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Abstract

To determine the genetic diversity and geographic distribution of Cao Bang virus (CBNV) and to 

ascertain the existence of CBNV-related hantaviruses, natural history collections of archival tissues 

from Chinese mole shrews (Anourosorex squamipes) and Taiwanese mole shrews (Anourosorex 
yamashinai), captured in Guizho Province, People’s Republic of China, and in Nantou County, 

Taiwan, in 2006 and 1989, respectively, were analyzed for hantavirus RNA by RT-PCR. Pair-wise 

alignment and comparison of the S-, M- and L-segment sequences indicated CBNV in two of five 

Chinese mole shrews and a previously unrecognized hantavirus, named Xinyi virus (XYIV), in 

seven of 15 Taiwanese mole shrews. XYIV was closely related to CBNV in Vietnam and China, as 

well as to Lianghe virus (LHEV), recently reported as a distinct hantavirus species in Chinese 

mole shrews from Yunnan Province in China. Phylogenetic analyses, using maximum-likelihood 

and Bayesian methods, showed that XYIV shared a common ancestry with CBNV and LHEV, in 

keeping with the evolutionary relationship between Anourosorex mole shrews. Until such time that 

tissue culture isolates of CBNV, LHEV and XYIV can be fully analyzed, XYIV and LHEV should 

be regarded as genetic variants, or genotypes, of CBNV.
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1. Introduction

Formerly believed as being hosted exclusively by rodents (order Rodentia, families Muridae 

and Cricetidae), hantaviruses (family Bunyaviridae, genus Hantavirus) are now known to be 

harbored by multiple species of shrews and moles (order Eulipotyphla, families Soricidae 

and Talpidae) throughout Europe, Asia and North America (Yanagihara et al. 2014). 

Hantaviruses have also been found in crocidurine and myosoricine shrews unique to the 

African subcontinent (Gu et al., 2013; Kang et al., 2011, 2014; Klempa et al., 2007). And 

phylogenetically divergent lineages of hantaviruses have been identified recently in 

insectivorous bats (order Chiroptera) in Asia (Arai et al., 2013; Guo et al., 2013; Xu et al., 

2015) and Africa (Sumibcay et al., 2012; Weiss et al., 2012). Thus, the previously 

unimaginable host diversity of hantaviruses now provides a rich palette from which to draw 

hypothesis-driven studies on their evolutionary origins and phylogeography (Bennett et al., 

2014).

Ample opportunities also abound for validating earlier reports of hantaviruses in non-rodent 

hosts. In this regard, decades-old reports of suspected hantavirus infection in the Eurasian 

common shrew (Sorex araneus), Eurasian pygmy shrew (Sorex minutus), Eurasian water 

shrew (Neomys fodiens), northern short-tailed shrew (Blarina brevicauda) and European 

mole (Talpa europaea) (Gavrilovskaya et al., 1983; Gligic et al., 1992; Lee et al., 1985; 

Tkachenko et al., 1983) have been confirmed using powerful gene-amplification techniques, 

with the discovery of Seewis virus (Song et al., 2007a), Asikkala virus (Radosa et al., 2013), 

Boginia virus (Gu et al., 2014), Camp Ripley virus (Arai et al., 2007) and Nova virus (Kang 

et al., 2009), respectively. Also, a hantavirus, isolated from the Chinese mole shrew 

(Anourosorex squamipes) captured in Sichuan Province in 1986 (Chen et al., 1986) and 

reported to be closely related to Hantaan virus (HTNV), the prototype virus of hemorrhagic 

fever with renal syndrome, prompted our studies in Vietnam, where we detected a 

genetically distinct hantavirus, designated Cao Bang virus (CBNV), in the Chinese mole 

shrew (Song et al., 2007b). Based on sequence and phylogenetic analyses, CBNV was 

strikingly different from HTNV, suggesting that the conclusion reached previously was 

premature. Unfortunately, the unavailability of the original hantavirus isolate from the 

Chinese mole shrew made impossible any in-depth comparisons.

The discovery of CBNV raises questions about its genetic diversity and geographic 

distribution, as well as conjectures regarding the existence of CBNV-related hantaviruses, 

particularly in the Taiwanese mole shrew (Anourosorex yamashinai), formerly classified as a 

subspecies of the Chinese mole shrew but now considered a distinct species (Hutterer, 2005). 

In this multi-institutional international collaboration, we demonstrate that genetic variants of 

CBNV are extant in Chinese mole shrews in the People’s Republic of China, as well as in 

Taiwanese mole shrews in Taiwan.

2. Materials and methods

Archival frozen tissues from five Chinese mole shrews, captured in Kuankuoshui Nature 

Reserve in Guizho Province, People’s Republic of China, during April 2006 (Lim et al., 

2008), and from 15 Taiwanese mole shrews, captured along Sha-Li-Xian Trail, in Xin-Yi 
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Township, in Nantou County, Taiwan, during September 1989 (Yu, 1993, 1994) (Figure 1), 

were analyzed for hantavirus RNA by RT-PCR, using newly designed and previously 

employed oligonucleotide primers (Arai et al., 2007; Gu et al., 2013; Song et al., 2007b). 

Tissues from 10 Asian gray shrews (Crocidura attenuata) and six Taiwanese gray shrews 

(Crocidura tanakae), captured in China, were also tested. Total RNA was extracted from 

tissues using the PureLink Micro-to-Midi total RNA purification kit (Invitrogen, San Diego, 

CA), and cDNA was synthesized using the SuperScript III First-Strand Synthesis Systems 

(Invitrogen) with a highly conserved primer and/or random hexamers by two-step RT-PCR 

cycles. As described previously, first- and second-round PCR were performed in 20-μL 

reaction mixtures, containing 250 μM dNTP, 2.5 mM MgCl2, 1 U of Takara LA Taq 

polymerase (Takara, Shiga, Japan) and 0.25 μM of each primer. Initial denaturation at 94°C 

for 2 min was followed by two cycles each of denaturation at 94°C for 30 sec, two-degree 

step-down annealing from 46°C to 38°C for 40 sec, and elongation at 72°C for 1 min, then 

30 cycles of denaturation at 94°C for 30 sec, annealing at 42°C for 40 sec, and elongation at 

72°C for 1 min, in a GeneAmp PCR 9700 thermal cycler (Perkin-Elmer, Waltham, MA). 

PCR products were separated, using MobiSpin S-400 spin columns (MoBiTec, Goettingen, 

Germany), and amplicons were sequenced directly using an ABI Prism 3130 Genetic 

Analyzer (Applied Biosystems, Foster City, CA).

Phylogenetic trees were generated by maximum likelihood and Bayesian methods, 

implemented in PAUP* (Phylogenetic Analysis Using Parsimony, 4.0b10) (Swofford, 2003), 

RAxML Blackbox webserver (Stamatakis et al., 2008) and MrBayes 3.1 (Ronquist and 

Huelsenbeck, 2003), under the best-fit GTR+I+Γ model of evolution selected by hierarchical 

likelihood-ratio test in MrModeltest v2.3 (Posada and Crandall, 1998) and jModelTest 

version 0.1 (Posada, 2008). Two replicate Bayesian Metropolis–Hastings Markov Chain 

Monte Carlo runs, each consisting of six chains of 10 million generations sampled every 100 

generations with a burn-in of 25,000 (25%), resulted in 150,000 trees overall. The S, M and 

L segments were treated separately in phylogenetic analyses. Topologies were evaluated by 

bootstrap analysis of 100 iterations (using the RAxML BlackBox), and posterior node 

probabilities were based on 2 million generations and estimated sample sizes over 100 

(implemented in MrBayes).

To verify the species of the hantavirus-infected shrew hosts, the cytochrome b or cytochrome 

oxidase subunit I gene of mitochondrial DNA (mtDNA) was amplified from tissue DNA by 

PCR, using conventional primers and methods (Arai et al., 2008; Borisenko et al., 2008).

3. Results and discussion

In employing RT-PCR to analyze archival frozen tissues from natural history collections, 

comprising Chinese mole shrews, Taiwanese mole shrews, Asian gray shrews and Taiwanese 

gray shrews, hantavirus RNA was found in two of five Chinese mole shrews from China and 

in seven of 15 Taiwanese mole shrews from Taiwan (Table 1).

The full-length 1,818-nucleotide S-genomic segment of CBNV strain ROM117784, from a 

Chinese mole shrew captured in Guizhou province, contained a single open reading frame, 

encoding a predicted nucleocapsid (N) protein of 428 amino acids (nucleotide positions 39 
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to 1,322), and 5′- and 3′-noncoding regions of 38- and 493-nucleotides, respectively. 

Although the S-segment nucleotide sequence of CBNV strain ROM117784 differed from 

prototype CBNV strain CBN-3 from Vietnam by 15.3%, the amino acid sequence difference 

of the N protein was only 2.6% (Table 2). Also, in analyzing the full-length S segment of 

Lianghe virus (LHEV), recently reported as a genetically distinct hantavirus in Chinese mole 

shrews from Yunnan Province (Guo et al., 2013), the amino acid sequence of the N protein 

differed from CBNV by only 4.4–5.1% (Table 2), well below the 7% difference, set by the 

International Committee on Taxonomy of Viruses (ICTV) (Plyusnin et al., 2012), to qualify 

as a hantavirus species. By comparison, the N protein amino acid sequence of XYIV, 

encoded by the full-length S-genomic segment of XYIV strains MVZ 180982 and 

MVZ180988 from the Taiwanese mole shrews, differed by 7.2–7.5% from that of the 

prototype CBNV strain CBN-3 (Table 2). However, the predicted N protein secondary 

structures of CBNV, LHEV and XYIV, as determined using software available on the @NPS 

structure server (Combet et al., 2000), were virtually indistinguishable (data not shown).

Analysis of the amino acid sequences of the M segment-encoded glycoproteins of CBNV 

and LHEV showed differences of 7.3–10.4%. Unfortunately, the full-length amino acid 

sequence of XYIV was unavailable for comparison. However, in applying the more stringent 

criteria of 10% and 12% amino acid sequence difference for the N protein and envelope 

glycoproteins, neither XYIV nor LHEV would qualify as a distinct hantavirus species (Maes 

et al., 2009). But having at least a 7% amino acid sequence difference in the complete N 

protein and glycoproteins is only one of four ICTV criteria. The other three taxonomic 

criteria include a unique ecological niche of the reservoir host; at least a 4-fold difference in 

two-way cross-neutralization antibody tests; and no naturally occurring reassortants 

(Plyusnin et al., 2012). In the absence of cell-culture isolates of CBNV, LHEV and XYIV, it 

is impossible to address the third critical criterion. Thus, for the time being, the conservative 

stance would be to consider XYIV and LHEV as genetic variants of CBNV, rather than as 

distinct hantavirus species.

Alignment and comparison of the full-length 6533- and 6535-nucleotide L-genomic segment 

of CBNV and XYIV, respectively, showed equal divergence from other shrew-borne 

hantaviruses, differing by as much as 38.1% at the amino acid level. However, the L-

segment amino acid sequences of CBNV and XYIV exhibited a high degree of sequence 

conservation, differing by only 6.1%, presumably due to the functional constraints on the 

RNA-dependent RNA polymerase.

Phylogenetic analyses, based on S-, M- and L-segment sequences, using maximum-

likelihood and Bayesian methods, with the GTR+I+Γ model of evolution, showed that XYIV 

shared a common ancestry with CBNV (Figure 2), in keeping with the evolutionary 

relationship between these Anourosorex mole shrews. Despite small differences between 

trees based on each genomic segment, the topologies were generally congruent and highly 

supported by bootstrap values (>70%) and posterior node probabilities (>0.70). The 

phylogenetic positions of XYIV, LHEV and CBNV in the S- and M-segment trees were 

identical, whereas in the L-segment tree, CBNV and XYIV segregated apart from LHEV. 

Possibly the limited L-segment sequences of LHEV might account for this different 

topology.
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As determined by analysis of the cytochrome b or cytochrome oxidase subunit I mtDNA 

genes, the taxonomic identities of the CBNV- and XYIV-infected shrews were confirmed as 

Anourosorex squamipes and Anourosorex yamashinai, respectively. The evolutionary 

relationship between Anourosorex mole shrews (Figure 3) was consistent with the 

phylogenetic positions of CBNV and XYIV.

The Chinese mole shrew is a forest-dwelling soricine shrew species typically residing at 

elevations between 1,500 and 3,000 meters, in western and central China, northern 

Myanmar, northern Thailand, Assam, Bhutan, northern Vietnam and possibly Laos. 

Endemic to Taiwan, the Taiwanese mole shrew is a semi-fossorial species which is widely 

distributed in mountainous regions from about 300 m elevation, it is most abundant in 

hardwood deciduous forests at 1,500–2,500 m elevation, but can be found in agricultural 

fields, riparian woodlands, and dwarf bamboo groves. In Yushan National Park, the 

Taiwanese mole shrew is widely distributed across most elevations and is typically found in 

moist microhabitats, especially along streams in both broad-leaf and conifer forests (Yu, 

1993, 1994).

Based on morphological and karyotypic features, the Taiwanese mole shrew is now 

considered a distinct species (Hutterer, 2005). Previously, sequence analysis of the 

mitochondrial cytochrome b gene of Taiwanese mole shrews from three mountain ranges in 

Taiwan disclosed 36 haplotypes, which constituted three geographic-specific phylogroups, 

presumably the result of interglacial refugia (Northern, Houhuan and Southern) in Taiwan 

during the middle Pleistocene (divergence time, 0.63–0.71 Mya) (Yuan et al., 2006). 

Phylogeographic studies of XYIV in Taiwanese mole shrews representing each of these 

phylogroups would provide insights into the evolutionary history of this newly identified 

soricid-borne hantavirus. Finally, the isolation of XYIV in cell culture will better clarify its 

biology, as well as its pathogenic potential for humans (Yanagihara et al., 2015).
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Highlights

• Cao Bang virus is harbored by the Chinese mole shrew (Anourosorex 
squamipes) in Vietnam and China.

• Xinyi virus in the Taiwanese mole shrews (Anourosorex yamashinai) appears to 

represent a genetic variant of Cao Bang virus.

• Anourosorex mole shrew species and the hantaviruses they harbor share 

common ancestries.
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Figure 1. 
Map of China and neighboring countries, showing sites where Anourosorex mole shrews 

were trapped. Chinese mole shrew samples were collected in Guizhou (blue) and Yunnan 

provinces (green) in the People’s Republic of China and in Cao Bang province in Vietnam 

(blue). Taiwanese mole shrew samples were collected in Taiwan (red).
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Figure 2. 
Phylogenetic trees were generated by maximum-likelihood and Bayesian methods, using the 

GTR+I+Γ model of evolution, based on the alignment of the S-, M- and L-segment 

sequences of hantavirus strains. Since tree topologies were very similar using RAxML and 

MrBayes, the trees generated by MrBayes were displayed. The phylogenetic positions of 

Cao Bang virus (CBNV CBN-3, S: EF543524, M: EF543526, L: EF543525) and CBNV 

ROM117784 (S: KJ162406, M: KJ162397, L: KJ162404) and CBNV ROM117730 (S: 

KJ162407, L: KJ162405) (blue) are shown in relationship to Xinyi virus (XYIV) (red) and 

Lianghe virus (LHEV) (green). GenBank numbers for XYIV and LHEV are provided in 

Table 1. Also shown are the phylogenetic positions of Nova virus (NVAV MSB95703, S: 

FJ539168, M: HQ840957, L: FJ593498), Thottapalayam virus (TPMV VRC66412, S: 

AY526097, M: EU001329, L: EU001330), Imjin virus (MJNV Cl05-11, S: EF641804, M: 

EF641798, L: EF641806), Seewis virus (SWSV mp70, S: EF636024, M: EF636025, L: 

EF636026), Kenkeme virus (KKMV MSB148794, S: GQ306148, M: GQ306149, L: 

GQ306150), Ash River virus (ARRV MSB 73418, S: EF650086, L: EF619961), Jemez 

Springs virus (JMSV MSB144475, S: FJ593499, M: FJ593500, L: FJ593501), Qian Hu 

Shan virus (QHSV YN05-284, S: GU566023, M: GU566022, L: GU566021), Tanganya 

virus (TGNV Tan826, S: EF050455, L: EF050454), Azagny virus (AZGV KBM15, S: 

JF276226, M: JF276227, L: JF276228), Jeju virus (JJUV 10–11, S: HQ834695, M: 

HQ834696, L: HQ834697), Bowé virus (BOWV VN1512, S: KC631782, M: KC631783, L: 

KC631784), Asama virus (ASAV N10, S: EU929072, M: EU929075, L: EU929078), 

Oxbow virus (OXBV Ng1453, S: FJ5339166, M: FJ539167, L: FJ593497) and Rockport 

virus (RKPV MSB57412, S: HM015223, M: HM015219, L: HM015221). Also shown are 

representative Murinae rodent-borne hantaviruses, including Hantaan virus (HTNV 76–118, 

S: NC_005218, M: Y00386, L: NC_005222), Soochong virus (SOOV SOO-1, S: 

AY675349, M: AY675353, L: DQ056292), Dobrava virus (DOBV Greece, S: NC_005233, 

M: NC_005234, L: NC_005235), Seoul virus (SEOV 80–39, S: NC_005236, M: 

NC_005237, L: NC_005238); Arvicolinae rodent-borne hantaviruses, including Tula virus 

(TULV 5302v, S: NC_005227, M: NC_005228, L: NC_005226), Puumala virus (PUUV 

Sotkamo, S: NC_005224, M: NC_005223, L: NC_005225) and Prospect Hill virus (PHV 

PH-1, S: Z49098, M: X55129, L: EF646763); and Neotominae rodent-borne hantaviruses, 

Sin Nombre virus (SNV NMH10, S: NC_005216, M: NC_005215, L: NC_005217) and 
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Andes virus (ANDV Chile9717869, S: NC_003466, M: NC_003467, L: NC_003468). The 

numbers at each node are posterior node probabilities (left) based on 150,000 trees 

implemented in MrBayes and rapid bootstrap values (right) based on 100 replicates executed 

on the RAxML BlackBox webserver, respectively. The scale bar indicates nucleotide 

substitutions per site.
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Figure 3. 
Unrooted phylogenetic tree, using Bayesian method, based on 551- to 1140-nucleotides of 

the cytochrome b mtDNA of rodents, shrews, moles and bats known to harbor hantaviruses. 

GenBank accession numbers for cytochrome b mtDNA sequences of Anourosorex 
yamashinai MVZ180979, MVZ180981, MVZ180982, MVZ180983, MVZ180986, 

MVZ180988 and MVZ181004 and of other taxa are shown on the tree. Numbers at nodes 

indicate posterior probability values based on 150,000 trees: two replicate Markov chain 

Monte Carlo runs, consisting of six chains of 10 million generations each sampled every 100 

generations with a burn-in of 25,000 (25%).
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