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Recently, speech pattern analysis applications in building predictive telediagnosis and telemonitoring models for diagnosing
Parkinson’s disease (PD) have attracted many researchers. For this purpose, several datasets of voice samples exist; the UCI dataset
named “Parkinson Speech Dataset with Multiple Types of Sound Recordings” has a variety of vocal tests, which include sustained
vowels, words, numbers, and short sentences compiled from a set of speaking exercises for healthy and people with Parkinson’s
disease (PWP). Some researchers claim that summarizing the multiple recordings of each subject with the central tendency and
dispersion metrics is an efficient strategy in building a predictive model for PD. However, they have overlooked the point that a PD
patient may show more difficulty in pronouncing certain terms than the other terms. Thus, summarizing the vocal tests may lead
into loss of valuable information. In order to address this issue, the classification setting must takewhat has been said into account.
As a solution, we introduced a new framework that applies an independent classifier for each vocal test.The final classification result
would be a majority vote from all of the classifiers. When our methodology comes with filter-based feature selection, it enhances
classification accuracy up to 15%.

1. Introduction

Parkinson’s disease was first introduced in 1817 by Doctor
James Parkinson as “shaking palsy” [1]. It is the second
common neurological disease coming afterwards Alzheimer
and is mostly common among elders [2, 3]. PD is a kind
of progressive disease in which an area of brain becomes
damaged over the years. It causes various signs and symp-
toms. From one perspective, these signs and symptoms can
be grouped into two major categories: motor symptoms and
nonmotor symptoms. Motor symptoms are those that affect
movement and muscles and nonmotor symptoms include
neurobehavioral and cognitive problems, sleep problems,
sensory problems, and autonomic neuropathy (dysautono-
mia) [4].

Speech disturbance is one of the most common motor
problems of PD [4]. Research has shown that about 90% of
PWP are affected with motor problems, especially speech
impairment [5, 6]. In addition to the prevalence of vocal
impairments in PD patients, gathering speech samples

and doing signal processing of their voice has low cost and
it is appropriate for telemonitoring and telediagnosis systems
[7, 8]. Therefore, PD diagnosis from speech impairments is
becoming more widespread.

In Parkinsonism patients, speech disorders result from
neurologic impairments which are associated with weakness,
slowness, or incoordination of the muscles used to produce
speech [9, 10]. Speech disturbance usually occurs in the
following forms: hypophonia, which is soft speech that results
from weakness in the vocal musculature, monotonic speech,
which deals with speech quality in the cases that are soft,
hoarse, and monotonous, and festination speech, which is
when the speech becomes excessively rapid, soft, breathy, and
poorly intelligible [4].

Many approaches have been proposed in order to find
the severity of each speech impairment sign. There are
two types of the best known vocal tests for this purpose:
sustained phonation [11, 12] and running speech [12] tests.
In sustained phonation, the patient is asked to say a single
vowel, while holding its pitch as constant and long as possible.
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In running speech, the patient says a standard sentence
which includes representative linguistic units that can show
possible impairment signs of vocal disorder. The main focus
of this research is on the latter problem statement. Previous
researches had two main flaws: (a) all the voice samples were
classified by a single classifier; (b) the vocal samples of each
subject were summarized with the help of statistical metrics
irrespective of discriminating ability of each vocal test.

Since most studies in the area of PD detections based on
speech are done on datasets gathered on just one or a few
types of vocal tests, we have brought our attention to a dataset
with multiple sound recordings. The main contributions
of this study are twofold: (1) to suggest a new distinctive
classification framework which proposes to apply a unique
classifier to vocal samples of each type, for example, have
a classifier just for vowel “a,” rather than applying a single
classifier for all vocals and (2) to present which vocal tests are
more representative and to indirectly omit less discriminating
vocal tests by embedding majority voting in our proposed
method.

The rest of the paper is organized as follows. Section 2
reviews previous studies of this domain. In Section 3, a
brief description of the dataset, evaluation metrics, and the
proposed method can be found. Section 4 demonstrates
the results of this work and, finally, Section 5 presents the
conclusion of this study.

2. Related Work

In recent years the detection of vocal disorders with the help
of machine learning turned into a hot topic. Various research
papers have attempted to solve this problem by considering
acoustic measurements of dysphonia as effective features to
distinguish normal (control) from disordered cases [7, 8, 13,
14]. Studies in this field can be categorized into two main
groups: (1) those that attempt to find the most effective vocal
features and produce newdatasets [8, 13, 15] and (2) those that
try to find more effective features from existing datasets and
concentrate on enhancing classification accuracy [14, 16–26].

Some studies focused on how to produce new datasets
based on their research findings. Little et al. in [8] aimed
to analyze the effectiveness of nonstandard measurements.
Their work led to the introduction of a new dysphonia
measurement named as PPE (pitch period entropy). In their
study, they had collected sustained vowel “a” phonations from
31 subjects of which 23 were PD patients and they reached the
classification accuracy of 91.4%. In [13], Sakar et al. presented
a dataset of 40 subjects including 20 PD. Each individual
was trained to say a set of 26 distinct disorder representative
terms consisting of sustained vowels, words, numbers, and
short sentences. This dataset is the focus of current work.
They applied summarized leave-one-out (s-LOO) validation
technique in which all the voice samples of each individual
will be summarized using central tendency and dispersion
metrics such as median, mean, standard deviation, trimmed
mean, interquartile range, andmean absolute deviation.Their
approach obtained 77.5% of classification accuracy. Tsanas
et al. in [15] focused on monitoring the PD progression

with the help of extracted features using signal processing
techniques applied on a huge dataset of about 6000 voice
samples from 42 patients with early-stage PD. They have
attempted to estimate the unified Parkinson’s disease rating
scale (UPDRS) using linear and nonlinear regression. Their
results show the accuracy of about 7.5-point difference from
clinicalUPDRS estimations.These three datasets are themain
publicly available datasets of PD speech-based area of study.

Other studies tried to improve the PD detection rate
using the existing datasets. For instance, Tsanas et al. in
[14] computed 132 dysphonia new measurements using an
existing dataset consisting of 263 vowels “ahh. . .” phonations
from 43 cases by applying feature selection techniques. They
obtained 99%overall classification accuracy. In anotherwork,
Sakar and Kursun [16] tried to assess the relevance and corre-
lation between the features and PD score by applying mutual
information-based selection algorithmwith permutation test
and feed the data with selected features ranked based on
maximum-relevance-minimum-redundancy (mRMR) into
an SVM classifier. They used leave-one-subject-out (LOSO)
as the cross validation technique of their model in order to
avoid bias. In LOSO validation scheme, all the voice samples
of an individual which is the candidate of being the testing
sample will be left out from the rest of the data. Their
approach gained 92.75% classification accuracy [8]. Shahbaba
andNeal [17] presented a nonlinearmodel based onDirichlet
mixtures and obtained the classification accuracy of 87.7%.
Das [18] conducted a comparative study of neural networks
(NN), DMneural, regression, and decision trees for PD
diagnosis; their study resulted in classification performance
of 92.9% based on NN. Guo et al. [19] applied a combination
of genetic programming and the expectation maximization
(EM) and obtained a classification accuracy of 93.1%. Luukka
[20] proposed a method that used fuzzy entropy measures
and similarity classifier and resulted in the mean accuracy
of 85.03%. Li et al. [21] introduced a fuzzy-based nonlinear
transformation approach combined with SVM; their best
classification accuracy was 93.47%. Ozcift and Gulten [22]
proposed classifier ensemble construction with a rotation
forest approach which got classification accuracy of 87.13%.
Åström and Koker [23] achieved the classification accuracy
of 91.2% by using a parallel neural network model. Polat
[24] applied the fuzzy C-means clustering feature weighting
together with the k-nearest neighbor classifier; their best
obtained classification accuracy was 97.93%. Chen et al. [25]
proposed a model which combined PCA and the fuzzy
k-nearest neighbor method; their classification approach
achieved an accuracy of 96.07%. Zuo et al. [26] used a
diagnosismodel based on particle swarmoptimization (PSO)
to strengthen the fuzzy k-nearest neighbor classifier which
resulted in mean classification accuracy of 97.47%.

Inmost of the studies, SVMwas used as the base classifier
to distinguish healthy subjects from PWP [8, 14, 27] and
the success of the diagnostic system is measured with ROC
curves, AUC, and reporting True Positive and False Positive
rates [28].

The speech datasets used in the field of PD diagnosis
consist of multiple speech recordings per subject [29]. These
datasets can be grouped into two categories: (1) those that
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Figure 1: An illustration of the proposed method.

contain the repetition of one term and (2) those that consist
of different vocal terms. The majority of datasets go to the
first category. Hence, most of the studies on PD diagnosis
are conducted on these datasets [14, 16–26]; however, none
of them could obtain 100% classification accuracy. The most
popular and available datasets of this type are “Parkinson’s
Data Set” [7] and “Parkinson’s Telemonitoring Data Set” [15],
both accessible from UCI Machine Learning Repository. The
only dataset of the second category that is available in the
form of processed data matrix was produced by Sakar et
al. [13]. Less research has been conducted on this type of
datasets; also, corresponding classification accuracies are not
promising up to this time. The aim of this study is to show
that this type of data collection can lead to high PD detection
rates just by altering the classification strategy.

3. Materials and Methods

3.1. Data. In this work we used Parkinson Speech Dataset
with Multiple Types of Sound Recordings [13], which is avail-
able on the University of California, Irvine (UCI) machine
learning dataset repository website. This dataset consists of
40 subjects, including 20 PD patients and 20 control subjects.
For each subject, 26 different sound recordings have been
gathered, consisting of three sustained vowels, numbers one
through 10, nine words, and four short sentences. There
are 26 features extracted from these recordings. Table 1
lists the features gathered in Sakar et al.’s work and their
corresponding groups (see [13] for more details).

3.2. Overview of the Proposed Method. The aim of this paper
is to propose a classification framework which focuses on
the discriminating values of each vocal test. Unlike the
conventional LOSO cross validation technique and s-LOO,
the proposed methodology considers that all the recordings
in the setting of the dataset are not necessarily discriminating
and not every PD patient demonstrates distinguishable vocal
disorders in all vocal tests. The overall view of the proposed
method can be seen in Figure 1.

The four steps of the proposed methodology are (1)
separating the dataset based on the types of sounds recorded,
(2) applying feature selection with Pearson Correlation Coef-
ficient, we called the two approaches we took as follows:
(a)Multiple-Classifier with Feature Selection (MCFS) and (b)
Adjusted Multiple-Classifier with Feature Selection (A-MCFS)
which will be introduced shortly, (3) applying a classifier on

Table 1: Time-frequency based features presented in Parkinson
speech dataset with multiple types of sound recordings [13].

Feature
number Feature name Group

1 Jitter (local)

Frequency
parameter

2 Jitter (local, absolute)
3 Jitter (rap)
4 Jitter (ppq5)
5 Jitter (ddp)
6 Number of pulses

Pulse
parameters

7 Number of periods
8 Mean period
9 Standard deviation of period
10 Shimmer (local)

Amplitude
parameters

11 Shimmer (local, dB)
12 Shimmer (apq3)
13 Shimmer (apq5)
14 Shimmer (apq11)
15 Shimmer (dda)

16 Fraction of locally unvoiced
frames Voicing

parameters17 Number of voice breaks
18 Degree of voice breaks
19 Median pitch

Pitch
parameters

20 Mean pitch
21 Standard deviation
22 Minimum pitch
23 Maximum pitch
24 Autocorrelation

Harmonicity
parameters25 Noise-to-harmonic

26 Harmonic-to-noise

each subset, and finally (4) fusing the results of all classifiers
to obtain the final decision by means of majority voting.

(1) Data Separation. Each subset of the dataset includes all
the vocal tests of the same type; for instance, all the recorded
vowel sounds of type “a” go to the first subset and those of
“o” go to the second subset. Thus, considering the present
dataset, there are 26 subsets, each containing 40 samples.
Separation has been done since the mixture of all the voice
samples of an individual diminishes the discriminating effect
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of more descriptive tests and it will affect the classification
results negatively.

(2) Pearson Correlation Coefficient Feature Selection. For
feature selection phase, a filter-based feature selection tech-
nique based on Pearson Correlation Coefficient [30–32] was
used to find highly correlated features to the class label. A
more precise definition of this feature selection is as follows:
suppose that each feature consists of {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} values for

samples 1 through 𝑛 (in this study 𝑛 is equal to 40) in vectorX
and the corresponding class labels are {𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
} stored

in vector Y. So the Pearson Correlation Coefficient of each
feature can be calculated as
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where 𝑥 = (1/𝑛)∑𝑛
𝑖=1
𝑥
𝑖
and similarly 𝑦 = (1/𝑛)∑𝑛

𝑖=1
𝑦
𝑖
. This

equation gives a value between −1 and +1, where +1 is
maximum positive correlation, 0 is no correlation, and −1 is
the strongest negative correlation.

The 𝑝 values were calculated using Student’s 𝑡-distri-
bution for a transformation of the correlation.Those features
in the correlation coefficient matrix with 𝑝 values less than
0.05 were selected.

(3) MCFS and A-MCFS. When the Pearson Correlation
Coefficient feature selection is applied, some vocal tests may
remain with no relevant features. We call those vocal tests
as unsuccessful vocal tests. Two approaches for dealing with
those unsuccessful vocal tests are taken in this study.The first
is the MCFS approach; the vocal tests are used in the analysis
only based on the prevalent features of other vocal tests.
Table 2 shows each vocal test and its corresponding correlated
features after applying feature selection and Figure 2 shows
the frequency of each feature. Features 2 and 4with frequency
of six and five were, respectively, the most frequent selected
features. The third most frequent was shared by features 25
and 26with frequency of four.Themost four frequent features
were used inMCFS as selected features for unsuccessful vocal
tests. The other methodology, A-MCFS, is to simply omit
unsuccessful vocal tests.

(4) Classification and Majority Voting. After doing feature
selection on each subset, for each of them, a classifier is built.
Since we have 26 vocal tests, 26 classifiers are built. Each of
these classifiers will predict the class label of its own subset.
Leave-one-out cross validation technique was used for all of
these classifiers. Since each subject has only one record in
each subset, we do not have to worry about how to treat each
subject for doing cross validation as it was the case in LOSO
or previous approaches.

The majority vote of classifiers decides which class the
person belongs to. Each classifier votes whether the subject
has PD or not. Then, the subject whom the majority of the
classifiers have voted to be a PD patient will be labeled as “1”
showing the presence of PD and “0” otherwise.
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Figure 2: Frequency of each selected feature as relevant feature of a
vocal test.

Table 2: Each vocal test and its related features after applying filter-
based feature selection.

ID Vocal test Related features
1 Vowel “a” None
2 Vowel “o” 24
3 Vowel “u” None
4 Number 1 1, 2, 3, 4, 5, 24
5 Number 2 2, 9, 10
6 Number 3 17, 19, 23, 25, 26
7 Number 4 1, 2, 3, 4, 5, 10
8 Number 5 24
9 Number 6 None
10 Number 7 None
11 Number 8 9
12 Number 9 26
13 Number 10 None
14 Short sentence 1 None
15 Short sentence 2 25, 26
16 Short sentence 3 4, 10, 25, 26
17 Short sentence 4 1, 2, 3, 4, 5, 10, 26
18 Word 1 2
19 Word 2 None
20 Word 3 17, 19, 23, 25
21 Word 4 None
22 Word 5 None
23 Word 6 None
24 Word 7 None
25 Word 8 1, 2, 3, 4, 5, 6, 17, 19, 23, 25
26 Word 9 24

3.3. Evaluation Metrics. The evaluation metrics used to show
the effectiveness of the proposed methodology are accuracy,
sensitivity, specificity, and Matthew’s correlation coefficient
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score (MCC). The definitions of these metrics are as follows:

accuracy = TP + TN
TP + TN + FP + FN

, (2)

where TP (True Positive) is the number of PD patients who
are correctly classified as Parkinsonismpatients by themodel,
TN (True Negative) is the number of control subjects who
are labeled as healthy by the model, FN (False Negative) is
the number of patients that the model falsely labeled them
as healthy, and finally FP (False Positive) is the number of
healthy cases who are incorrectly labeled as having PD by the
classifier. It simply shows that the accuracy is the ratio of the
correctly classified samples to the total number of instances:

sensitivity = TP
TP + FN

specificity = TN
TN + FP

.

(3)

A well-known metric in machine learning which can be
used for evaluating the quality of a binary classifier is MCC.
This metric is reliable since it takes TP, TN, FN, and FP
into account and this makes it stable even if classes are of
very different sizes. Actually, MCC is a correlation coefficient
between observed (actual) labels of the samples and those
predicted by the binary classifier:

MCC

=
(TP × TN) − (FP × FN)

√(TP + FP) (TP + FN) (TN + FP) (TN + FN)
.

(4)

This equation returns a value between −1 and +1. A coefficient
of +1 shows a perfect prediction, 0 represents the fact that the
classifier is not better than random guessing, and finally −1
indicates a complete disagreement between the actual values
and the predicted ones.

4. Results and Discussions

After separating the data into subsets, the 𝑧-score normaliza-
tion process was applied on each subset. In other words, after
transformation, mean is equal to zero and standard deviation
changes to one.Then the proposed frameworkwas applied on
the refined data.

Four classifiers including k-NN, SVM, discriminant anal-
ysis, and Naı̈ve Bayes were applied to the preprocessed data.
Distance metric used for the k-NN classifier was Euclidean
distance and 𝑘 with values of 1, 3, 5, and 7 was used. SVM
classifier was applied using linear and radial basis kernels
(RBF) with scaling factor (sigma) of 3 and penalty parameter
(𝐶) of 1. Table 3 includes the accuracy, sensitivity, specificity,
and MCC obtained from applying mentioned classifiers
under LOSO, s-LOO, and the proposed frameworks. The
results reveal that k-NN classifier performance is almost
analogous to random guessing when it is used with LOSO
cross validation technique. Besides that, s-LOO could not
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Figure 3: Obtained accuracies based on the reported results in
Table 3.

perform much better than LOSO when it comes to k-NN
since its best overall accuracy and MCC are 65.00% and
0.3062, respectively. Results show that A-MCFS outperforms
s-LOO’s best result with overall accuracy of 77.50%, which is
a 12.5% improvement and MCC of 0.5507.

When 𝑘 is 1, 3, and 5, MCFS results are better than s-LOO
at least for 5%and atmost 12.5%, but its accuracy is 2.5% lower
than s-LOO when 𝑘 is 7.

Sensitivity is another important factor, especially in
biomedical sciences, which should be investigated closely in
the results. As the results show, A-MCFS also has improved
the sensitivity up to 80.00% and its lowest sensitivity (70.00%)
is still better than that of LOSO and s-LOO when k-NN
is used. k-NN achieved its best results when A-MCFS was
applied; besides this, LOSO and s-LOO could not reach
MCFS’s results except for k = 7.

In addition, the best classification accuracy obtained
by applying A-MCFS is 87.5% which is a 10% accuracy
enhancement in comparison to the best accuracy obtained by
s-LOO.

Figure 3 gives a better demonstration of classification
accuracies obtained by different methods.

In order to examine the correctness of our approach
toward finding less discriminating vocal tests, we have
reported the classification accuracy of each vocal test prior to
the majority voting phase. The results are shown in Table 4.
Comparing the results shown in Tables 2 and 4 reveals that
the features which were excluded in A-MCFS are those that
achieved a mean accuracy of below 55%. This shows the
reason of the superiority of A-MCFS overMCFS.As a result, a
closer investigation toward finding more effective vocal tests
is necessary.
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Table 3: Results obtained from applying different methods and classifiers.

Classifier Method Accuracy (%) Sensitivity (%) Specificity (%) MCC

𝑘-NN (𝑘 = 1)

LOSO 53.37 49.62 57.12 0.0007
s-LOO (1–4) 42.50 30.00 55.00 0.0015
s-LOO (2–5) 52.50 45.00 60.00 0.0005
s-LOO (3–6) 50.00 55.00 45.00 0.0000
s-LOO (all) 55.00 55.00 55.00 0.1000

MCFS 67.50 75.00 60.00 0.3549
A-MCFS 70.00 80.00 60.00 0.4082

𝑘-NN (𝑘 = 3)

LOSO 54.04 53.27 54.81 0.0008
s-LOO (1–4) 55.00 45.00 65.00 0.1021
s-LOO (2–5) 60.00 55.00 65.00 0.2010
s-LOO (3–6) 42.50 55.00 30.00 0.0015
s-LOO (all) 55.00 55.00 55.00 0.1000

MCFS 65.00 60.00 70.00 0.3015
A-MCFS 67.50 75.00 60.00 0.3540

𝑘-NN (𝑘 = 5)

LOSO 54.42 53.65 55.19 0.0009
s-LOO (1–4) 55.00 45.00 65.00 0.1201
s-LOO (2–5) 57.50 65.00 50.00 0.1517
s-LOO (3–6) 50.00 70.00 30.00 0.0000
s-LOO (all) 55.00 70.00 40.00 0.1048

MCFS 67.5 60.00 75.00 0.3540
A-MCFS 72.50 70.00 75.00 0.4506

𝑘-NN (𝑘 = 7)

LOSO 53.94 54.04 53.85 0.0008
s-LOO (1–4) 65.00 55.00 75.00 0.3062
s-LOO (2–5) 62.50 60.00 65.00 0.2503
s-LOO (3–6) 42.50 65.00 20.00 0.0017
s-LOO (all) 57.50 65.00 50.00 0.1517

MCFS 62.5 65.00 60.00 0.2503
A-MCFS 77.50 80.00 75.00 0.5507

SVM (linear kernel)

LOSO 52.50 52.50 52.50 0.0006
s-LOO (1–4) 77.50 80.00 75.00 0.5507
s-LOO (2–5) 70.00 80.00 60.00 0.4082
s-LOO (3–6) 60.00 65.00 45.00 0.2000
s-LOO (all) 67.50 70.00 65.00 0.3504

MCFS 75.00 75.00 75.00 0.5000
A-MCFS 85.00 85.00 85.00 0.6000

SVM (RBF kernel)

LOSO 55.00 60.00 50.00 0.1005
s-LOO (1–4) 65.00 60.00 70.00 0.3015
s-LOO (2–5) 70.00 70.00 70.00 0.4000
s-LOO (3–6) 72.50 70.00 75.00 0.4506
s-LOO (all) 65.00 70.00 60.00 0.3015

MCFS 75.00 80.00 70.00 0.5025
A-MCFS 87.50 90.00 85.00 0.7509

Näıve Bayes MCFS 75.00 90.00 60.00 0.5241
A-MCFS 80.00 80.00 80.00 0.6000

Discriminant analysis MCFS 72.50 75.00 70.00 0.4506
A-MCFS 82.50 80.00 85.00 0.6508

Central tendency metrics used in s-LOO method: 1: mean, 2: median, and 3: trimmed mean (25% removed).
Dispersion metrics used in s-LOO method: 4: standard deviation, 5: mean absolute deviation, and 6: interquartile range.



International Journal of Telemedicine and Applications 7

Ta
bl
e
4:
Pr
ed
ic
tio

n
ab
ili
ty
of

ea
ch

vo
ca
lt
es
t,
ba
se
d
on

th
ei
ro

bt
ai
ne
d
cla

ss
ifi
ca
tio

n
ac
cu
ra
cy
.

Vo
ca
lt
es
tI
D

Cl
as
sifi

ca
tio

n
ac
cu
ra
cy

(%
)

𝑘
-N

N
(𝑘
=
1
)

𝑘
-N

N
(𝑘
=
3
)

𝑘
-N

N
(𝑘
=
5
)

𝑘
-N

N
(𝑘
=
7
)

SV
M

(li
ne
ar

ke
rn
el
)

SV
M

(R
BF

ke
rn
el
)

N
äı
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5. Conclusion

PWP detection based on vocal samples has been an attractive
area of research. Finding a solution toward discriminating
PD patients from the healthy people based on different vocal
tests had been less accurate since all the vocal terms were
treated by a single classifier. The proposed method treated
each vocal test separately and used majority voting to resolve
any potential confusion. Obtained results from this research
showed that more accurate PD detection based on multiple
vocal tests is achievable.

Another important result, achieved from this study, was
that the discriminating ability of all the vocal terms is not
the same, even some of those vocal terms that have been
considered to be discriminating in the literature, such as
vowel “a,” failed to be successful. As a result, our study may
encourage other researchers to conduct further studies on
different vocal terms from the proposed perspective.

As the future work, we plan to devise a laboratory setting
to collect data from PWP and healthy subjects with several
vocal tests from various languages and extend our results to
other languages.
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