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Striatal-enriched protein tyrosine phosphatase (STEP) is a CNS-enriched protein implicated in multiple neurologic and
neuropsychiatric disorders. STEP regulates key signaling proteins required for synaptic strengthening as well as NMDA andAMPA
receptor trafficking. Both high and low levels of STEP disrupt synaptic function and contribute to learning and behavioral deficits.
High levels of STEP are present in human postmortem samples and animal models of Alzheimer’s disease, Parkinson’s disease, and
schizophrenia and in animal models of fragile X syndrome. Low levels of STEP activity are present in additional disorders that
include ischemia, Huntington’s chorea, alcohol abuse, and stress disorders. Thus the current model of STEP is that optimal levels
are required for optimal synaptic function. Here we focus on the role of STEP in Alzheimer’s disease and the mechanisms by which
STEP activity is increased in this illness. Both genetic lowering of STEP levels and pharmacological inhibition of STEP activity in
mouse models of Alzheimer’s disease reverse the biochemical and cognitive abnormalities that are present. These findings suggest
that STEP is an important point for modulation of proteins required for synaptic plasticity.

1. Introduction

There are 107 protein tyrosine phosphatases (PTPs) in the
human genome andmany of these play important roles in cel-
lular function [1]. Striatal-enriched protein tyrosine phospha-
tase (STEP), encoded by the PTPN5 gene, is a CNS-enriched
member of the PTP family [2]. PTPs are divided into tyrosine-
specific phosphatases and dual-specificity phosphatases, with
tyrosine-specific phosphatases further divided into intracel-
lular PTPs and receptor-like PTPs [3]. STEP is an intracellular
PTP, expressed throughout the CNS with the exception of the
cerebellum [4].

Dysfunction in a growing number of PTPs contributes to
the etiology of several diseases [5–7] and, as a result, PTPs,
including STEP, have emerged as attractive targets for drug
discovery [8, 9].The currentmodel of STEP function is that it
normally opposes synaptic strengthening by dephosphor-
ylating key synaptic substrates. Substrates include sub-
units of glutamate receptors N-methyl-D-aspartate receptors
(NMDARs) and 𝛼-amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid receptors (AMPARs), leading to internaliza-
tion of these receptor complexes [10–13]. Thus, increased

expression of STEP disrupts synaptic function and is asso-
ciated with a number of neuropsychiatric disorders, such as
Alzheimer’s disease [14–17]. Pharmacological inhibition of
STEP would be predicted to alleviate synaptic dysfunction in
Alzheimer’s disease, and the successful effort in this area is
reviewed below.

2. Domain Structure of Major STEP Isoforms

Like other PTPs, STEP contains a signature consensus
sequence [I/V]HCxAGxxR[S/T]G at its C-terminus that is
required for catalytic function and an upstream kinase-inter-
acting motif (KIM) that is involved in binding to all known
substrates [18–22]. The STEP family is alternatively spliced
from a single STEP gene (PTPN5) and has two major iso-
forms, STEP

61
and STEP

46
, which are differentially expressed

in brain regions and at developmental times [18, 23, 24].
STEP
61

is found in multiple brain regions that include the
striatum, central nucleus of the amygdala, optic nerve, hippo-
campus, neocortex, spinal cord, olfactory tubercle and bulb,
and lateral amygdala, while STEP

46
is expressed in striatum,

nucleus accumbens, amygdala, and the optic nerve [23, 25].
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STEP
61

is abundantly expressed at birth and throughout
adulthood, while STEP

46
is not expressed until postnatal day

6 and increases over the first postnatalmonthwhen it plateaus
to adult levels [24, 26]. STEP isoforms are found in both exci-
tatory and inhibitory neurons [27], as well as in glia [25, 28].

STEP
61
contains 172 additional amino acids at its amino-

terminus compared to STEP
46
. The region contains two

hydrophobic domains that are required to target STEP
61

to
the endoplasmic reticulum and the postsynaptic density of
dendritic spines [23, 29]; in contrast, STEP

46
is primarily

cytosolic [18]. STEP
61
has two polyproline-rich regions that,

in addition to the KIM domain, are involved in substrate
binding and contribute to substrate specificity: the first poly-
proline domain is necessary for binding to Fyn [30], while the
second is necessary for binding of Pyk2 [21].

Two additional alternatively spliced isoforms of STEP
exist: STEP

38
and STEP

20
[4, 18, 31, 32]. While STEP

61
and

STEP
46
both contain the signature consensus PTP sequence,

STEP
38
and STEP

20
do not and are catalytically inactive [31].

Although these STEP isoforms remain to be fully character-
ized, they both contain KIM domains, suggesting that they
may serve as variants that associate with target substrates and
protect them from dephosphorylation. Both of these inactive
STEP isoforms contain a 10-amino acid sequence at their
carboxyl termini that is introduced during splicing and serves
an unknown function.

3. Posttranslational Regulation of STEP

It is important to briefly review the posttranslational regu-
lation of STEP as it informs us of potential mechanisms in
disease. STEP activity is regulated by severalmechanisms that
include phosphorylation, dimerization, proteolytic cleavage,
ubiquitination, and local translation (for more extensive
review, see [33]). Two of these mechanisms of normal
STEP regulation, phosphorylation and ubiquitination, are
important to note when understanding STEP dysregulation
in Alzheimer’s disease, which is discussed below.

Phosphorylation by protein kinase A (PKA) reduces
STEP activity in two ways. PKA directly phosphorylates
STEP
61

and STEP
46

at a regulatory serine within their KIM
domains [34], introducing steric hindrance that prevents
STEP from binding to its substrates. PKA also reduces STEP
activity indirectly by phosphorylating DARPP-32, a potent
inhibitor of protein phosphatase 1 (PP1). PP1 normally dephos-
phorylates STEP at the regulatory serine residue within
the KIM domain; thus, inhibition of PP1 maintains STEP
phosphorylation and reduces levels of the dephosphorylated,
active STEP protein [35].

4. STEP Substrates

4.1. Mitogen-Activated Protein Kinase (MAPK) Family. The
discovery of STEP substrates was an important advance in the
understanding of the possible function of STEP in regulating
neuronal signaling. Two members of the MAPK family of
proteins are STEP substrates, the extracellular signal-regu-
lated kinases 1 and 2 (ERK1/2) and p38 [36–39]. ERK1/2 is
implicated in synaptic plasticity and memory formation via

its roles in stabilizing dendritic spines, initiating local protein
synthesis in dendrites and spines, and involvement in nuclear
transcription [40, 41]. STEP dephosphorylates the regulatory
Tyr204 or Tyr187 residues in their respective activation loops,
thereby inactivating ERK1/2.

The role of STEP regulation of ERK1/2 signaling has been
studied in numerousways, including infusion of amembrane-
permeable TAT- (transactivator of transcription-) STEP cys-
teine to serine mutant [TAT-STEP (C to S)]. This mutant iso-
form is catalytically inactive, as the cysteine residue is required
for substrate dephosphorylation. However, TAT-STEP (C
to S) still binds to its substrates but does not release them,
as dephosphorylation is required for substrate release; thus,
TAT-STEP (C to S) inhibits downstream signaling pathways
[10, 37]. ERK1/2 is necessary for the development of synaptic
strengthening and the consolidation of fear memories in the
lateral amygdala (LA). Infusion of TAT-STEP (C to S) into
the LA rats did not affect the acquisition of fear memories,
but there was no consolidation of these memories [42].
STEP knockout (KO) mice further established a relationship
between STEP and ERK1/2, as these mice have significant
elevation of phospho-ERK1/2 and increased phosphorylation
of the downstream targets of ERK1/2, the transcription factors
CREB and Elk1 [43, 44]. Moreover, STEP KO mice have
facilitated amygdala-dependent learning (fear conditioning
[45]) and facilitated hippocampal-dependent learning
(Morris water maze [44]). These studies suggested that STEP
normally regulates the duration of ERK1/2 signaling and also
suggested the hypothesis that elevated levels of STEP might
disrupt synaptic plasticity and memory formation [37].

The MAPK, p38, is also a STEP substrate but in contrast
to ERK1/2 is involved in regulation of cell death pathways
and NMDAR-mediated excitotoxicity [46, 47]. Excess gluta-
mate stimulation activates extrasynaptic GluN2B-containing
NMDARs, which results in phosphorylation of p38; p38 then
phosphorylates target proteins involved in cell death path-
ways [48]. STEP normally dephosphorylates Tyr182 in the
activation loop of p38, inactivating the protein [13, 48]. In
addition, a number of studies have used molecular, kinetic,
and structural analyses to gain insights into small differences
in the KIM-containing PTPs that affect their binding to ERK2
and p38 [49–52]. Notably, both ERK1/2 and p38 regulate
STEP expression levels through modulation of two phospho-
rylation sites adjacent to the KIM domain and dephosphory-
lation of these sites leads to the ubiquitination and degrada-
tion of STEP, suggesting a feedback mechanism to decrease
STEP expression when ERK1/2 and p38 levels are low [53].

A study byXu and colleagues [48] shed light on howSTEP
might regulate both p38 and ERK1/2, two proteins with very
different and opposing functions. The differential regulation
of these kinases by STEP depended on whether synaptic or
extrasynaptic NMDARs were stimulated. STEP

61
is rapidly

ubiquitinated and degraded following synaptic NMDAR
stimulation, resulting in activation of ERK1/2 (but not p38
signaling) and activation of synaptic strengthening and neu-
ronal survival pathways. With increased glutamate signaling,
extrasynaptic NMDARs are engaged and promote activation
of calpain and the cleavage of STEP

61
within theKIMdomain.
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The cleavage of the substrate-binding domain results in a
STEP variant (STEP

33
) that is unable to bind to and inactivate

its substrates. Thus, stimulation of extrasynaptic NMDARs
results in cleavage of STEP

61
and activation of p38 and

cell death pathways. Using a peptide corresponding to the
calpain cleavage site that prevents STEP

61
cleavage, there was

a significant protection of neurons from glutamate-mediated
excitotoxicity [48].

4.2. GluN2B and GluA2. Early studies demonstrated that
dopamine signaling regulates STEP activity [34]. As men-
tioned above, stimulation of dopamine D1 receptors leads
to activation of PKA and the phosphorylation and inactiva-
tion of STEP. Stimulation of D2 receptors has the opposite
effects by reducing phosphorylation of the regulatory serine
residue within the KIM domain and promoting the dephos-
phorylation of STEP substrates [34]. Thus, the hypothesis
emerged that perhaps STEP lay between dopamine signaling
and glutamate signaling through the ability of dopamine
to regulate STEP activity and thereby regulate the tyrosine
phosphorylation and surface expression of both NMDA and
AMPA receptor complexes [10, 12, 44, 54].

Glutamate is the most abundant excitatory neurotrans-
mitter within the CNS and binds to both metabotropic and
ionotropic glutamate receptors to promote numerous cell
signaling pathways in neurons [55, 56]. NMDARs are ligand-
gated ion channels composed of two GluN1 and two GluN2
subunits. Activation of NMDARs requires both glutamate
and glycine binding to the receptor as well as postsynaptic
membrane depolarization. These receptors are selectively
permeable to Ca2+ ions, which activate signaling molecules
needed for long-term potentiation (LTP) and long-term
depression (LTD) [57, 58]. STEP regulates the phosphory-
lation of the GluN2B subunit of NMDARs via two parallel
pathways, the direct dephosphorylation of GluN2B (Tyr1472)
as well as inactivation of the nonreceptor tyrosine kinase
Fyn that phosphorylates GluN2B at that site [30, 59]. When
dephosphorylated by STEP, the Tyr1472 residue of GluN2B
binds to clathrin adaptor proteins and promotes internal-
ization of GluN1/GluN2B receptors [60]. Congruent with
this observation, the surface expression of GluN1/GluN2B
receptor complexes is increased in STEP KO mice [14, 44].

The effect of STEP on NMDAR function is significant.
High levels of STEP decrease NMDAR excitatory postsynap-
tic currents (EPSCs) and prevent the occurrence of high-
frequency stimulation LTP [54]. When STEP was inhibited
with a functional-inhibiting STEP antibody, NMDAR EPSCs
were enhanced and LTP occluded. The administration of a
noncompetitive NMDAR agonist dizocilpine (MK801) and
a Src family kinase inhibitory peptide prevents these effects,
suggesting a role of STEP as a “tonic brake” on LTP by oppos-
ing Src family kinase-mediated enhancement of NMDARs
activity [54].

As noted above, STEP is rapidly ubiquitinated and
degraded after synaptic NMDAR stimulation [48], consis-
tent with the emerging model that STEP activity must be
decreased for LTP to occur. This is consistent with a recent

study that found a role for STEP in the regulation of home-
ostatic synaptic plasticity [61]. Prolonged neuronal activity
results in the upregulation of STEP that increases removal of
NMDAandAMPA receptors from synapticmembranes. Pro-
longed neuronal inhibition had the opposite effect, leading to
the hypothesis that fine-tuning of STEP activity is necessary
for maintaining proper levels of these glutamate receptors at
synapses.

AMPARs are also implicated in synaptic strengthening
and memory consolidation. These receptors are ligand-gated
ion channels composed of subunits GluA1 to GluA4. They
regulate fast synaptic transmission that depolarizes postsy-
naptic membranes and activates NMDARs [56, 62]. AMPAR
trafficking occurs in LTD and appears to be regulated by
tyrosine phosphatases that include STEP [12, 63, 64]. STEP
was found to regulate the Tyr dephosphorylation of the
GluA2 subunit, leading to internalization of GluA1/GluA2
receptor complexes following mGluR stimulation [12].

Local translation of STEP is increased after activation of
mGluRs by the agonist DHPG (S-3,5-dihydroxyphenylgly-
cine). This results in the tyrosine dephosphorylation of the
GluA2 subunit and internalization of GluA1/GluA2 receptor
complexes [12]. DHPG induces the dephosphorylation of
GluA2 and internalization of AMPARs, which is decreased by
the substrate-trapping protein TAT-STEP (C to S). Further,
STEPKOneuronal cultures do not undergoDHPG-mediated
AMPAR endocytosis, which is restored with the addition of
wild type TAT-STEP protein to the STEP KO cultures. These
findings suggested that, following mGluR stimulation, STEP
is activated to dephosphorylate GluA2 receptors, promoting
their internalization. As suggested by this model, the surface
expression of GluA1/GluA2-containing AMPARs is elevated
in STEP KO mice [12, 44].

5. STEP Dysregulation in Alzheimer’s Disease

The dysregulation of STEP and glutamate receptors is
implicated in several neuropsychiatric disorders, including
Alzheimer’s disease (AD) [65, 66]. In AD, abnormally high
levels of A𝛽 bind to and activate 𝛼7nAChRs [67–70], causing
calcium influx and activation of calcineurin and PP1 and
the dephosphorylation of STEP at the regulatory serine site
within the KIMdomain [10].The ability of STEP to bind to its
target proteins is increased and STEP substrates are dephos-
phorylated. To confirm that A𝛽 binding to 𝛼7nAChRs and
activation of PP1 were leading to activation of STEP, neuronal
cultures derived from 𝛼7nAChR KO mice and treated with
A𝛽 were used to test whether activation of STEP was
prevented in the absence of𝛼7nAChRs. In fact, therewas only
a partial reduction STEP activation, suggesting that another
mechanism was involved in activating STEP in AD.

Both mouse models of AD and neuronal cultures treated
with A𝛽 were examined and found to have an accumulation
of active STEP [14, 71–73]. The increase in STEP was shown
not to be due to transcription or translation, suggesting that
perhaps the normal degradation of STEP was disrupted. One
of the effects of A𝛽 is inhibition of the proteasome [74, 75].
Since STEP is normally degraded through the ubiquitin pro-
teasome pathway, an increase in STEP activity was found
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to be due to an A𝛽 disruption of the ubiquitin proteasome
pathway. In summary, an increase in the dephosphorylation
of STEP coupled with a decrease in its degradation leads to
the significant increase in STEP activity in AD.

6. Studies of STEP in Mouse Models of AD

Tg-2576. The Tg-2576 AD model mouse line is a transgenic
mouse line that overexpresses the 695-amino acid isoform
of human amyloid precursor protein (APP). APP is an
integral membrane protein, proteolysis of which generates
the amyloid fibrillar form of A𝛽, the primary component in
amyloid plaques in AD brains. The mutated APP present in
this mouse line contains Lys670 → Asn and Met671 → Leu
mutations [76] and these mutations in APP are found in
early onset familial AD [77–79]. At 3 months of age, Tg-
2576 mice perform normally in cognitive tasks and A𝛽 levels
are indistinguishable from control animals. However, the Tg-
2576 mice show cognitive impairments by 10 months of age
[76]. STEP levels are normal at the earlier time points but are
significantly elevated at later time points [72].

3xTg-AD. The 3xTg-AD transgenic mouse line possesses
three separate mutations. First, the 3xTg-AD line has the
same APP mutation present in Tg-2576 mice. Second, 3xTg-
ADmice have a presenilinmutation, one of the proteins com-
prising the 𝛾-secretase complex responsible for cleaving APP
at the C-terminus of the A𝛽 domain. Third, tau is mutated in
the 3xTg-AD line. Tau is a microtubule-associated protein
acting to stabilize microtubules by binding to tubulin. Tau
is hyperphosphorylated in AD, which causes paired helical
filaments and destabilization of microtubules. These paired
helical filaments are found in neurofibrillary tangles in
patients with AD [80].

The 3xTg-AD mouse line has several phenotypes consis-
tent with symptoms of human AD [81, 82]. Working memory
and hippocampal memory deficits are documented, as are
circadian rhythm abnormalities that are often present in early
stages of AD.These behavioral and cognitive deficits are seen
in combination with A𝛽 plaque aggregation and neurofibril-
lary tangles, which include paired helical filaments of hyper-
phosphorylated tau protein [81, 82]. STEP levels were again
found to be normal at earlier time points when cognitive
function was unaffected but were significantly elevated at
time points when cognitive deficits were present. Moreover,
crossing 3xTg-AD mice with STEP KO mice reversed the
cognitive deficits [14, 72].

7. STEP Inhibition and AD Mouse Models

Theelevation of STEP inADaswell as the finding that genetic
reduction of STEP reversed cognitive deficits in anADmouse
model validated STEP as a target for drug discovery. A
high throughput screen led to the discovery of an inhibitor
of STEP, 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-
amine hydrochloride (TC-2153) [83]. Cortical neurons
treated with TC-2153 exhibit significant increase in the Tyr
phosphorylation of STEP substrates GluN2B, Pyk2, and

ERK1/2. Mice injected with TC-2153 also showed increased
Tyr phosphorylation of STEP substrates. Phosphatase assays
were performed comparing inhibition of STEP to a panel
of PTPs, including two highly related PTPs, He-PTP and
PTP-SL. TC-2153wasmore selective towards STEP compared
with these other PTPs. Furthermore, STEP is only found in
the cortex, whereas the highly related He-PTP is found in
the spleen and PTP-SL in the cerebellum, tissues that lack
STEP. WT and STEP KO mice were injected with TC-2153
or vehicle and the Tyr phosphorylation of ERK1/2 and Tyr
phosphorylation of Pyk2 were compared in various organs.
Significant increases in pERK1/2 and pPyk2 were observed
only in the frontal cortex and hippocampus, but not in tissues
outside of the brain or the cerebellum, where other members
of the PTP family dephosphorylate ERK1/2 and Pyk2 but do
not appear to be inhibited by TC-2153.

To determine the mechanism by which TC-2153 inhibits
STEP, glutathione (GSH) was added in in vitro assays. It
decreased the activity of TC-2153 by two orders of magni-
tude, implying an oxidative mechanism for STEP inhibition.
STEP was then incubated with TC-2153 to monitor enzyme
activity. Following 24 h of dialysis, STEP remained inhibited,
suggesting that TC-2153 led to the formation of a covalent
bond, although STEP activity could be recovered following
incubation with GSH or DTT.

High-resolution tandem mass spectrometry was per-
formed to determine whether TC-2153 modified the active
site cysteine of STEP. WT STEP and a STEP mutant in which
the catalytic cysteine was changed to serine were compared.
Analysis of the catalytic Cys472 of STEP in the absence of TC-
2153 revealed a disulfide bridge between Cys465 and Cys472
which was not present in the STEP (C to S) mutant. Incuba-
tion of WT STEP with TC-2153 revealed the presence of a de
novo trisulfidewithin theCys465/Cys472 bridge, whichwas not
observed in WT STEP alone or in the mutated STEP. These
results suggested that the active site cysteine is modified by
TC-2153 and that sulfur(s) from the benzopentathiepin core
is retained.

TC-2153 was effective in reversing cognitive deficits in
both 6- and 12-month-old 3xTg-AD mice [83]. In the novel
object recognition task (NOR),micewere injectedwith either
vehicle or TC-2153 three hours prior to the training phase
and tested for memory recall after 24 hours. Post hoc analysis
suggested that discrimination indexes for object memory in
the AD-TC group were significantly higher than those of the
AD-Veh group, while TC-2153-treatedWTmice did not differ
from the Veh-treated WT mice. Of interest, no significant
changes were found for beta amyloid or phospho-tau levels
in 12-month-old 3xTg-ADmice, suggesting that inhibition of
STEP activity was sufficient to reverse cognitive deficits.

The reference memory version of the Morris water maze
was then conducted [83]. 3xTg-AD mice were injected daily
with TC-2153, 3 hours prior to training for peak efficacy.This
STEP inhibition resulted in a reversal of memory deficits
on days 5 and 6 of the task in 3xTg-AD mice. To quantify
memory status, the number of mouse entries in a circular
zone located around the platform, or the target zone, and
in the opposite quadrants was evaluated during probe trial
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Figure 1: STEP signaling pathways associated with Alzheimer’s disease. The binding of A𝛽 to 𝛼7nAChRs results in activation of calcineurin
(PP2B), inhibition of DARPP-32, and activation of PP1. PP1 dephosphorylates STEP

61
at a regulatory serine within the substrate-binding

domain (Ser221). Dephosphorylation of this serine residue increases the affinity of STEP for its substrates. In a parallel pathway, A𝛽 inhibits
the proteasome, thereby blocking the degradation of STEP

61
. Both mechanisms result in an accumulation of active STEP

61
. The increase in

active STEP
61
results in increased dephosphorylation of GluN2B Tyr1472 and internalization of GluN2B-containing NMDARs. In addition,

dephosphorylation of Fyn results in its inactivation. Thus, active STEP
61
directly dephosphorylates GluN2B and at the same time inactivates

the kinase that phosphorylates STEP
61
at Tyr1472.

24 hours after the last acquisition day. AD mice showed no
preference for the target zone, in contrast to ADmice treated
with TC-2153, which spent as much time as WT mice in the
target zone.

8. Conclusion

STEP acts by dephosphorylating regulatory tyrosine residues
in substrates that include subunits of bothNMDAandAMPA
glutamate receptors, thereby leading to internalization of
these receptor complexes (see Figure 1). Additional targets
of STEP include the kinases ERK1/2, Fyn, and Pyk2 that
are inactivated by dephosphorylation of regulatory tyrosines
within their activation loop, thus modulating downstream
signaling pathways.When STEP activity is elevated, as occurs
in Alzheimer’s disease, the increased internalization of gluta-
mate receptors disrupts synaptic function and contributes to
the cognitive deficits that are present. Importantly, the STEP

inhibitor TC-2153 significantly improves cognitive function
in 3xTg-AD mice.

Although this review focused on Alzheimer’s disease,
STEP activity is elevated in several additional disorders,
including Parkinson’s disease [17], drug abuse [84–86], fragile
X syndrome [16], and schizophrenia [15]. Moreover, a series
of papers recently showed that low levels of STEP also
disrupt synaptic function in several additional disorders,
including Huntington’s chorea [87, 88], cerebral ischemia
[89], alcohol abuse [90–92], and stress disorders [93–95].
Thus the currentmodel suggests that both high and low levels
of STEP activity disrupt signaling pathways and contribute to
neuropsychiatric and neurodegenerative disorders, making
STEP an important focus of future research.
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