Skip to main content
. 2016 Apr 26;7:134. doi: 10.3389/fphys.2016.00134

Figure 3.

Figure 3

Propagation of LOAD neuropathology to neighboring astrocyte-neurons teams (ANTs). The cartoon shows that an excess of exogenous Aβ42-os (here short-termed as Aβ42) supposedly reaches first the team of neurons and astrocytes (ANT) at the center and binds their CaSRs (not detailed) triggering signals that end up increasing the secretion of newly produced endogenous Aβ42-os (red and green circles) from all of the ANT's cellular members (# 1–5). Blue arrows indicate the diffusion of Aβ42-os from neurons to astrocytes (red solid circles) and from astrocytes to neurons (green solid circles). Numbers 1–5 also suggest possible sequences of events both intra- and inter-ANTs. While the involved cells undergo cytotoxic changes, including the early death of some neurons (in green color with skull and crossbones aside), the newly released Aβ42-os spread and reach both neighboring and remoter ANTs (short and long red arrows), starting via Aβ42-os•CaSR signaling new cycles of surplus production and secretion of endogenous Aβ42-os. The latter will disperse and engage nearby and still farther away ANTs (not shown) again triggering the same kind of Aβ42-os•CaSR signaling-triggered pathological responses, including additional Aβ42-os oversecretion and neuronal deaths. Thus, Aβ42-os spread can affect local ANTs (as embodied here by the short and long red arrows) or remoter ANTs via projecting axons carrying the Aβ42-os (as exemplified here by the big black arrows).