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Abstract Aggregated tau protein is a major neuropathologi-
cal substrate central to the pathophysiology of neurodegener-
ative diseases such as Alzheimer’s disease (AD),
frontotemporal dementia, progressive supranuclear palsy,
corticobasal degeneration and chronic traumatic encephalop-
athy. In AD, it has been shown that the density of
hyperphosphorylated tau tangles correlates closely with neu-
ronal dysfunction and cell death, unlike (3-amyloid. Until now,
diagnostic and pathologic information about tau deposition
has only been available from invasive techniques such as brain
biopsy or autopsy. The recent development of selective in-
vivo tau PET imaging ligands including ['*F]THK523,
["SF]THKS5117, ['®*F]THK5105 and ['®*F]THKS5351,
['"®F]AV1451(T807) and [''CJPBB3 has provided information
about the role of tau in the early phases of neurodegenerative
diseases, and provided support for diagnosis, prognosis, and
imaging biomarkers to track disease progression. Moreover,
the spatial and longitudinal relationship of tau distribution
compared with (3 - amyloid and other pathologies in these
diseases can be mapped. In this review, we discuss the role
of aggregated tau in tauopathies, the challenges posed in de-
veloping selective tau ligands as biomarkers, the state of de-
velopment in tau tracers, and the new clinical information that
has been uncovered, as well as the opportunities for improving
diagnosis and designing clinical trials in the future.
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Introduction

Alzheimer’s disease (AD), Parkinson’s disease without (PD)
and with later dementia (PDD), Lewy body dementia (LBD),
frontotemporal dementia (FTD), and corticobasal degeneration
(CBD) are common neurodegenerative disorders. Tau is a
microtubule-associated protein which is essential for neuronal
stability and transport of axonal nutrients. Aggregated tau, due
to hyperphosphorylation, is a pathological characteristic of a
group of neurodegenerative conditions known as the
tauopathies [1]. The neuropathological substrates of AD are
tau neurofibrillary tangles (NFT) and 3-amyloid (A[3) plaques,
while activated microglia, astrocytes, and neuropil threads also
play a significant role in disease pathogenesis. It has been
shown that A3 plaque deposition can begin decades before
symptom onset, while tau deposition is more closely associated
with symptom onset due to neuronal dysfunction, its levels at
autopsy correlating well pre-morbid cognitive status [2, 3].

Recent advances in selective tau tracer development for
positron emission tomography (PET) imaging have, for the
first time, allowed in-vivo exploration of the presence and
extent of tau pathology in patients suspected of having
tauopathies. Clinically, tau PET imaging can provide valuable
support in the early differential diagnosis of neurodegenera-
tive disorders by revealing whether a characteristic pattern of
aggregated tau is present. It also provides a potential biomark-
er of disease progression. Over the next decade, tau imaging is
likely to dominate the field of dementia research and, in this
review, we will discuss current developments in novel tau
tracers, future applications, and how this could extend our
knowledge of dementia.
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Tau protein and its role in the pathophysiology
of the tauopathies

Tau is a natively unfolded phosphorylated protein that is pres-
ent mainly in axons, and binds to microtubules, stabilizing
them. Microtubules comprise the cell cytoskeleton, and are
critical for maintaining the structural integrity of the cell and
for transporting nutrients from the soma down the axons to
synaptic terminals [1, 4, 5]. Tau protein exists as six distinct
isoforms that result from alternate mRNA splicing of the
MAPT (microtubule associated protein tau) gene on chromo-
some 17 (cytogenetic location 17q21.1). The isoforms differ
in the number of microtubule binding repeats (which are
encoded by exon 10) that are present, and tau can exist in 3-
repeat (3R) or 4-repeat (4R) forms. The healthy adult human
cortex has equal numbers of 3R and 4R isoforms, and its tau
expression is roughly double that seen in the white matter and
cerebellum [1]. Through the tandem repeats, tau assembles
into filaments which have a cross 3 structure, similar to that
of Af3. The ability of tau to bind to microtubules is also reg-
ulated by post-translational modification of the protein by
phosphorylation, glycosylation, glycation, ubiquitination,
sumoylation, and nitration [1, 6]. The functions of tau are
regulated in part by its phosphorylation state, and the protein
has multiple kinase phosphorylation sites [7, §].

In all neurodegenerative diseases in which tau is implicat-
ed, it is in a hyperphosphorylated form, and this is responsible
for its aggregation, leading to neuronal dysfunction and death.
Hyperphosphorylation prevents tau binding to microtubules,
reducing their stability, which in turn leads to impaired axon
transport. Aggregated tau in AD exists as paired helical fila-
ments which further coalesce into neurofibrillary tangles
(NFTs) [5, 9, 10]. These then lead to impaired synaptic and
neuronal dysfunction [11].

In AD, the distribution of extracellular A3 plaques can be
variable between individuals, but amyloid deposition is
thought to start in the inferior frontal cingulate areas and then
spread to association cortex [12]. According to Braak staging
of AD, the deposition of NFTs follows a more predictable and
stereotyped course than A3 as the disease progresses [12].
NFTs are first detected in the transentorhinal cortex (stages 1
and 2) in the presymptomatic stage of AD, and then spread to
the limbic areas, by which time symptoms become evident.
NFTs finally involve association cortical areas by stages 56,
when symptoms become severe. Braak et al. have also report-
ed that at post mortem occasional NFTs can be found in the
brains of apparently healthy 30-year-olds [13].

Multiple studies have reported that the density of NFTs
correlates more closely with cell dysfunction and symptoms
than does A3 plaque density. In-vivo A3 PET imaging studies
have demonstrated that A3 deposition can occur 1-2 decades
before the symptoms appear, levels approaching a plateau by
the onset of cognitive symptoms. The A3 cascade hypothesis
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posits that A3 deposition is central to the pathology of dis-
ease, leading to a series of downstream events which cause tau
hyperphosphorylation and aggregation, which results in neu-
ronal dysfunction. Recent A3 imaging studies support the A3
cascade hypothesis to some extent [14], but it is now
recognised that A3 deposition alone cannot explain AD pro-
gression and pathogenesis. Thirty percent of elderly healthy
subjects have significant levels of cortical amyloid deposition
when imaged with ''C-PIB PET but manifest no overt symp-
toms [15]. Additionally, several high-profile anti-Af3 treat-
ments have failed to halt or reverse the symptoms of AD [5].

Although the cascade hypothesis may be over simplistic,
cognitively normal subjects who have brain A3 deposition
show cortical thinning [16] and have a higher risk of
progressing to dementia [17, 18] so clearly amyloid aggregates
are toxic to the brain. A3 deposition, however, occurs at a slow
rate over time, preceding neurodegenerative changes and cog-
nitive deterioration [19], and levels correlate poorly with sever-
ity of cognitive symptoms. This suggests that strategies to re-
move amyloid could be most effective if used to protect early
asymptomatic cases. In contrast, histopathological studies have
shown that the presence of NFTs and neuronal loss increase in
parallel with the duration and severity of symptoms [2]. While
A3 deposition plateaus early in the disease, NFT deposition
and cell dysfunction continue to progress throughout the course
of disease, correlating with symptom severity [3].

The emerging evidence, therefore, supports a complex
pathological relationship between A3 and tau aggregation that
may also involve neuroinflammation in the form of microglial
activation. This has been described as a ‘toxic pas de deux’
[20]. Histopathological comparisons of brains of non-dement-
ed, mildly demented and severely demented patients have
shown that NFTs increase in all individuals with increasing
age, but have a different distribution from that of A3 plaques,
indicating that the formation of tau and A3 occurs indepen-
dently. While NFT formation can occur early, the pathology
progresses only slowly in isolation; however, if A3 plaques
are also present then their density increases rapidly. While tau
and Af3 aggregation occur independently of one another, nei-
ther are sufficient alone to cause AD, and their pathologies
may be interdependent [21].

This view is supported by animal studies. Injection of
AP42 into the brains of transgenic mice expressing P301L
pathological tau caused a 5-fold increase in NFT deposition
compared with controls, indicating that the introduction of A3
drove the tau pathology [22]. Furthermore, the offspring of
transgenic mice expressing mutant tau crossed with mutant
APP mice developed A3 plaques at the same age, but had a
significantly higher density of NFTs in the limbic system and
cortex [23]. When brain extracts from APP transgenic mice
were introduced into P301L tau transgenic mice, tau patholo-
gy was later identified not only at injection sites, but also in
distant brain regions [24], indicating that introduction of Af3
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triggered tau pathology and that tau aggregation was capable
of ‘spreading’ across vulnerable neuronal networks in the
brain. This may explain the predictable pattern of tau deposi-
tion throughout the cortex described by Braak staging.
Aggregated tau is capable of leaving cells and causing normal
tau to undergo aggregation and fibrillation [25]. For this rea-
son, the transmission of tau aggregation has been likened to
that of prions [26].

The presence of aggregated tau is a defining feature of
several other neurodegenerative diseases, which include pro-
gressive supranuclear palsy [27], frontotemporal dementia re-
lated to chromosome 17 [28], argyrophilic grain disease (an
age-related disease, caused by degeneration of argyrophilic
grains, correlating with NFT deposition and cognitive impair-
ment [29]), senile dementia of the NFT type [30], corticobasal
degeneration and Pick’s disease [31]. Different ultrastructural
forms of tau can cause different disease phenotypes. While
normal human and Alzheimer brains contain equal amounts
of 3R and 4R isoforms, Pick’s disease is characterised by
aggregation of 3R isoforms into Pick bodies, while CBD,
PSP, and argyrophilic grain disorders contain aggregated 4R
isoforms as globose tangles in the case of PSP [1].

Chronic traumatic encephalopathy (CTE) is a progressive
dementing neuropsychological illness in people who have suf-
fered serial mild concussive brain injuries, which result in
axonal injury. The condition has received significant attention
in players of contact sports such as American football, rugby,
and boxing, and also in horse riders who have frequent falls. It
is characterised histologically by the deposition of tau in areas
of axonal injury [32]. In one autopsy study of 85 people with
mild and repetitive traumatic brain injury, compared with 18
controls, a clear and predictable range of NFT pathology
across multiple regions was found, allowing for a grading
system of tau pathology [33].

Table 1 shows the characteristic topographic features
and distribution of tau aggregates in the common
tauopathies. [31, 33-36]

Tau PET imaging as a biomarker in AD

The National Institute of Ageing—Alzheimer’s Association
(NIA-AA) Working Group Guidelines have emphasised the
concept of AD as a spectrum or continuum of disease, consis-
tent with the idea that pathophysiological changes of AD occur
long before the onset of cognitive symptoms and ultimate de-
mentia. Stages of disease can therefore be considered as an ‘AD
Preclinical Stage’, reflecting the asymptomatic stage during
which underlying pathology develops, and an ‘AD Clinical’
stage including mild cognitive impairment, when symptoms
occur secondary to synaptic dysfunction and neuronal loss.
The long prodrome has been identified as a key target time
for disease-modifying therapy [37]. During the asymptomatic

prodrome, imaging biomarkers can potentially be used to stage
disease and follow its progression. Biomarkers in current use
for detecting AD pathology are those reflecting A3 deposition
(reduced CSF A3 levels and raised brain A3 load) and markers
of neurodegeneration (MRI atrophy, reduced glucose metabo-
lism on FDG-PET, and raised CSF p-tau) [38]. These bio-
markers have clinical utility in that they can predict risk of
progression of mild cognitive impairment (MCI) to AD and
health to MCI [39, 40] and give an indication of the sequence
of pathological processes that occur in AD [39]. However, CSF
measurement of tau requires a painful invasive spinal tap re-
quiring a skilled operator, and does not provide critical infor-
mation about the spatial distribution of tau. A3 imaging pro-
vides useful information about the spatial and temporal distri-
bution of A3 deposition, but is not a marker of disease progres-
sion, due to the plateauing of plaque deposition.

There has been a global effort to identify a selective tau
tracer to enable in-vivo PET imaging of NFT load as a method
of identifying the spatial and temporal progression of tau pa-
thology. As NFT density correlates with neuronal dysfunction
and symptom onset, tau imaging should provide a valuable
marker of disease progression. Simultaneous imaging of tau
and A3 aggregant load will promote a deeper understanding
of the complex synergistic relationship between the two, help-
ing to prove or refute much of the current speculation.

Tau PET imaging could be useful in clinical trials assessing
the efficacy of anti-tau strategies. It will aid recruitment of
subjects with a significant tau load (no longer relying on clin-
ical assessment, which can be unhelpful, and markers of neu-
ronal degeneration, which occur late in the course of disease),
will provide proof of mechanism, and monitor tau clearance as
an end-point. In the clinical setting, it can be used in the dif-
ferential diagnosis of early dementias (differentiating between
AD and non-AD pathologies), and also in differentiating be-
tween MCI and normal ageing [41-44].

The search for a suitable tau tracer

While molecular imaging in dementia has been stimulated by
the success of A} imaging, particularly using the A3 tracer
[''CIPIB, the identification of selective tau tracers has proved
more difficult until the last few years. There are certain idio-
syncrasies of the tau protein that need to be taken in consid-
eration during tracer design. Tau is an inherently more com-
plex and unpredictable protein, with multiple isoforms and
many post-translational modifications. Therefore, tracers
may bind specifically to a particular isoform or to multiple
isoforms. Tau is an intracellular protein, so any ligand must
cross the plasma cell membrane as well as the blood—brain
barrier, which confers requirements about the molecular size
and lipophilicity of the ligand. Furthermore, tau is present in
the brain at much lower concentrations than Af3, so a selective
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ligand will need to have a high binding affinity for tau over
Ap. This problem is confounded by the fact that A3 and tau
often co-exist in the same cortical areas, and both manifest (3-
sheet structure, which is where planar polyaromatic ligands
tend to bind [41-45].

Therefore, requirements of an ideal tau tracer are: (1) high
sensitivity and selectivity for its target (20—50-fold selectivity is
required for tau over Af), (2) low toxicity, (3) rapid uptake and
clearance from the brain, and (4) no active brain metabolism.
From a practical view, the radioactive half-life of the isotope
used to label the ligand should also be taken into consideration.
Use of '®F (half-life of 110 minutes) rather than ''C (half-life
20 minutes) can preclude the need for onsite production and
allows longer imaging times, but increases the dosimetry. An
"1C tracer may be preferred if multiple PET scans are to be
performed, due to its lower dosimetry [41, 42, 44, 45].
Figure 1 shows the chemical structure of different tau tracers.

["*FIFDDNP

2-(1-{6-[2-[" 8F]fluoroethyl)(methyl)amino]-2—
naphthylethylidene)malononitrile (FDDNP) was developed as
an amyloid marker by Barrio et al. in 2008 [46]. It is extracted
well by the brain and shows moderate affinity for both amyloid
plaques and neurofibrillary tangles, though the specific signal is
low. FDDNP PET will separate groups of normal, MCI, and
AD subjects by their levels of cortical uptake. The pattern of
FDDNP uptake in AD reflects both amyloid and tau deposition,
as signal is seen in both association cortex and hippocampus
[47]. The uptake of FDDNP increases over time in AD and

Fig. 1 Chemical structures of a
current tau tracers. The chemical
structures of: a ['*F] THK-523, b

[18F) THK-523

['*F]THK-5105, ¢ ['*F] THK- ; 1]l

5117, d ['®F] THK-5351, e [''C] NGNS
PBB3, f['®F]T808, and g ['*F]-
T807

d  (18F) K361

MCI due to increasing tau accumulation, so the tracer can be
used to track disease progression. FDDNP PET has also been
used to detect brain amyloid in Down syndrome [48] and de-
mentia with Lewy bodies [49]. Drawbacks of FDDNP PET as a
biomarker are its low sensitivity and selectivity. While it has
been reported that ['*FJFDDNP PET can predict progressive
cognitive impairment in MCI [50], it is less sensitive than
['"®F]JFDG PET for detecting discase progression. As a conse-
quence, further searches for selective tau ligands were per-
formed. A further consideration of FDDNP PET is the rapid
metabolism and clearance of the tracer [51], and it does not
reach a steady state for a long time. The optimal analysis meth-
od is therefore Logan graphical analysis using the cerebellum
as a reference region, as used by Small et al. [52]. This requires
long scanning periods (up to 125 minutes), making it a difficult
tracer to use in clinical practice.

THK compounds

The first tau-selective ligand, ['*F]THK 523, was identified by
Okamura and colleagues at Tohuku University, after screening
a series of quinolone and benzimidazole derivatives [59].
Pharmacokinetic studies showed excellent brain uptake and
rapid clearance in mice, with no lipophilic metabolites and
higher binding to tau over A3 [59].[60] In-vitro studies of this
ligand demonstrated binding to NFTs in AD brain sections and
a higher affinity for tau fibrils than Af3 fibrils [61]. MicroPET
studies in tau transgenic mice showed a correlation between in-
vivo binding with subsequent histofluorescence [62].
However, while in-vivo testing in humans demonstrated

b sAmssies C  [18F)THKS117

On

1900

g (enTeer
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selective tau binding, which correlated with the known tau
distribution in AD, and a correlation of tracer uptake with
impaired cognition, there was significant white matter retention
which prevented accurate visual interpretation of signals, thus
precluding its widespread use as a PET tracer [60].
Furthermore, it does not bind tau aggregates in non-AD
tauopathies, further limiting its diagnostic utility [63].

Subsequently, the same researchers identified two further 2-
arylquinoline derivatives, ['"*F]THK5105 and ["*F]THK5117
which have superior binding affinity (K;=59.3nM for
THKS523, 7.8nM for THK5105, and 10.9nM for THK5117)
and selectivity for tau in AD brains than ['*F]THK 523, as well
as higher brain uptake and more rapid clearance. The tracer also
has good penetration of the blood—brain barrier and no toxic
effects [64]. In-vivo studies showed that there was higher cor-
tical retention in AD patients compared with healthy controls,
and retention correlated well with impaired performance on
cognitive testing, and loss of brain volume [54].

["*F]THK5105 has a binding affinity to tau 25 times great-
er than that of amyloid, with peak brain entry higher than that
for ['"®F} THK523, ['®F]AV 1451, ['®F]T808, and [''C]PBB3
after 6 minutes. There is no obvious accumulation in the skull
reported, but there is non-specific tracer retention in the
brainstem, thalamus, subcortical white matter, probably due
to binding to [3-sheet structures in the myelin basic protein.
This is not reported to be visually noticeable [54]. Compared
to ['"*F]JTHK5117, ['®F]THK5105 has a relatively slower
clearance from the brain and higher lipophilicity, resulting in
a lower signal to noise ratio [54]. Figure 2 shows
["*F]THK 523, ['*F]THK5105, and ["*F]THK5117 PET in
different stages and types of dementia.

Brain uptake of ['®F]THK5117 has been shown to have
high affinity for tau in saturation binding assays, with
nanomolar binding affinity [65]. It has been compared with
that of [''C]PIB and ['®F]FDG in subjects with MCI and AD.
The authors noted a significant correlation between trac-
er retention of ['®F]THK5117 and cognitive perfor-
mance. In addition, they noted a different regional pat-
tern of retention compared with [''CJPIB. The investi-
gators reported lower ['*F]THKS5117 uptake in MCI
compared with AD subjects, though both were raised
compared to healthy controls, thus demonstrating the
ability of the tau tracer to distinguish the spectrum of
the Alzheimer disease process [66].

One report concerned three AD patients who had had
['*F]FDG and [''C]PIB PET scans in life and donated their
brains for subsequent post-mortem analysis, allowing in-vitro
binding of ['*F]THK5117 to be investigated by autoradiogra-
phy. Binding of the tracer was highest in the mesial temporal
region in all subjects, consistent with known tau pathology,
but levels showed poor correlations with mesial temporal glu-
cose metabolism and A3 binding [67]. The authors concluded
that tau imaging does not just mirror ['*FJFDG PET findings.

@ Springer

Another 2-arylquinoline, ['*F]THK5351 has also been re-
cently developed which also shows high tau binding affinity in
AD brains. ['®F]JTHK5351 PET has been trialled in ten healthy
controls and ten AD patients, while two other patients received
["®F]THK5117 and ['®*F]THK5351 for a direct comparison.
['"®F]THK5351 had similar grey matter but lower white matter
and brainstem retention than ['*F]THK5117, potentially
allowing for better tau visualization, while faster uptake and
washout kinetics may facilitate kinetic modelling [68].

The same group has also developed [''C]THK951,
which has low lipophilicity (and therefore a higher sig-
nal to noise ratio), rapid brain uptake, and fast clear-
ance. Uptake ratio in mouse brain was found to be
superior to that of ['®F]JTHK523, ['®*F]THK5105, and
["FITHK 5117, with slightly lower affinity to tau. In-
vivo human testing has not yet been reported [69].
Figure 3 shows ['*F]THK5351 in different stages of
cognitive impairment.

['®F] AV-1451 (T807) and ['*F]T808

['®F]AV-1451 (T807) and ['®*F]T808 are tau-selective com-
pounds recently synthesized by Hartmuth Kolb and his col-
leagues [70] and now tested in vivo [71]. ['*F]T808 showed
high binding affinity and good selectivity for tau over A3, with
rapid uptake and washout in transgenic mice. MicroPET
showed that it crossed the blood-brain barrier, with minimal
white matter binding. However, studies in mice showed that
'®F accumulated in bone, indicating defluorination was occur-
ring, so the tracer has not been taken forward, even though it
did not exhibit defluorination when tested in humans [72]. In-
vivo tracer retention correlated closely with histological exam-
ination of tau deposition in another AD patient who died
2 weeks after PET images were obtained [73].

["®F]AV-1451 (T807) has demonstrated >25-fold selectiv-
ity for PHF-tau over Af (K4=14.6nM) on autoradiography
and in vivo shows rapid brain extraction and washout,
with no plasma metabolites entering the brain [74]. It is
of low molecular weight (262.1 g/mol) and crosses the
blood-brain barrier readily. The LogP of [18 F]AV-1451
is 1.67[74]. In mice, there was some accumulation in the
bone noted, but the authors commented that radioactivity
did not increase over time, and that brain homogenate in
humans did not contain active metabolite [74]. Post-
mortem validation of the tracer has shown high binding
of the ligand to dystrophic neurites in AD [75]. In-vivo
studies in humans show favourable ['®F]AV-1451 uptake
and washout kinetics, and tracer retention in AD mirrors
the known distribution of tau in the brain. MCI cases
showed lower uptake than AD patients, with tracer uptake
patterns following Braak staging [55].
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Mild AD
(87 y, MMSE 25, CDR 1)

Fig. 2 PET images using the ['*F] THK family of tracers. a The first tau
tracer, ['®F] THK 523 in a healthy control, a subject with semantic
dementia and an AD subject. There is increased tracer retention in the
AD subject, but no difference between the control and SD Reproduced
from Villemagne 2014 [53]. b ['®F] THK5105 PET images in a 72-year-
old healthy control (MMSE 29) and a 68-year-old AD subject (MMSE

Pontecorvo et al. have reported preliminary findings in a
PET study comparing A3 and tau binding in subjects with
MCI, AD, and cognitively normal controls. They noted
highest tau deposition in patients with AD, followed by
MCI, compared with low signal in normal controls. They also
noted that cortical tau binding was significantly higher in A[3-
positive than in A-negative individuals. In Ap-negative in-
dividuals, hippocampal tau increased with age but no cortical
deposition was detected [76].

Other studies have also shown increased binding of
['®F]AV-1451 in MCI compared with controls which targeted
all the association cortical areas. Worse cognitive performance
(in terms of delayed recall) was associated with increased
ligand retention in the entorhinal cortex [77]. Preliminary

THK-5351 THK-5351 THK-5351 PIB

N

"B OO

MMSE 25 MMSE 16 MMSE 16

Healthy Control

Fig. 3 Novel tau tracer ['*FJTHK-5351 in different stages of cognitive
impairment. PET images of ["®F]THK-5351 in a healthy control, an MCI
subject (MMSE 25), and an AD subject (MMSE 16). There is increasing
tracer retention as disease progresses. In the AD patient, a [''C]PIB PET
scan shows amyloid deposition in discrete separate areas of cortex.
Courtesy of Nobayaki Okamura, unpublished work

Moderate AD
( 79y, MMSE 16, COR 2)

Severe AD
(72y, MMSE 10,CDR 3)

20). Reproduced from Okamura 2014 [54]. ¢ Tau tracer [ *F]THK 5117
in a subject with mild, moderate, and severe AD, showing increasing
retention of tracer as disease progresses from the medial, anterior, and
inferior temporal cortex in mild AD, spreading to association areas in
moderate AD, and throughout the neocortex in severe AD. Reproduced
from Okamura 2014 [44]

human studies using ['*FJAV-1451 have been used to follow
MCI and AD progression over relatively short periods of time
(up to 19 months), and have shown significant rises in tau
signals over time as symptoms progress, indicating the poten-
tial for tau tracers to detect disease progression [57].

['®F]AV-1451 (T807) also has the ability to distinguish var-
iants of AD. In a patient with posterior cortical atrophy (PCA),
binding was seen in primary visual and visual association cor-
tices which correlated with decreased ['*F]JFDG uptake, where-
as [''C]PIB uptake was globally elevated and showed no asso-
ciation with FDG metabolism [78]. The same group found that
tau binding was increased in left parietal, temporal, and frontal
regions in logopenic primary progressive aphasia [79].

['®F]AV-1451 PET has also detected increased signal in
non-AD tauopathies such as PSP where the basal ganglia,
thalamus, and frontal cortex were targeted. Its uptake has also
been evaluated in patients with FTD, including the progres-
sive aphasia and semantic dementia variants. The authors
found that a symptomatic MAPT carrier showed increased
ligand binding in the frontal, insular, and anterior temporal
cortex, whereas in aphasic patients it was increased in left
dorsolateral, prefrontal, and insular cortices. Patients with se-
mantic dementia had highest uptake in the anterior temporal
cortex with marked asymmetry [80].

Autoradiographic studies on brain specimens of patients
with a range of disorders [AD, FTD-tau and PSP, CBD,
Parkinsons disease (PD), dementia with Lewy bodies
(DLB), and cerebral amyloid angiopathy (CAA)] have shown
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that while AD brains containing NFTs show high tracer bind-
ing, this is not evident in DLB, CAA, and FTD-TDP43.
Fluorescent staining with disease specific tau antibodies re-
vealed labelling of neurites and tangles in AD, PSP, CBD,
and Pick’s disease, but not Lewy bodies or TDP43 [75].
Some preliminary work has shown binding of tracer in a dis-
tribution known to be compatible with PHF-tau distribution in
PSP distinct from PD brains [81].

['®F]AV-1451 binding has been described in a retired
American National Football League (NFL) player with cogni-
tive decline and features suggestive of either CTE or PSP, and
confirmed CTE based on binding patterns, demonstrating that
tau imaging can help to differentiate between different types
of dementia [82].

["®F]AV-1451 PET has also revealed insights concerning
tau deposition in healthy cognitively normal individuals.
Schultz et al. used A and tau imaging to characterise
in vivo the complex relationship between A3 and tau pathol-
ogies. Seventy-five healthy elderly subjects were examined
using longitudinal [''C]PIB and ['®F]AV-1451 PET. A signif-
icant relationship was found between baseline A3 burden and
tau binding in the inferior temporal lobe, as well as an associ-
ation between tau binding and the rate of A3 accumulation,
consistent with histology findings that A} pathology can in-
fluences tau ‘spreading’ throughout the cortex [83].

Sperling et al. compared A3 with tau binding in cognitive-
ly healthy individuals, and showed that the presence of tau
tangles on PET did not correlate with memory loss in healthy
individuals unless A3 plaques were also present. In the pres-
ence of plaques, however, there was a correlation between tau
deposition and memory loss, again reinforcing the principle
that the presence of A3 accelerates tau pathology [84]. In
cognitively normal elderly subjects, ['*F]JAV-1451 binding
has been shown to correlate with levels of CSF tau [85].

Lockhart et al. used ['®F]AV-1451 and[''C]PIB PET to
study the effects of age on A3 and tau aggregation in cogni-
tively normal elders. They found significantly increased accu-
mulation of tau in the basal ganglia, midbrain, hippocampus,
and fornix of elderly normals, which extended to the neocor-
tex as their age and the level of A3 binding increased. The
authors concluded that age and levels of A3 binding could
independently predict tau binding in healthy older people.
Age predicted the level of tau accumulation in the medial
temporal lobe, while levels of A3 binding predicted tau depo-
sition outside the medial temporal lobe [86]. Figure 4 shows
['®F]AV-1451 (T807) in different stages of dementia and in
longitudinal progression of disease.

["'C|PBB3

Maruyama et al. have developed another family of ligands, the
phenyl/pyridinyl-butadienyl-benzothiazoles/
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benzothiazoliums or PBBs, which bind strongly to NFTs in
AD brains. In addition, ex-vivo examination of the brains and
spinal cords of transgenic mice that had been injected with
these compounds showed intense uptake in areas of tau accu-
mulation [58]. [''C}PBB3 has a 40-50 times higher affinity
for NFTs than for senile plaques, with affinity in the
nanomolar range [58], readily crosses the blood—brain barrier
(LogD=3.3) [87], and is quickly washed out. There is mini-
mal non-specific and white-matter binding [58].The tracer de-
cays quickly to radioactive metabolites in preclinical models,
but the radioactive metabolites have not been shown to enter
the brain [87]. Nevertheless, simplified analysis methods such
as Reference Tissue Models seem to agree with dual input
compartment modeling [88].

[''C]PBB3 PET imaging of AD patients has shown in-
creased tracer retention in the hippocampi in contrast to
["'C]PIB. There was spreading of [''C]PBB3 binding
throughout the cortex as the disease progressed [58, 89].
When [''C]PBB3 PET was performed in a patient with
corticobasal degeneration, tracer retention was noted in the
neocortical and subcortical structures, while [11C]PIB uptake
was normal, highlighting the potential of tau tracers in non-
AD tauopathies [58]. [''C] PBB3 has lower brain uptake than
['®F]T807 or [''C]PIB due to this rapid metabolism and clear-
ance, but the authors conclude that this may assist its selective
binding to high-affinity, low-capacity sites on NFTs, com-
pared to low-affinity, high-capacity sites on the more preva-
lent B-amyloid [87]. Figure 5 shows tau tracer [''C]-PBB in
differing stages of cognitive impairment.

Other compounds

Honer et al. have developed further compounds, RO6931643,
R0O6924963 and RO6958948, which are high-affinity binders
at the [PH]T808 binding site on tau aggregates. All com-
pounds have been noted to bind with high affinity and speci-
ficity to tau aggregates, and lack affinity to A3 plaques. They
also showed low non-specific binding in healthy brain tissues.
In addition, there was macro- and micro-colocalisation of
radioligand binding. Their pharmacokinetics showed rapid
brain entry, washout, and safe metabolic patterns. These
tracers are currently being tested in humans [90].

To date, several studies have used ['*F]AV 1451, which has
demonstrated robust pharmacokinetics, high affinity for tau
NFTs over amyloid, and minimal non-specific binding, as
well as the ability to bind non AD tauopathies. Of the THK
compounds, ['*F] THK5117 has a very good pharmacokinetic
profile, but with further data for ['®F]THK5351 and
['®F]THK951 awaited. [''C]PBB3 also offers good pharma-
cokinetics, with the ability to bind non-AD NFTs, but the short
half-life of the ''C tracer may limit its use, and the rapid
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metabolism of the tracer may result in difficulty with data
analysis.

Conclusions

Recent years have seen exciting progress in the molecular
imaging of dementia, and the tauopathies in particular. In-
vivo tau imaging provides further information about the start
and progression of the neuropathology of neurodegenerative
disorders and, combined with amyloid imaging and FDG, it
will be a promising biomarker, both clinically, in supporting
differential diagnosis, and also in research, where it will help
select appropriate patients and provide proof of mechanism
and efficacy in clinical trials. While A3 imaging plays a key
role in the evaluation of dementia, the closer correlation of tau
with cognitive impairment and neuronal dysfunction makes it
more suitable as a biomarker of disease progression.

Several novel tau tracers are under development, and a
number of phase 3 clinical studies are ongoing, with results
keenly anticipated. In addition, further work involving tau,
A3, and further pathologies, performed at different stages of
the disease process will yield yet further insights into disease
pathogenesis. These novel imaging targets give a real

Healthy Control MCI (MMSE 26)

SIGR

AD (MMSE 21) AD (MMSE 7)

78 ylo with MCI
MMSE = 29

Baseline scan

F/J Scan at
+10 Months

Fig. 4 Novel tau tracer ['*F]AV-1451 (previously ['®F]-T807. a
["®F]T807 in a healthy control (fop leff), through increasing severity of
cognitive impairment to severe AD (bottom right). Increased tracer
retention is seen as disease progresses, with widespread neocortical
deposition in severe disease. Reproduced from Chien 2013 [55]. b PET
images from two cognitively normal individuals, and one with AD
dementia, with amyloid PET images on the top row ([''C]PIB) and tau
PET images on the bottom row ([18F 1T807). From left to right, increasing

[11C]PBB3
Sagittal

[11C)PIB

MMSE Coronal

: Coronal
(points)

Axial

Fig. 5 Tau tracer [''C]-PBB in differing stages of cognitive impairment.
[''C]PBB3 and [''C]PIB in normal controls and AD patients with
increasing severity of disease. The arrowheads indicate the hippocampi.
While there is minimal tracer retention in the hippocampi of normal
controls, there is increasing retention in the AD patients, especially as
MMSE declines, with spread from the hippocampus to the neocortex,
consistent with Braak staging. Reproduced from Maruyama 2013 [58]

& QY
S8

amyloid deposition is seen in the neocortex, as well as increasing tau in
the inferior temporal cortices. Reproduced from Sperling 2014) [56]. ¢
['®F] T807 in a subject with MCI at baseline, and after 10 months,
showing a significant increase in tracer deposition in the temporal and
parietal lobes. This indicates the clinical utility of tau imaging in detecting
disease progression over relatively short time periods. Reproduced from
Mark Mintun, 2015 [57]
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opportunity to diagnose dementia accurately, and to evaluate
multi-targeted therapy much more efficiently.
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