CKD 

development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Odds ratios for prevalent chronic kidney disease by total arsenic (the sum of inorganic and 

methylated arsenic species), inorganic arsenic (arsenate and arsenite), monomethylarsonate 

arsenic, and dimethylarsinate.

Black lines (solid lines) represent odds ratios and 95% confidence intervals (dashed lines) 

based on restricted quadratic spline models for log transformed arsenic with 3 knots and 

adjusted as in Table 3, model 3. Gray lines (solid lines) are the odds ratios and 95% CI 

(dashed lines) for monomethylarsonate and dimethylarsinate after adjustment for urine 

inorganic arsenic levels. The reference was set at the 10th percentile of the urine arsenic 

biomarker distribution. Odds ratios were adjusted for age (continuous), sex, study region, 

body mass index (continuous), education, smoking status, diabetes status, hypertensive 
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medication, systolic blood pressure (continuous), and fasting glucose (continuous). For 

inorganic plus methylated arsenic species the p-value for a linear and non-linear dose-

response relationships were 0.02 and 0.13, respectively. For inorganic arsenic, the p-values 

for linear and non-linear dose-response were 0.01 and 0.005. For monomethylarsonate, p-

values for linear and non-linear dose-response were, respectively, 0.02 and 0.19 before and 

0.10 and 0.003 after adjustment for inorganic arsenic. For dimethylarsinate, p-values for 

linear and non-linear dose-response were 0.01 and 0.14 before and 0.92 and 0.02, after 

adjustment for inorganic arsenic.
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Figure 2. 
Odds ratios (OR) and hazard ratios (HR) for chronic kidney disease comparing the 75th to 

25th percentile of the sum of inorganic and methylated arsenic species, stratified by 

participant characteristics

Odds ratios are adjusted for age (years), sex, study region, body mass index (continuous), 

education, smoking status, diabetes status, hypertensive medication, systolic blood pressure 

(continuous), and fasting glucose (continuous)

Hazard ratios were adjusted for age (continuous), sex, body mass index (continuous), 

education (continuous), smoking status, diabetes status, hypertensive medication, systolic 

blood pressure (continuous), baseline eGFR (continuous), and fasting glucose (continuous). 

Baseline hazard was stratified by study region.
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Figure 3. Hazard ratio for incident CKD by the sum of inorganic and methylated arsenic species
Lines represent hazard ratios (solid lines) and 95% confidence intervals (dashed lines) based 

on restricted quadratic spline models for log transformed arsenic with 3 knots. The reference 

was set at the 10th percentile of the urine arsenic biomarker distribution. Hazard ratios were 

adjusted for age (continuous), sex, body mass index (continuous), education (continuous), 

smoking status, diabetes status, hypertensive medication, systolic blood pressure 

(continuous), eGFR (continuous) and fasting glucose (continuous). Baseline hazard was 

stratified by study region. The p-value for linear dose-response relationship for the sum of 

inorganic and methylated species was 0.80 and the p-value for a non-linear dose-response 

was 0.69. The p-value for a linear dose-response relationship for inorganic arsenic was 0.31 

and the p-value for a non-linear dose-response was 0.47. For monomethylarsonate, the p-
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value for a linear dose-response relationship was 0.32 and 0.23 for a non-linear dose-

response relationship. For dimethylarsinate, the p-value for a linear dose-response 

relationship was 0.91 and 0.61 for a non-linear dose-response relationship.
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Table 1

CKD status by participant characteristics at baseline. Data are median (interquartile range) or percentages

Participant Characteristics Prevalent CKD Incident CKD

No Yes No Yes

Overall No. 3456 395 2617 502

Age, years 54.3 (49, 61.1) 63 (55.8, 68.1) 53.4 (48.5, 60.1) 58.3 (52.5, 64.4)

Gender (%)

 Male 43 23 43 32

 Female 57 77 57 68

Study Region (%)

 Arizona 34 35 33 39

 Oklahoma 33 37 33 33

 South Dakota 33 29 34 28

Education, years 12 (9, 13) 11 (9, 12) 12 (9, 13) 11 (8, 12)

Smoking Status (%)

 Never 34 36 32 36

 Former 32 40 33 36

 Current 35 24 35 28

BMI, kg/m2 30.1 (26.6, 34.3) 29.1 (26.1, 33.3) 30.1 (26.6, 34.5) 30.5 (27, 34.3)

Diabetes Status (%)

 No 52 36 56 31

 Yes 48 64 44 69

Fasting Glucose, mg/dL 115 (110, 174.5) 125 (102, 191) 111 (99, 154) 160.5 (109. 260)

Hypertension Medication (%)

 No 79 52 81 71

 Yes 21 48 19 29

Systolic BP, mmHg 124 (113, 136) 134 (119, 153) 123 (113, 135) 130.5 (118, 144)

As concentrations

 iAs+MMA+DMA, μg/gb 9.8 (5.9, 15.7) 8.9 (5.2, 14.6) 9.5 (5.7, 15.4) 11.2 (6.2, 18.2)

 iAs (inorganic arsenic) 0.8 (0.4, 1.5) 0.4 (0.2, 0.9) 0.8 (0.4, 1.5) 0.8 (0.4, 1.5)

 MMA (monomethylarsonate) 1.3 (0.8, 2.2) 1.2 (0.7, 2.2) 1.3 (0.8, 2.2) 1.4 (0.8, 2.5)

 DMA (dimethylarsinate) 7.4 (4.5, 12.0) 7.3 (4.0, 11.7) 7.1 (4.4, 11.7) 8.5 (4.8, 13.8)

 Arsenobetaine, μg/g 0.7 (0.4, 1.5) 0.7 (0.4, 2.1) 0.7 (0.4, 1.6) 0.7 (0.4, 1.4)

a
BMI: body mass index, BP: blood pressure, MMA: monomethylarsonate, DMA: dimethylarsinate

b
Sum of inorganic and methylated arsenic species

BMI indicates body mass index; BP, blood pressure; DMA, dimethylarsinate; iAs, inorganic arsenic; MMA, monomethylarsonate.
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Table 3

Odds ratios (95% confidence interval) for prevalent CKD by quartile of urine arsenic concentrations

Sum of inorganic and methylated, μg/g Cases/noncases Model 1 Model 2 Model 3

Quartiles

 ≤6.9 117/849 1.0 (ref) 1.0 (ref) –

 6.9 – 11.3 95/865 0.8 (0.6, 1.1) 0.7 (0.5, 1.00) –

 11.3 – 18.6 94/869 0.8 (0.6, 1.1) 0.6 (0.4, 0.9) –

 ≥18.6 89/873 0.7 (0.6, 1.00) 0.5 (0.3, 0.7) –

p-trend 0.08 <0.01 –

 IQR (15.6 vs 5.8) 395/3456 0.8 (0.7, 1.00) 0.7 (0.6, 0.8) –

Inorganic arsenic, μg/g

 IQR (1.4 vs 0.3) 395/3456 0.5 (0.4, 0.5) 0.4 (0.3, 0.4) –

MMA, μg/g

 IQR (2.2 vs 0.7) 395/3456 0.9 (0.8, 1.0) 0.8 (0.7, 1.0) 3.8 (2.8, 5.1)

DMA, μg/g

 IQR (12.0 vs 4.4) 395/3456 0.9 (0.8, 1.0) 0.7 (0.6, 0.9) 1.8 (1.4, 2.3)

Arsenobetaine, μg/g

 IQR (1.6 vs 0.4) 395/3456 1.0 (0.9, 1.1) 0.9 (0.8, 1.1) 0.9 (0.8, 1.1)

a
BMI: body mass index, BP: blood pressure, MMA: monomethylarsonate, DMA: dimethylarsinate, IQR: interquartile range

Model 1 is unadjusted.

Model 2 is adjusted for age and gender, location, education, smoking status, BMI, hypertension medication, SBP, diabetes status, and fasting 
glucose

Model 3 is additionally adjusted for inorganic arsenic (arsenite, arsenate)
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Table 4

Hazard ratios (95% confidence interval) for incident CKD by urine arsenic concentrations

Sum of inorganic and methylated, μg/g Cases/noncases Model 1 Model 2 Model 3

Quartiles

≤5.7 109/663 1.0 (ref) 1.0 (ref) 1.0 (ref)

5.8 – 9.7 110/671 1.0 (0.8, 1.4) 1.1 (0.8, 1.4) 1.1 (0.8, 1.4)

9.7 – 15.6 128/656 1.2 (0.9, 1.5) 1.2 (0.9, 1.7) 1.2 (0.9, 1.6)

≥15.6 155/627 1.4 (1.0, 1.9) 1.6 (1.2, 2.2) 1.3 (0.9, 1.8)

p-trend 0.01 <0.01 0.12

 IQR (15.6 vs 5.8) 502/2617 1.2 (1.1, 1.4) 1.3 (1.1, 1.5) 1.2 (1.0, 1.4)

Inorganic arsenic, μg/g

 IQR (1.5 vs 0.4) 502/2617 0.9 (0.8, 1.1) 1.1 (0.9, 1.3) 1.0 (0.9, 1.2)

MMA, μg/g

 IQR (2.2 vs 0.8) 502/2617 1.1 (0.9, 1.2) 1.2 (1.0, 1.4) 1.2 (1.00, 1.3)

DMA, μg/g

 IQR (12.1 vs 4.4) 502/2617 1.3 (1.1, 1.5) 1.3 (1.2, 1.6) 1.2 (1.0, 1.4)

Arsenobetaine, μg/g

 IQR (1.5 vs 0.4) 502/2617 1.1 (0.9, 1.2) 1.0 (0.9, 1.1) 1.1 (1.00, 1.2)

a
BMI: body mass index, BP: blood pressure, MMA: monomethylarsonate, DMA: dimethylarsinate, IQR: interquartile range

Model 1 is unadjusted.

Model 2 is adjusted for age and gender, location, education, smoking status, BMI, hypertension medication, SBP, and baseline eGFR

Model 3 is additionally adjusted for diabetes status and fasting glucose
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