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Abstract

Objective—The purpose of this study was to compare the relative fit of two alternative factor 

models of allostatic load (AL) and physiological systems, and to test factor invariance across age 

and sex.

Methods—Data were from the Midlife in the United States (MIDUS) II study Biomarker Project, 

a large (N = 1,255) multisite study of adults aged 34–84 (56.8% women). Specifically, 23 

biomarkers were included, representing seven physiological systems: metabolic lipids, metabolic 

glucose, blood pressure, parasympathetic nervous system, sympathetic nervous system, 

hypothalamic-pituitary-adrenal axis, and inflammation. For factor invariance tests, age was 

categorized into three groups (≤ 45, 45 to 60, and > 60 years).

Results—A bi-factor model where biomarkers simultaneously load onto a common allostatic 

load factor and seven unique system-specific factors provided the best fit to the biomarker data 

(CFI = .967, RMSEA = .043, SRMR = .028). Results from the bi-factor model were consistent 

with invariance across age groups and sex.

Conclusions—These results support the theory that represents and operationalizes AL as multi-

system physiological dysregulation and operationalizing AL as the shared variance across 

biomarkers. Results also demonstrate that in addition to the variance in biomarkers accounted for 

by AL, individual physiological systems account for unique variance in system-specific 

biomarkers. A bi-factor model allows researchers greater precision to examine both AL and the 

unique effects of specific systems.
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INTRODUCTION

Psychosomatic research has characterized the relations of psychological variables and 

indicators of major physiological regulatory systems in humans such as the parasympathetic 

nervous system (PNS) and the hypothalamic-pituitary-adrenal (HPA) axis (for examples of 

reviews, see 1, 2, 3). Measures of physiological systems are frequently operationalized via 

the use of biomarkers. As the field of psychosomatic medicine has advanced, it is 

increasingly common for multiple biomarkers to be assessed. Although many biomarkers 

exist for each physiological system, there is little consensus on how to integrate these 

biomarkers to assess the state and functioning of physiological systems and multi-system 

physiological dysregulation. Despite the lack of consensus on how to integrate multiple 

biomarkers, it does appear that employing combinations of biomarkers is valuable. For 

example, in one study, a composite risk score of biomarkers predicted all-cause mortality 

over and above age and sex (4), and in another study the number of high risk biomarkers 

combined demonstrated a gradient relationship with mortality (5).

One conceptual approach to integrating biomarkers of multiple systems is allostatic load 

(AL), which posits that the body’s adaptation to challenge and demands of the environment 

(allostasis; 6) over time takes a physiological toll and results in cumulative wear-and-tear or 

dysregulation across multiple physiological systems (7). Thus, the dysregulation is 

hypothesized to be a multi-systems phenomenon that occurs across multiple regulatory 

systems rather than in particular systems only (for a review, see 8). Figure 1 shows a 

diagram of three potential levels of analysis for biomarkers, from using specific biomarkers 

as outcomes (bottom), to combining multiple biomarkers to assess specific physiological 

systems (middle), and the highest aggregate combining multiple physiological systems (AL; 

top). The primary goal of this paper is to test two plausible measurement models of 

biomarkers hypothesized to represent both overall AL and individual physiological systems.

An individual with allostatic overload and system-wide dysregulation will demonstrate some 

degree of dysregulation in multiple physiological regulatory system involved in allostasis, 

and this physiological dysregulation may be assessed using a composite index from multiple 

systems. To date, such Indices of AL have typically been created by assuming equal 

influence of individual biomarkers, dichotomizing them into high and low health risk based 

on quartiles or clinical risk points, averaging within a particular physiological system (e.g., 

cardiovascular), and then summing (e.g., 4, 9). Similar indices have been created by first 

standardizing individual biomarkers and then summing (e.g., 10). Although less commonly 

applied to biological data, scale development and testing methods such as factor analysis 

have been used for years to develop and validate measures of latent constructs (e.g., 

depressive symptoms) from multiple observed indicators (e.g., feeling sad or blue, loss of 

interest). For an introduction to factor analysis in psychosomatic research, see (11).

The few studies that have examined the psychometric properties and tested the factor 

structure of biomarkers in relation to AL found that a second-order AL factor (i.e., 

biomarkers load onto individual system factors which in turn load onto AL) provided 

adequate fit to the data (12–14). Related work in metabolic syndrome has shown a similar 

hierarchical factor structure (e.g., 15, 16). In addition, a second-order AL factor model of 
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biomarkers was found to be invariant across sex and ethnicity (13), and provided good fit 

when controlling for sex and age (12); it did, however, differ between participants on and off 

of medications in an elderly sample (14).

Limitations are apparent in the existing literature on AL. First, previous research has had 

relatively few biomarkers per system, leaving open the question whether the same factor 

structure will emerge when systems are more comprehensively assessed. Second, although 

AL is hypothesized to be prominent in the aging process (17), to our knowledge, no previous 

study has tested whether the measurement of AL is invariant across adulthood or whether 

the relations among biomarkers differ as a function of age. Finally, although a second-order 

factor model provided adequate fit in previous studies, there was room for improvement of 

model fit. Given the complex relations among biomarkers, examining alternative models 

may be valuable.

In the present study, we used data from the Midlife in the United States (MIDUS) II 

Biomarker Project, to address the following aims.

Aim 1

To test and compare two theoretically-derived factor models that reflect the following 

hypotheses: (1) biomarkers within a physiological system are associated, and (2) based on 

AL theory that there is system-wide dysregulation, biomarkers or systems should load onto a 

common factor. The structure of the two models is diagrammed in Figure 2.

Model 1—Biomarkers load onto their respective physiological system, and the seven 

systems, in turn, load onto a second-order factor. This model tests whether relations among 

biomarkers are explained by each physiological subsystem, and the relations among the 

physiological subsystems are explained by a single, common second-order factor (allostatic 

load).

Model 2—Biomarkers load onto their respective physiological system, and the seven 

systems are allowed to freely covary; in addition, each biomarker loads directly onto a 

common factor (AL). This bi-factor model tests whether the relations among biomarkers are 

explained by two processes: 1) a common factor, capturing the notion that there is an 

underlying process influencing multiple physiological systems and 2) system-specific 

factors, capturing the notion that beyond the common portion shared across biomarkers, 

there are unique effects of particular physiological systems that are independent of other 

systems. Model 1 is nested within Model 2 allowing for a direct test of fit.

Specifically, we hypothesize that Model 1 will demonstrate acceptable fit and represent a 

parsimonious version of a correlated-systems model. Finally, if system-wide effects drive the 

individual systems, then Model 2 will demonstrate no better fit than Model 1, and be less 

parsimonious. However, if the system-wide and system-specific effects have unique and 

non-overlapping elements, Model 2 should demonstrate better fit. Because we expect 

important, unique system-wide and system-specific effects, we hypothesize that Model 2 

will demonstrate the best fit.
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Aim 2

To test whether the optimal factor structure underlying biomarkers of AL (Aim 1) is 

invariant across adulthood from 34 to 84 years of age and sex.

Methods

Sample

The sample came from the larger MIDUS study. The first wave of data, MIDUS I, included 

phone interviews and mailed questionnaires to a national sample of adults, aged 25 to 74 and 

was designed to assess factors related to physical and psychological health and well-being in 

early adulthood, middle adulthood, and older age. Data for MIDUS I were collected in 

1994-1995 in four parts: a large, national probability sample (the core sample; N = 3,487), 

siblings of the core sample (N = 950), twins (N = 957 pairs), and an over-sampling in 

metropolitan areas (N = 757). Participants from MIDUS I, as well as an additional sample of 

urban African-Americans living in Milwaukee, WI (N = 592, to increase diversity) were 

assessed in 2005 for MIDUS II (18). MIDUS II included follow up questionnaires, and a 

subset of participants who were eligible and consented (N = 1,054 from the original sample 

and N = 201 from the Milwaukee sample) participated in the MIDUS II Biomarker Project, 

where extensive biological data were collected (19). Thus, a total of 1,255 participants were 

included coming from 1,098 families (944 families contributing one participant, 152 families 

contributing two participants, one family contributing three participants, and one family 

contributing four participants).

Procedure

As part of the MIDUS II Biomarker project, participants went to one of three (University of 

California Los Angeles, University of Wisconsin, and Georgetown University) General 

Clinical Research Centers for a medical exam, comprehensive biomarker assessment (e.g., 

fasting blood draw, 12-hour urine, electrocardiography), and reported on medication history. 

Details on MIDUS are available online at http://www.midus.wisc.edu and for the biomarker 

project, see (19). The MIDUS II Biomarker Project was approved by the Institutional 

Review Boards of the University of Wisconsin, Madison, the University of California, Los 

Angeles, and Georgetown University.

Demographics and Health Outcomes

Demographic data including age, sex, and ethnicity were collected via self-report. Self-

reported medication use, including antihypertensive medications, heart rate reducing (e.g., 

beta blockers), diabetes medications, cholesterol-lowering mediations, and fibrates, was 

collected and used to identify medication free participants.

Biological Measures

Seven physiological systems were measured using 23 biomarkers. Details on collection and 

assay of biomarkers are reported in Supplementary data file 1 in (20).
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Sympathetic Nervous System—The sympathetic nervous system (SNS) was measured 

using 12-hour, overnight urinary epinephrine (E) in μg/g creatinine and norepinephrine (NE) 

in μg/g creatinine.

Parasympathetic Nervous System—The parasympathetic nervous system (PNS) was 

measured using heart rate variability and resting pulse rate (in beats per minute). Heart rate 

variability was assessed via electrocardiography and was operationalized as the standard 

deviation of beat to beat intervals (R―R interval; SDRR), root mean square of successive 

differences (RMSSD), low frequency spectral power (LFHRV) and high frequency spectral 

power (HFHRV).

Hypothalamic Pituitary Adrenal Axis—The hypothalamic pituitary adrenal (HPA) axis 

was measured using 12-hour, overnight urinary cortisol mg/g creatinine and blood serum 

dihydroepiandrosterone sulfate (DHEA-S) in μg/dL.

Inflammation—Inflammation was measured using plasma levels of C-reactive protein 

(CRP) in mg/L, interleukin-6 (IL6), fibrinogen in mg/dL, sE-Selectin in ng/mL, and soluble 

intracellular adhesion molecule 1 (sICAM-1) in ng/mL.

Cardiovascular—The cardiovascular system was measured with resting systolic blood 

pressure (SBP) in mmHg and diastolic blood pressure (DBP) in mmHg. For the model, these 

were converted into pulse pressure (SBP – DBP) and SBP.

Glucose—The metabolic glucose system was measured using the homeostatic model 

assessment of insulin resistance (HOMA-IR), fasting glucose in mg/dL, and glycosylated 

hemoglobin (HbA1c) in percent.

Lipids—The metabolic lipid system was measured using waist-to-hip ratio (WHR), high 

density lipoprotein (HDL) cholesterol in mg/dL, low density lipoprotein (LDL) cholesterol 

in mg/dL, and triglycerides in mg/dL.

Data Analysis

Structural equation modelling (SEM) was used to compare the two alternative models of the 

relations among biomarkers, with age and sex included as covariates for each biomarker.

Model fit indices were used to find the best fitting of the two hypothesized factor structures. 

In addition, Model 1 is nested within Model 2. A chi-square difference test adjusted for the 

scaling factor (21) was conducted between Models 1 and 2. Multiple group SEM was used 

to test whether the best-fitting model (1 or 2) was the same (invariant) or varied across 

different groups. Specifically, model invariance was tested for age group (≤ 45, 45 to 60, >60 

years) to establish whether the structure is consistent or differs for younger and older 

participants and sex (Female vs. Male). To compare factor means across groups (a common 

objective in research on allostatic load), it is generally considered necessary (22) that the 

models at least demonstrate: configural invariance (i.e., the same number of factors, and 

indicators loading on the same factors), metric invariance (i.e., the factor loadings are 

identical across groups), and scalar invariance (i.e., the intercepts of the indicators are 
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identical across groups). Sequentially more constrained models (i.e., configural only, 

configural + metric, and configural + metric + scalar) across groups were tested. Chi-square 

tests are reported, but results are considered consistent with model invariance only if the 

most restrictive configural + metric + scalar invariance was met as demonstrated both by 

adequate model fit and by minimal change in model fit (CFI, RMSEA, SRMR) from less 

constrained models, with ΔCFI < .01 being suggested as one indicator of an invariant model 

(23). Residual variances were not constrained to be equal across groups, as it is expected 

that variability may differ between groups (e.g., participants in the youngest age group may 

not have the same range on biomarkers as older adults may have).

Finally, if the bi-factor model is correct, it should exhibit item parameter invariance (24), 

that is, the same general and system-specific factor loadings should result regardless of the 

specific subset of biomarkers or systems assessed. This follows from the logic that if the 

items are indicators of the latent factors specified, we should be measuring the same latent 

factor regardless of which specific indicators are used, and so when some items are dropped, 

the factor loadings of the remaining items should not change (i.e., be invariant). To examine 

item parameter invariance, seven additional models were fit. Each of the seven models 

started with the overall bi-factor model on all participants, and systematically dropped one 

of the seven systems by removing all the biomarkers of a particular system as well as the 

system-specific factor. For example, one model was the bi-factor model without the 

inflammation system, and dropped CRP, IL6, fibrinogen, sE-Selectin, and sICAM-1, leaving 

18 biomarkers, one common AL factor, and six system-specific factors.

Statistical Methods

Biomarkers were assessed for univariate normality and log transformations were applied to 

E, NE, SDRR, RMSSD, LFHRV, HFHRV, cortisol, DHEA-S, CRP, IL6, sE-Selectin, 

HbA1c, fasting glucose, HOMA-IR, and triglycerides. Outliers were addressed by 

Winsorizing the lower and upper 0.5%. Because multivariate non-normality remained 

despite these transformations, a robust estimator and standard errors were used. To address 

the small amount (< 3%) of missing data, full information maximum likelihood (FIML) 

estimation was used (25). Standard errors and model tests were adjusted for non-

independence within families using clustered standard errors based on the Huber-White 

“sandwich” estimator implemented in Mplus, thus independence is assumed among cluster 

units, not individual units

Good model fit was chosen as the combination of the Comparative Fit Index (CFI) > 0.95, 

standardized root mean squared residual (SRMR) < .08, and root mean squared error of 

approximation (RMSEA) < .06 (26). Example Mplus input scripts are available from the 

Standardizing Physiological Composite Risk Endpoints Project website: http://score-

project.org. Data management, descriptive statistics, and transformations were conducted 

using R v. 3.1.1 (27) and Mplus v. 7.3 (Los Angeles, CA: Muthén & Muthén) via 

MplusAutomation v. 0.6-3 (28) for the structural equation models.
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Results

Participant age ranged from 34 to 84 with approximately equal numbers of females and 

males. Sample characteristics and descriptive statistics for the biomarkers (untransformed) 

are presented in Table 1. Based on preliminary analyses, three modifications were made to 

all hypothesized models. First, HOMA-IR was allowed to cross load on both the lipid 

metabolism and glucose metabolism factors. Second, heart rate was used as an indicator of 

the PNS rather than the cardiovascular factor. Third, a residual correlation between HFHRV 

and RMSSD was allowed. No other modifications to the hypothesized models were made.

Aim 1: Model Comparisons

Model fit indices comparing the two alternative models (Figure 2) are shown in Table 2. The 

second-order model (Model 1) demonstrated acceptable fit, with two of three indices 

meeting the criteria for good fit, although the CFI did not (CFI = .928, RMSEA = .058, 

SRMR = .056). As expected, the bi-factor model (Model 2) demonstrated the best fit to the 

data, and met all criteria for good model fit (CFI = .967, RMSEA = .043, SRMR = .028). 

The bi-factor model also fit significantly better than the second-order factor model 

(Δχ2
df = 36 = 508.68, p < .001). These results suggest that a common factor does underlie the 

individual biomarkers, but that there are also unique, system-specific effects.

Aim 2: Model Invariance

The fit of the bi-factor model was tested across age (≤ 45, 45 to 60, > 60 years) and sex 

(female, male) groups using a multiple group model. Results from the configural, configural 

+ metric, and configural + metric + scalar invariance tests are shown in Table S1 and sex-

specific loadings are shown in Figure S1, in Supplemental Digital Content 1. The configural 

+ metric + scalar invariant models were tested against the configural only model for sex. The 

configural only model for age did not converge, so for age, the configural + metric invariant 

model was used as the comparison. For this reason, age group-specific loadings also could 

not be shown as only the constrained models converged, which by definition have identical 

loading. Although the configural + metric + scalar invariant model fit statistically 

significantly worse for both age and sex (all ps < .05), the change in fit indices was small for 

age (ΔCFI = .003, ΔRMSEA = .001, ΔSRMR = .002) and sex (ΔCFI = .007, ΔRMSEA = .

001, ΔSRMR = .008). In addition, the configural + metric + scalar invariant models 

demonstrated good fit (all CFIs > .95, all RMSEAs < .06, all SRMRs < .08). Thus, overall 

the results were consistent with model invariance by age and sex. The final configural + 

metric + scalar invariant model fit indices are shown in Table 2.

Final Model Estimates

The standardized loadings of each biomarker on the system-specific and common AL factor 

for the final overall bi-factor model are shown in Table 3. With the exception of LDL, E, and 

DHEA-S, all biomarkers loaded significantly and in the direction such that higher AL scores 

indicate more physiological dysregulation. LDL and DHEA-S were not statistically 

significant, and E loaded negatively on AL, indicating that the higher the AL score, the 

lower E. Although biomarkers from the PNS and cardiovascular (blood pressure) systems 

loaded in the expected directions and were statistically significant, loadings were small or 
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modest. In the bi-factor model, most correlations among biomarkers across systems will be 

captured by the common AL factor, so as expected the estimated correlations among the 

latent system-specific factors were generally small, with the largest two between the HPA 

and SNS (r = .34) and cardiovascular system (r = .23), with all other factor correlations ≤ .20 

(see Table 4 for details).

As a sensitivity analysis, the factor loadings from the final bi-factor model on only those 486 

participants who were medication free are also presented in Table 3. In general, the results 

are quite similar, with some additional non-significant parameters due to the reduced sample 

size.

Finally, item parameter invariance was examined by comparing the standardized loadings 

from the seven reduced models (each now with only six systems assessed) to the full bi-

factor model. None of the loadings from the reduced models fell outside the confidence 

interval for the overall bi-factor model, and most exhibited minimal differences (Figure 3). 

These results are consistent with what would be expected if the model had item parameter 

invariance.

Discussion

Across 23 biomarkers in a large sample of adults, a bi-factor model of AL provided both 

good fit and was the best fitting model. This result has two important implications. First, it 

confirms what previous studies have demonstrated that consistent with AL theory, a 

common factor underlies biomarkers of multi-system physiological functioning (12–14). 

Second, it is the first study, to our knowledge, that demonstrates that in addition to the 

common underlying AL factor, individual physiological systems account for unique variance 

in biomarkers not accounted for by the common factor. Composites of biomarkers within a 

system or factor scores from the second-order factor (Model 1) model will conflate system-

specific effects and effects of the common factor. Using a bi-factor model (Model 2) 

provides an alternative and novel method that allows the examination of either the common 

allostatic load factor, the system-specific factors unconflated from allostatic load, or both.

Most loadings were in the expected directions, but there were exceptions. Contrary to AL 

theory, epinephrine loaded negatively on the common AL factor, although it correlated 

positively with norepinephrine (r = .50), which did load positively on the AL factor. To our 

knowledge of the three other studies that examined the factor structure of AL, only one 

assessed epinephrine and found that it was not significantly associated with AL (9). Cortisol 

also loaded negative onto the common AL factor, but it is less clear whether high or low 

values of basal cortisol are desirable (e.g., Seeman and colleagues found that higher AL was 

associated with a lower cortisol awakening response and flatter change over the day; 13). 

Alternatively, this may be unique to the MIDUS study as participants had to travel to one of 

three clinical research centers for the overnight stay when their biomarkers were assessed, 

which may have affected their overnight urinary cortisol.

Overall, the largest factor loadings for the common AL factor were from biomarkers from 

the inflammation, glucose, and lipid systems. Biomarkers in the SNS, PNS, and 
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cardiovascular (blood pressure) systems did not load strongly on the common AL factor, but 

did load onto their system-specific factors. These systems also had the strongest correlations 

among the system-specific factors. Although AL theory does not hypothesize stronger 

associations among these systems than other systems, these results make sense in that the 

biomarkers from these systems only load modestly on the common AL factor, with more of 

their variance accounted for by the system-specific factors, leading to higher correlations 

among the system factors (although none of these correlations are large). These results 

suggest that for the SNS, PNS, and cardiovascular (blood pressure) systems, it may be 

particularly important to examine their unique effects beyond overall AL. By examining 

shared and system-specific effects, we believe this bi-factor model can facilitate greater 

precision in the next generation of research. For example, different types of stressors (e.g., 

low grade chronic stress versus traumatic stress) may be associated with higher allostatic, 

but show differential effects on specific systems, such as SNS or PNS.

In a recent editorial, Gallo, Fortmann, and Mattei (29) argued for a need to standardize the 

measurement of AL and for researchers to report on the specific components of AL. We 

agree that the specific components of AL are important; indeed the bi-factor structure 

suggests that specific physiological systems account for additional variance in biomarkers 

over and above AL. Using a method that allows both AL and specific physiological systems 

to be used as independent predictors or outcomes facilitates examining both system-wide 

(AL) and system-specific effects. We believe that using a bi-factor model represents an 

important advance in psychosomatic research for untangling the relations between 

psychological factors and system-specific and system-wide physiological dysregulation.

The results were consistent with item parameter invariance for the bi-factor model. The 

property of item parameter invariance means that the system-specific and allostatic load 

factor loadings would not change regardless of the specific biomarkers measured. Item 

parameter invariance is an important property that underlies methods such as computer 

adaptive testing where not all participants are given the same questions and yet they receive 

comparable scores on the same underlying construct. If this result is replicated and shown 

reliable, it has the potential to provide a pathway to resolve discrepancies across studies due 

to different biomarkers being measured by deriving scores on the same underlying allostatic 

load and individual system factors, even if the exact subset of biomarkers assessed varies. 

Another implication is that research that does not measure all 23 biomarkers can still derive 

a comparable allostatic load score, opening the possibility of a “short” version of allostatic 

load where fewer biomarkers are assessed to save cost or participant burden. However, one 

disadvantage of measuring fewer biomarkers is that it may no longer be possible to obtain a 

score on a particular system-specific factor. Furthermore, reducing the number of 

biomarkers by leaving off specific biomarkers or whole systems will reduce the reliability of 

both the common AL factor score and system-specific scores. To recommend which 

biomarkers should be measured to optimally measure AL, future research is needed to 

examine the relationships between AL scored from different biomarkers and other constructs 

it should be related to such as stress, physical functioning, morbidity, and mortality.
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We found that for the bi-factor model, results were consistent with what would be expected 

if it was invariant between males and females, which is consistent with prior research on AL 

comparing females and males (13), as well as across age groups.

Limitations of the current study should be noted. The sample was predominantly White, 

with fewer African-Americans and small numbers of other ethnicities represented. In 

addition, only basal levels of biomarkers were assessed; future research is needed to 

examine relations among functional measures of biomarkers (e.g., inflammatory response to 

antigens). Finally, when testing measurement invariance where the model fit is compared 

across subgroups of the sample, many subgroups were small and in these multiple group 

models, the overall sample size was small compared to the number of parameters and 

complexity of our measurement model. However, with 1,254 participants, this is one of the 

largest studies with extensive biomarker data available.

The study also has several important strengths. The current study comprehensively assessed 

seven physiological systems using 23 biomarkers. The use of many biomarkers ensures that 

each of the seven systems are measured by more than one biomarker, allowing us to 

differentiate effects shared across systems and effects unique to systems. Another strength is 

the broad age range from 34- to 84-years old. Finally, the current study used careful 

statistical analyses including: accounting for clustering in twins and siblings in the MIDUS 

data, non-normality of the biomarkers, missing data, and investigating alternative theoretical 

models.

In conclusion, across 23 biomarkers in MIDUS, we found evidence for a common AL factor, 

as well as for seven system-specific factors, and this model held across age groups and sex. 

Although our findings were consistent with a model where AL was invariant across 

subpopulations and invariant to dropping biomarkers from any one system, these results do 

not preclude the possibility that the measurement of AL may differ importantly by the 

sample or population being studied. Nevertheless, they do point to the robustness of 

allostatic load, and perhaps suggest that apparently disparate sets of biomarkers used in 

many studies may actually be more comparable than expected. Future research is needed to 

examine the predictive effects of AL and specific systems on health. Future research could 

also explore whether for specific outcomes, such as particular diseases, or for different 

predictors, such as chronic or acute stress, different profiles emerge across the common AL 

factor and system-specific factors. In order to standardize the measurement of AL as Gallo, 

Fortmann, and Mattei (29) suggest, further work is needed to reach consensus on how to 

define “optimal” measures of AL and specific physiological systems (e.g., predict disease 

incidence or mortality, predict functioning), and then to develop and validate sets of 

biomarkers for each system and for AL overall—work that is challenging given the great 

diversity of samples and populations studied. Nevertheless, findings that the bi-factor model 

was consistent with item parameter invariance, if replicated, open the intriguing possibility 

that just as in computer adaptive testing where not all participants complete the same 

questions, yet can be given comparable scores, it may be possible to obtain comparable AL 

scores from different sets of biomarkers and perhaps begin to resolve concerns about the 

challenge interpreting the AL literature when measurement is inconsistent.
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Acronyms

AL allostatic load

SNS sympathetic nervous system

PNS parasympathetic nervous system

HPA hypothalamic-pituitary-adrenal axis

WHR waist-to-hip ratio

HDL high density lipoprotein

LDL low density lipoprotein

HOMA-IR homeostatic model assessment of insulin resistance

HbA1c glycosylated hemoglobin

SBP systolic blood pressure

DBP diastolic blood pressure

SDRR standard deviation of beat to beat intervals

RMSSD root mean square of successive differences (RMSSD) of beat to beat 

intervals

LFHRV low frequency spectral power

HFHRV high frequency spectral power

E epinephrine

NE norepinephrine

Cort cortisol

DHEA-S dihydroepiandrosterone sulfate

CRP C-reactive protein

IL6 interleukin-6

sE-Selectin soluble E-selectin
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sICAM-1 soluble intracellular adhesion molecule 1

MIDUS Midlife in the United States

CFI comparative fit index

RMSEA root mean square error of approximation

SRMR standardized root mean square residual

TLI Tucker Lewis Index

AIC Akaike Information Criterion

BIC Bayesian Information Criterion
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Figure 1. 
Continuum of specificity of biomarker outcomes, from the level of individual biomarkers, to 

individual physiological systems, to composites across multiple systems.
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Figure 2. 
Sample diagrams of the two plausible factor models tested and compared. Adapted from 

http://score-project.org and reprinted with permission.
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Figure 3. 
Item Parameter Invariance Plot. Standardized loadings with 95% confidence intervals for the 

overall bi-factor model are shown in black triangles. Results from seven “reduced” models 

where each system was systematically dropped are shown slightly below the results from the 

overall bi-factor model. The overlap in points and confidence intervals shows that the 

standardized loadings for the remaining biomarkers do not change substantially when 

biomarkers for any one system are dropped.
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Table 1

Descriptive statistics for sample demographics and raw biomarker values

Median (IQR)/N (%)

Demographics

  Age (years) 54 (45, 62)

  Sex: Female 713 (56.8%)

  Ethnicity: White 967 (77.2%)

    African American 222 (17.7%)

    Other 64 (5.1%)

  Medications: None 486 (38.7%)

Sympathetic nervous system

  Urine epinephrine (mg/g of creatinine) 1.67 (1.13, 2.46)

  Urine norepinephrine (mg/g of creatinine) 24.80 (18.14, 32.94)

Parasympathetic nervous system

  R-R interval standard deviation (ms) 32.53 (23.72, 44.62)

  Root mean square of successive differences (ms) 18.38 (12.13, 27.57)

  Low-frequency power (ms2) 245.95 (114.95, 514.50)

  High-frequency power (ms2) 140.45 (58.80, 304.75)

  Resting heart rate (beats per minute) 70.00 (64.00, 79.00)

Hypothalamic-pituitary-adrenal axis

  Urine cortisol (mg/g of creatinine) 12.00 (6.75, 19.00)

  Serum dehydroepiandrosterone sulfate (µg/dL) 87.00 (52.00, 145.00)

Inflammation

  Serum C-reactive protein (mg/L) 1.44 (0.69, 3.64)

  Serum interleuken-6 (ng/L) 2.17 (1.37, 3.52)

  Fibrinogen (mg/dL) 344.00 (291.00, 403.00)

  Soluble E-selectin (ng/mL) 39.16 (28.17, 52.41)

  Soluble Intracellular adhesion molecule-1 (mg/L) 273.85 (220.03, 338.08)

Cardiovascular

  Pulse Pressure (mmHg) 54.00 (45.00, 64.00)

  Systolic blood pressure (mmHg) 130.00 (119.00, 143.00)

Glucose

  Fasting blood glucose (mg/dL) 96.00 (90.00, 105.00)

  Blood glycosylated hemoglobin (%) 5.86 (5.60, 6.24)

  Homeostasis model assessed insulin resistance 2.40 (1.43, 4.35)

Lipids

  Waist-to-hip circumference ratio 0.89 (0.82, 0.97)

  High-density lipoprotein cholesterol (mg/dL) 52.79 (42.50, 66.25)

  Low-density lipoprotein cholesterol (mg/dL) 102.00 (80.23, 128.32)

  Serum triglycerides (mg/dL) 106.00 (77.00, 155.00)
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Table 2

Model Fit Statistics

Bi-factor Invariance Testing

Second Order Bi-factor Age Sex

Parameters 120 156 364 214

χ2 1174.1 623.6 1215.4 1004.6

DF 225 189 671 430

P value <.001 <.001 <.001 <.001

CFI .928 .967 .957 .953

TLI .904 .948 .942 .940

RMSEA .058 .043 .044 .046

  LL .055 .039 .040 .042

  UL .061 .047 .048 .050

SRMR .056 .028 .051 .042

AIC 66297.9 65750.2 65704.4 65726.6

BIC 66914.0 66551.1 67573.2 66825.3

Note. CFI = Comparative Fit Index, TLI = Tucker Lewis Index, RMSEA = root mean square error of approximation, LL = 90% CI lower limit for 
RMSEA, UL = 90% CI upper limit for RMSEA, SRMR = standardized root mean square residual, AIC = Akaike Information Criterion, BIC = 
Bayesian Information Criterion. Age groups were ≤ 45 (n = 324), 45 to 60 (n = 557), and >60 years (n = 373) and sex groups were female (n = 712) 
and male (n = 542). Invariance was tested for the best fitting, bi-factor model. Continuous age and sex were included as covariates in all models, 
except sex was omitted as a covariate in the sex invariance model. N ranged from 1,252 – 1,254 due to missing data.
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Table 3

Standardized Factor Loadings from the Final Bi-factor Model

Overall Bi-Factor Model Medication Free Bi-Factor Model

System Loadings AL Loadings System Loadings AL Loadings

SNS Loading [95% CI] Loading [95% CI] Loading [95% CI] Loading [95% CI]

  E 0.70*** [0.67, 0.74] −0.27*** [−0.35, −0.18] 0.70*** [0.64, 0.77] −0.33*** [−0.47, −0.18]

  NE 0.70*** [0.66, 0.73] 0.14** [0.05, 0.22] 0.71*** [0.65, 0.76] 0.10 [−0.04, 0.25]

PNS

  SDRR −0.93*** [−0.96, −0.91] −0.20*** [−0.28, −0.12] −0.94*** [−0.98, −0.91] −0.12 [−0.27, 0.03]

  RMSSD −0.81*** [−0.84, −0.79] −0.11* [−0.19, −0.02] −0.81*** [−0.85, −0.78] −0.08 [−0.22, 0.05]

  LFHRV −0.76*** [−0.79, −0.73] −0.23*** [−0.31, −0.15] −0.77*** [−0.82, −0.72] −0.15* [−0.27, −0.02]

  HFHRV −0.76*** [−0.79, −0.73] −0.11** [−0.19, −0.03] −0.76*** [−0.80, −0.71] −0.05 [−0.18, 0.08]

  Pulse Rate 0.32*** [0.26, 0.37] 0.36*** [0.29, 0.43] 0.36*** [0.27, 0.45] 0.40*** [0.28, 0.52]

HPA

  Cortisol 0.31*** [0.21, 0.40] −0.31*** [−0.39, −0.23] 0.21 [−0.02, 0.44] −0.22*** [−0.35, −0.08]

  DHEA-S 0.30*** [0.21, 0.39] −0.06 [−0.13, 0.01] 0.22 [−0.01, 0.45] −0.00 [−0.11, 0.11]

Inflammation

  CRP 0.55*** [0.45, 0.65] 0.55*** [0.48, 0.62] 0.55*** [0.32, 0.77] 0.59*** [0.46, 0.73]

  IL6 0.39*** [0.30, 0.48] 0.53*** [0.45, 0.60] 0.32*** [0.17, 0.47] 0.59*** [0.48, 0.71]

  Fibrinogen 0.56*** [0.46, 0.66] 0.37*** [0.29, 0.45] 0.59*** [0.42, 0.76] 0.36*** [0.23, 0.49]

  sE-Selectin −0.01 [−0.10, 0.09] 0.37*** [0.30, 0.44] −0.08 [−0.23, 0.06] 0.33*** [0.21, 0.44]

  sICAM-1 0.09 [−0.01, 0.20] 0.24*** [0.16, 0.32] 0.16 [−0.00, 0.32] 0.23*** [0.10, 0.37]

Cardiovascular

  Pulse Pressure 0.83*** [0.80, 0.86] 0.09* [0.02, 0.16] 0.86*** [0.80, 0.91] 0.23*** [0.11, 0.35]

  SBP 0.83*** [0.80, 0.85] 0.12** [0.04, 0.20] 0.75*** [0.70, 0.79] 0.30*** [0.18, 0.41]

Glucose

  Glucose 0.90*** [0.86, 0.94] 0.41*** [0.32, 0.50] 0.90*** [0.84, 0.95] 0.39*** [0.26, 0.52]

  HbA1c 0.60*** [0.52, 0.68] 0.38*** [0.30, 0.46] 0.50*** [0.37, 0.63] 0.31*** [0.19, 0.42]

  HOMA-IR 0.28*** [0.20, 0.35] 0.65*** [0.57, 0.73] 0.25*** [0.16, 0.33] 0.65*** [0.51, 0.79]

Lipids

  HOMA-IR† 0.27*** [0.14, 0.39] 0.37*** [0.21, 0.53]

  WHR 0.14* [0.03, 0.24] 0.43*** [0.37, 0.49] 0.20* [0.04, 0.35] 0.38*** [0.27, 0.49]

  HDL −0.45*** [−0.58, −0.32] −0.32*** [−0.42, −0.22] −0.56*** [−0.72, −0.40] −0.26** [−0.45, −0.06]

  LDL 0.26*** [0.19, 0.34] 0.01 [−0.08, 0.11] 0.39*** [0.27, 0.50] 0.09 [−0.06, 0.25]

  Triglycerides 0.73*** [0.60, 0.86] 0.37*** [0.25, 0.49] 0.67*** [0.54, 0.80] 0.31*** [0.13, 0.49]

Note. System and AL denote the loadings of each biomarker on the specific system factor or on the common allostatic load factor. Standardized 
loadings are presented for all models. N = 1,254 for the overall bi-factor models, and N = 486 for the medication free bi-factor model.

†
cross-loading of HOMA-IR on Lipids system.
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***
p < .001,

**
p < .01,

*
p < .05
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