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Abstract

Beginning with Vale and Colleagues in 1981, corticotropin releasing factor (CRF) also called 

corticotropin releasing hormone (CRH) has repeatedly been identified as an important contributor 

to fear and anxiety behavior. These findings have proven useful to further our understanding of 

disorders that have significant fear-dysregulation, such as post-traumatic stress, as well as other 

stress- and anxiety-related disorders. Unfortunately, the data are not all in agreement. In particular 

the role of CRF in fear learning is controversial, with studies pointing to contradictory effects from 

CRF manipulation even within the same brain structure. Further, very few studies address the 

potentially promising role of CRF manipulation in fear extinction behavior. Here, we briefly 

review the role of CRF in anxiety, fear learning and extinction, focusing on recent cell-type and 

neurotransmitter-specific studies in the amygdala and bed nucleus of the stria terminalis (BNST) 

that may help to synthesize the available data on the role of CRF in fear and anxiety-related 

behaviors.
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Introduction

CRF background

Corticotropin releasing factor CRH, also known as corticotropin releasing hormone (CRH), 

is a 41 amino acid peptide discovered by Vale and colleagues in 1981. CRF is largely 

expressed in stress responsive areas of the brain. In the brain, including the paraventricular 

nucleus of the hypothalamus (PVN), the central nucleus of amygdala (CeA) and the bed 
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nucleus of stria terminalis (BNST) (Merchenthaler, 1984; Palkovits et al., 1985). CRF is 

widely studied due to its role in activating the hypothalamic–pituitary–adrenal (HPA) axis in 

response to a perceived threat and coordinating the autonomic and behavioral response to 

stress. While CRF is critical for responding to a threatening situation, hyper-activation of the 

CRF pathway is associated with severe emotional dysregulation including post-traumatic 

stress and other stress-related disorders (Bale, 2005; Nemeroff et al., 2006).

Our ability to study CRF is made more difficult because it is produced in many different 

types of cells (Kapcala and Dicke, 1992) and it is colocalized with numerous 

neurotransmitters and neuropeptides (Sawchenko and Swanson, 1985; Honkaniemi et al., 

1992). One way to interrogate CRFergic cells directly is to utilize a transgenic mouse that 

allows CRF containing cells to be identified and manipulated apart from neighboring cells 

(Martin et al., 2010). After originally creating a mouse line in which cells expressing CRF 

also express Cre recombinase (CRF–Cre) (Martin et al., 2010), work in our lab utilized these 

CRF–Cre mice and crossed them with either “floxed” GABAAα1 (Gafford et al., 2012) or 

“floxed” NMDA (N-methyl-D-aspartate (NMDA) glutamate) receptor 1 (NR1) (Gafford et 

al., 2014) genes. The floxed gene of interest is surrounded (flanked) by LoxP sites which are 

recognized by Cre as the site of gene excision. The result of crossing CRF–Crewith floxed 

GABAAα1 or floxed NR1 mice is disruption of CRF producing-GABAAα1 or CRF 

producing-NR1 neurons throughout development. One concern particularly with 

manipulation of GABAergic neurons during development is that GABAergic neurons 

gradually shift from excitatory to inhibitory over the course of development, providing a 

basis for activity dependent neural circuit formation and for critical developmental periods 

(Hensch, 2005). Some work has shown that genetic disruption of GABAergic transmission 

early in postnatal life effects anxiety- and depression-related behaviors in adulthood (Shen et 

al., 2012). Therefore, it is possible that some of our behavioral effects were due to tuning of 

GABAergic neurons during these critical developmental periods even though we do see 

normal GABA receptor responses in electrophysiological recordings from these neurons 

(Gafford et al., 2012). These manipulations offer insight into inhibitory (GABAergic) and 

excitatory (glutamatergic) control over CRFergic cells in fear and anxiety behavior. This 

review will focus on these and other findings contributing to what is known regarding CRF 

in fear and anxiety in the BNST and CeA.

CRF and anxiety

The CeA and the BNST are highly interconnected (Alheid et al., 1998), receive information 

from and project to similar structures (Gray and Magnuson, 1987; Rosen et al., 1991; Gray 

and Magnuson, 1992; Dong et al., 2001) are both largely GABAergic (Sun and Cassell, 

1993), receive glutamatergic projections from the lateral amygdala (LA) (Krettek and Price, 

1978; Pitkanen et al., 1995; Dong et al., 2001) and express a wide variety of neuropeptides 

including CRF (Roberts et al., 1982;Woodhams et al., 1983). Even with the similarities 

between BNST and CeA, manipulation of CRF has vastly different effects on fear and 

anxiety behavior dependent on which structure is targeted as detailed below (Walker and 

Davis, 1997; Sullivan et al., 2004; Waddell et al., 2006; Sink et al., 2011).
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CRF, anxiety and the BNST—CRF in the BNST has been implicated in mediation of 

anxiety-like responses (Sahuque et al., 2006; Lee et al., 2008). Within the BNST, work has 

shown that introduction of stressful stimuli increases CRF expression (Choi et al., 2006; 

Funk et al., 2006; Kim et al., 2006; Shepard et al., 2006) and overexpression of CRF1 or 

direct activation of CRF1 and CRF2 receptors with urocortin 1 enhances anxiety (Lee et al., 

2008; Sink et al., 2013). Moreover, blockade of CRF with an antagonist infused into the 

BNST blocks sustained fear behavior that resembles anxiety (Davis et al., 2010). Recent 

work has implicated a specific subtype of CRF neuron in the BNST that may contribute 

strongly to the anxiety phenotype. Specifically, transgenic deletion of the GABAAα1 

receptor only within CRF producing neurons was found to enhance anxiety as measured 

across a variety of different tasks (Figs. 1A, B), and this effect was reversed with systemic 

(Fig. 1C) or BNST (Fig. 1D) infusion of CRFR1 receptor antagonist R121919 (Gafford et 

al., 2012). These findings suggest that hyperactivation of CRFergic cells, through deletion of 

GABA receptors, is associated with increased anxiety in agreement with work showing 

increases in CRF enhance anxiety (Britton et al., 1982; Liang and Lee, 1988; Takahashi et 

al., 1989). Further, when CRFR1 activation is disrupted with administration of R121919 

anxiety behavior is normalized.

CRF, anxiety and the CeA—In contrast to the effects of CRF manipulation in the BNST 

on anxiety, disruption of CRF in the CeA has not been shown to affect anxiety behavior (Lee 

and Davis, 1997; Callahan et al., 2013). One study took advantage of the finding that 

intracerebroventricular administration of CRF facilitates anxiety and directly tested whether 

this CRF mediated increase in anxiety can be blocked by NMDA lesions of the CeA or the 

BNST (Lee and Davis, 1997). The authors found that lesions of the BNST blocked CRF 

enhanced anxiety while CeA lesions had no effect, further demonstrating the important role 

of CRF in the BNST on anxiety behavior. Another recent study used RNA interference of 

CRF in the CeA to locally knock down CRF expression and found no effect on anxiety 

(Callahan et al., 2013). Interestingly, we have also tested the effect of disruption of CRF 

producing NR1 neurons on anxiety behavior. When we disrupted glutamatergic input onto 

CRF neurons we found no effect on anxiety measures (Gafford et al., 2014) (Figs. 1E, F). 

This may be due to the difference in expression of NR1 and GABAAα1 in the BNST since 

GABAAα1 is so heavily expressed in the BNST (Heldt and Ressler, 2007) compared to NR1 

(Lein et al., 2007).

CRF and fear learning

CRF, BNST and fear learning—While the role of the BNST in anxiety behavior has 

been well established, there is little evidence to date that the BNST is engaged during fear 

learning (LeDoux et al., 1988; Hitchcock and Davis, 1991). However, a recent study showed 

that virally mediated overexpression of CRF in the BNST 2 weeks before fear conditioning 

resulted in attenuation of associative fear learning (Sink et al., 2013). In this same study 

when CRF was overexpressed after fear conditioning fear expression was significantly 

enhanced. Since intracranial administration of CRF has been shown to enhance stress 

responding (Cole and Koob, 1988; Sherman and Kalin, 1988) it is possible that CRF 

overexpression during fear consolidation enhanced anxiety resulting in enhanced fear 

memory consolidation, as shown previously (Cahill et al., 2003; Rau et al., 2005; Hui et al., 
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2006). Our work using transgenic disruption of CRF in GABAAα1 neurons enhanced CRF 

expression in the BNST, PVN and CeA (Gafford et al., 2012) however, we show no effect on 

fear acquisition (Figure 3A, B). We do find significant disruption of fear extinction with 

disruption of CRF in GABAAα1 neurons. Since we did not specifically manipulate the 

BNST or amygdala during the fear conditioning experiments we cannot attribute the effects 

on extinction to a specific structure.

CRF, amygdala and fear learning—The amygdala is a structure critically engaged in 

fear learning (LeDoux, 2000). The major subnuclei of the amygdala include LA, basal (B), 

accessory basal (AB) and CeA. The term basolateral amygdala (BLA) is often used to refer 

to LA and B together (LeDoux, 2000). Evidence strongly supports the BLA as a structure 

critical for formation and storage of fear memory (LeDoux, 2000; Johansen et al., 2011). 

Studies have shown that the CeA is also required for the acquisition, consolidation, and 

expression of fear memories (Campeau and Davis, 1995; Goosens and Maren, 

2003;Wilensky et al., 2006; Zimmerman and Maren, 2010) and potentially does so in 

parallel with the BLA (Pape and Pare, 2010). CRF has been shown to play a critical role 

within the amygdala in fear learning processes. The BLA contains a high density of CRF1 

receptors (Baram and Hatalski, 1998; Chen et al., 2000) while the CeA has many CRF 

expressing neurons but lacks strong expression of CRF receptors (Sakanaka et al., 1986; 

Potter et al., 1994; Van Pett et al., 2000). Both the BLA and CeA are critical for fear 

memory (LeDoux et al., 1985; Wilensky et al., 2006). Infusion of a CRF receptor antagonist 

into the BLA disrupts contextual fear conditioning (Hubbard et al., 2007) and inhibitory 

avoidance learning (Roozendaal et al., 2002, 2008). Increases in CRF in the BLA facilitate 

performance in a variety of learning tasks (Liang and Lee, 1988; Roozendaal et al., 2008), 

but also see Isogawa et al. (2013) which found CRF infusion in LA impairs fear memory.

Interestingly, some investigators manipulated CRF around the time of auditory fear 

conditioning (Isogawa et al., 2013), after inhibitory avoidance training (Roozendaal et al., 

2002) or at different times after contextual fear conditioning and found no disruption of 

learning tasks, even though other work has shown CRF expression is increased in the CeA 

after contextual fear conditioning (Thompson et al., 2004). In fact, other studies have found 

that CeA infusion of a CRF antagonist prior to contextual fear conditioning (Swiergiel et al., 

1993) or CRF antisense at different time points after contextual fear conditioning (Pitts et 

al., 2009; Pitts and Takahashi, 2011) is effective at modulating fear memory. The lack of 

effectiveness of CRF receptor antagonists in the CeA in some studies may be partially 

explained by the relative expression of CRF receptors in the BLA compared to the CeA. The 

BLA strongly expresses CRF receptors (Baram and Hatalski, 1998; Chen et al., 2000) while 

the CeA has many CRF expressing neurons but fewer CRF receptors (Sakanaka et al., 1986; 

Potter et al., 1994; Van Pett et al., 2000) making the BLA a more target-rich environment for 

CRF receptor antagonists. A summary of these findings and further details from the infusion 

studies related to CRF regulation of fear behavior are detailed in Table 1.

Recent work from our lab has additionally manipulated specific subtypes of CRF containing 

neurons (CRF/NMDAR1 containing versus CRF/GABAAα1 containing, as described 

above) to examine whether cell-type and receptor specificity could help to explain some of 

the above discrepancies in fear-related behaviors. We find either enhancement of fear 

Gafford and Ressler Page 4

Horm Behav. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



conditioning with the transgenic (Fig. 2A) or lentiviral (Fig. 2D) mediated NMDAR1 

deletion in CRF neurons compared to no effect on fear conditioning with the transgenic 

deletion of GABAAα1 in CRF neurons (Figs. 3A, D) (Gafford et al., 2012, 2014). The 

discrepancy in findings may again be due to the difference in the brain area affected by the 

manipulation as noted earlier in this review. The stronger expression of CRF containing 

NMDAR1 neurons within the CeA, a structure engaged in fear acquisition (Wilensky et al., 

2006) may indicate a more critical role for these CRF containing neurons in fear 

conditioning, while CRF containing GABAAα1 neurons are more strongly expressed in the 

BNST which is less engaged in fear memory formation (Walker et al., 2009).

CRF and fear extinction

Fear extinction involves learning to no longer fear a previously fearful stimulus. Extinction 

is achieved by exposing a fear conditioned organism to multiple presentations of the feared 

stimulus without the previously paired aversive event (e.g., footshock) resulting in an 

eventual decrease of the fear behavior. This process is thought to be comprised of new 

inhibitory learning mechanisms (Myers and Davis, 2007). Fear extinction is a complex 

learning event that is reliant upon a broad network of structures including the amygdala 

(Pare and Duvarci, 2012; Furini et al., 2014), and multiple cellular networks within these 

structures mediate extinction behavior (Pare and Duvarci, 2012; Duvarci and Pare, 2014).

Methods to facilitate fear extinction has been proposed as a behavioral treatment for fear and 

anxiety disorders such as posttraumatic stress disorder (PTSD) (VanElzakker et al., 2014) 

since work has shown that those with PTSD have impairments in extinction (Orr et al., 2000; 

Peri et al., 2000; Rothbaum and Davis, 2003). Therapeutic outcome of those with PTSD who 

undergo fear extinction can be improved with administration of a partial agonist of the 

NMDA receptor (Walker et al., 2002; Difede et al., 2014; Rothbaum et al., 2014) and 

possibly impaired with administration of a benzodiazepine that potentiates GABAergic 

inhibition (Rothbaum et al., 2014). Work in humans has shown there is also a role for CRF 

in PTSD. Specifically, individuals with PTSD have been found to have enhanced CRF levels 

in their cerebrospinal fluid (CSF) (Bremner et al., 1997; Baker et al., 1999; Sautter et al., 

2003; Risbrough and Stein, 2006) suggesting dysregulation of CRF may contribute to PTSD. 

It is unknown whether the increase in CRF is a predetermining factor in PTSD or a result of 

the development of PTSD.

Little research has directly manipulated CRF in fear extinction in the animal model. One 

recent study examined CRF in fear extinction by infusing either CRF, CRF binding protein 

which increases endogenous levels of free CRF or a CRF receptor antagonist into the BLA 

prior to fear extinction (Abiri et al., 2014). Abiri and colleagues found that endogenously 

increasing CRF in the BLA just prior to fear extinction with either infusion of CRF or CRF 

binding protein resulted in impaired fear extinction consolidation while application of a CRF 

receptor antagonist facilitated fear extinction (Abiri et al., 2014). These findings are in 

agreement with the work in humans with PTSD showing that increased CRF concentration 

resulted in disrupted fear extinction.

Work in our lab has also investigated the role of CRF in fear extinction learning. We 

assessed extinction with disruption of either GABAAα1 or NMDAR1 gene expression 
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within CRFergic neurons (Gafford et al., 2012, 2014). We found that transgenic disruption 

of GABAAα1 within CRFergic neurons did not affect fear conditioning (as noted 

previously) or retention behavior (Figs. 3A, B) but resulted in a significant and prolonged 

deficit in fear extinction (Gafford et al., 2012) (Fig. 3C). In a follow-up experiment we again 

show that transgenic disruption of GABAAα1 gene expression within CRF–containing 

neurons does not affect fear acquisition or retention of fear (Figs. 3D, E), but systemic 

infusion of the CRFR1 receptor antagonist R121919 could partially rescue the fear 

extinction deficit (Fig. 3F). In contrast, disruption of CRF NR1 neurons significantly 

facilitated fear acquisition (as noted previously) (Fig. 2A) and significantly enhanced fear 

retention tested the following day (Fig. 2B) without significantly effecting long term 

extinction retention (Fig. 2C). We replicated the finding of enhanced fear learning (Fig. 2D) 

and fear retention (Fig. 2E) with virus infusions that knocked down NR1 containing CRF 

neurons specifically within the CeA. However, with viral manipulation of CeA CRF NR1 

neurons we show impaired fear extinction over 15 trials of extinction (Fig. 2F). The 

difference between disruption of CRFergic NR1 neurons in the transgenic mouse compared 

to the same disruption delivered via virus infusion directed at the CeA may be due to the 

targeted nature of the disruption. Altogether, our data may suggest that different CRF 

neuronal subpopulations selectively contribute to accelerated fear acquisition or disrupted 

fear extinction behavior. Specifically, transgenic disruption of inhibitory input onto 

CRFergic neurons strongly impairs fear extinction while transgenic of virus-mediated 

disruption of CRFergic NR1 neurons strongly enhances fear conditioning and fear retention. 

Since disorders such as PTSD have been linked to enhanced fear conditioning as well as 

disrupted fear extinction (Orr et al., 2000; Lissek et al., 2005; Blechert et al., 2007; Glover et 

al., 2011; VanElzakker et al., 2014), these data may highlighting a potential mechanism for 

further investigation of this dissociation.

Conclusion

In summary, CRF plays a critical, yet complex role in anxiety and fear memory. Both the 

BNST and CeA have similar connections to upstream and from downstream targets, receive 

highly processed sensory information and are rich with neuropeptides including CRF 

(Krettek and Price, 1978; Roberts et al., 1982; Woodhams et al., 1983; Gray and Magnuson, 

1987; Rosen et al., 1991; Gray and Magnuson, 1992; Sun and Cassell, 1993; Pitkanen et al., 

1995; Dong et al., 2001). However, a good deal of evidence shows that CRF in the BNST 

contributes to anxiety behavior while CRF in the amygdala contributes to fear memory 

processing. One reason for the difference in responsivity to fearful stimuli may lie in the 

different subtypes of CRF neurons in the BNST compared to the CeA. Recent technological 

innovations such as optogenetics and chemogenetic techniques may illuminate this question 

by allowing for specific manipulation of CRF neurons in the BNST or CeA. Further 

technological innovations such as FACS (Fluorescence Activated Cell Sorting) and TRAP 

(Translating Ribosome Affinity Purification) will allow genetic profiling of cell subtypes so 

that we may begin to determine differential genetic contributions responsible for normal and 

dysfunctional fear and anxiety behavior. These studies hold the potential to uncover novel, 

more directed and effective treatments for debilitating disorders of fear and anxiety such as 

PTSD.
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Fig. 1. 
CRF GABAAα1 deficient mice show enhanced anxiety while CRF NR1 deficient mice 

show no difference from controls in anxiety. (A) CRF GABAAα1 deficient mice (Cre+/

fGABAAα1) spent significantly less time in the open arm of the plus maze than Cre−/

fGABAα1 mice. (B) Cre+/fGABAAα1 mice also spent significantly less time in the center 

of an open field compared to Cre−/fGABAAα1 mice. Both (C) systemic administration prior 

to the plus maze test and (D) BNST infusion prior to the open field of the CRF receptor 1 

antagonist R121919 rescued the anxious phenotype in Cre+/f fGABAAα1 mice. However, 
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in CRF NMDAR1 deficient mice (Cre+/fNR1+) there were no differences in anxiety 

behavior in either (E) open field or (F) plus maze test compared to Cre−/fNR1+. Figures are 

adapted from recent work by Gafford et al. (2012, 2014).
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Fig. 2. 
Disruption of CRF NMDAR1 (NR1) neurons significantly disrupts fear acquisition without 

effects on fear extinction retention. (A) CRF NR1 deficient mice (Cre+/fNR1+) show 

significantly enhanced fear acquisition and (B) fear retention compared to Cre−/fNR1+ mice 

with no significant difference during the (C) fear extinction test. A follow-up experiment 

infused CRF promoter driven lentivirus into the CeA of fNR1 mice resulting in disrupted 

CRF NR1 neurons only within the CeA. We again show significantly enhanced freezing 

behavior during (D) fear acquisition for mice with disruption of CRF NR1 neurons in the 

CeA (LV pCRF-Cre/fNR1+) compared to control virus infused mice (LV pGFP-Cre/

fNR1+). LV pCRF-Cre/fNR1+ mice showed significantly enhanced (E) fear retention and 

(F) impaired fear extinction retention. Asterisk (*) indicates significant group difference.

Figures are adapted from Gafford et al. (2014).
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Fig. 3. 
Disruption of CRF GABAAα1 neurons has no effect on fear acquisition but significantly 

disrupts fear extinction. (A) CRF GABAAα1 deficient mice (Cre+/fGABAAα1) show no 

difference from Cre−/fGABAAα1 mice during fear conditioning or when tested for (B) fear 

retention. However, during the (C) fear extinction retention test they shown significant 

deficits. A follow-up experiment again shows no difference in freezing behavior during (D) 

fear acquisition or (E) fear retention for CRF GABAAα1 deficient mice (Cre+/fGABAAα1). 

However, Cre+/f GABAAα1 mice given a systemic infusion of a CRF receptor 1 antagonist 

(R121919) prior to fear extinction show a (E) partial rescue of fear extinction behavior 

during the (F) fear extinction retention test compared to vehicle injected controls. Asterisk 

(*) indicates significant group difference.

Figures are adapted from Gafford et al. (2012).
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