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ABSTRACT
Pancreatic ductal adenocarcinoma originates from acinar cells that undergo acinar-to-ductal metaplasia
(ADM). ADM is initiated in response to growth factors, inflammation, and oncogene activation and leads to
a de-differentiated, duct-like phenotype. Our recent publication demonstrated a transforming growth
factor a-KrasG12D-protein kinase D1-Notch1 signaling axis driving the induction of ADM and further
progression to pancreatic intraepithelial neoplasia. This suggests that protein kinase D1 might be an early
marker for tumor development and a potential target for drug development.
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Pancreatic cancer is one of the most lethal types of cancer with
an extremely low 5-year survival rate. The high mortality of
pancreatic cancer has persisted over decades because of its early
metastasis to other organs and the inadequacy of methods for
early detection and clinical diagnosis. Among the various types
of pancreatic cancer, pancreatic ductal adenocarcinoma (PDA)
accounts for 95% of all cases. More than 90% of PDA patients
harbor oncogenic Kras mutations, indicating that pancreatic
cancer is a genetic disorder. Permanent transgene expression of
oncogenic versions of Kras or of transforming growth factor b
(TGFb), a ligand for the epidermal growth factor receptor
(EGFR), in mouse pancreas recapitulates processes that lead to
initiation of human pancreatic cancer. However, although
mutant Kras expression leads to formation of precancerous
lesions, in the absence of additional stimuli (i.e., growth factor
signaling, inflammation) it is not sufficient to drive further pro-
gression to PDA in mice. In addition to initiating tumor forma-
tion, Kras has important functions in the maintenance of
pancreatic cancer. This was demonstrated with a KrasG12D-
inducible transgenic mouse model, in which established pan-
creatic cancer regressed when KrasG12D expression was
abolished.1

A large body of evidence from transgenic and knockout
mouse models indicates that PDA originates from acini of the
pancreas. Under certain cell environments such as inflamma-
tion or growth factor- or cytokine-enriched conditions, pancre-
atic acinar cells can transdifferentiate into duct-like progenitor
cells, a process known as acinar-to-ductal metaplasia (ADM).
In the presence of oncogenic Kras mutations and upon activa-
tion of oncogenes and inactivation of tumor suppressor genes
in a specific sequential order, these duct-like cells progress into

pancreatic intraepithelial neoplasia (PanIN) lesions and eventu-
ally to PDA.

Protein kinase D (PKD) enzymes regulate various funda-
mental biological processes such as proliferation, differentia-
tion, membrane trafficking, secretion, apoptosis, inflammation,
cell migration, angiogenesis, cardiac hypertrophy, neuron plas-
ticity, diabetes, and cancer. In mammals, PKD family members
include PKD1, PKD2, and PKD3, which share similar domain
homology and arrangements but have certain distinct physio-
logic functions. In the pancreas, activation of PKD3 in response
to stimulation of gastrointestinal hormones in pancreatic acini
increases amylase secretion to facilitate food digestion, whereas
PKD1 has a role in insulin secretion in b-islets. Under patho-
logic conditions, dysregulation of PKD1 has been associated
with diabetes, acute pancreatitis, and pancreatic cancer. In our
very recently publication, we describe an in vivo role for PKD1
in the initiation of PDA, and use 3D organoid explant culture
to delineate the mechanisms by which it contributes to this pro-
cess.2 We demonstrate that increased expression and activity of
PKD1, but not of PKD2 nor PKD3, was detected in the regions
of ADM in pancreata of both MT-TGFa mice and p48cre;LSL-
KrasG12D mice. Importantly, exogenous expression of constitu-
tively active PKD1 in primary pancreatic acinar cells induced
their metaplasia to duct-like cells with progenitor properties.
Blockade of PKD1 activity by PKD kinase inhibitors or knock-
down of PKD1 expression by PKD1-shRNA reduced ADM
induced by TGFa with wild-type Kras and by oncogenic Kras,
demonstrating that PKD1 functions downstream of both path-
ways (Fig. 1). Further investigation of the role of PKD1 in the
initiation of PDA in vivo by specifically knocking out PKD1 in
the pancreas of p48cre;LSL-KrasG12D mice revealed that PKD1
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has a role not only in the initiation of precancerous lesions, but
also in advancing PanIN progression to higher grades. We have
identified the activation of Notch and its target genes as a major
signaling event that drives ADM downstream of PKD1.

Notch1 is an important regulator of pancreas development
during embryogenesis, and its re-activation is crucial not only
for tumor initiation through ADM but also for the formation
and progression of KrasG12D-induced PanIN and cancer. For
example, more ductal structures are present in mouse pancreas
tissues after dual expression of Notch1 and KrasG12D, suggest-
ing an important role of Notch1 in reprogramming acinar cells
to a duct-like phenotype. Moreover, overexpression of Notch1
accelerates KrasG12D-induced PanIN formation and progres-
sion.3 Knockout of Notch2 in KrasG12D mice interrupts PanIN
progression, prolongs survival, and causes a phenotypic switch
toward anaplastic pancreatic cancer.4 Our data now indicate
that one mechanism by which PKD1 drives PanIN progression
is through activation of the Notch signaling pathway.2 Another
PKD1-regulated transcription factor is nuclear factor k-B (NF-
kB), and NF-kB and Notch can cooperate to promote pancre-
atic cancer progression. For example, knockout of the Ikbkb
gene in mouse has been reported to hinder KrasG12D-driven
PanIN progression through downregulation of Notch signal-
ing.5 Therefore, it is plausible that PKD1 potentiates the gener-
ation of high-grade PanIN through both of its downstream
targets, NF-kB and Notch. Interestingly, Notch signaling also
maintains pancreatic cancer stem cells, in which it mediates
multidrug resistance and epithelial-mesenchymal transition
(EMT).6 Moreover, gemcitabine-resistant pancreatic cancer
cells express high levels of Notch and its ligands, Jagged and
Dil,6 and inhibition of Notch signal by g-secretase inhibitors
resensitizes pancreatic cancer cells to gemcitabine-induced cell
death through reduction of a cancer stem cell phenotype.7,8

Although our recent data show that PKD1 has a role in the
initiation of PDA,2 little is known about its in vivo role in
the progression of pancreatic cancer. In cancer cell lines,
ectopically-expressed PKD1 or PKD2 increases anchorage-

independent growth and invasiveness, as well as tumor growth
and angiogenesis.9,10 However, these studies are hampered by
the exclusive use of human pancreatic cell lines or xenografted
mice, instead of genetically engineered mouse models. Given
the importance of the tumor microenvironment and the contri-
bution of different aspects of the innate and acquired immune
system to the development and progression of pancreatic can-
cer, genetic animal models provide a great advantage over the
above methods for understanding PKD function in PDA.

Our Prkd1 knockout animal model provides the first in vivo
proof for an essential role of PKD1 in the initiation and pro-
gression of PDA. This supports the development and clinical
use of specific kinase inhibitors, which not only may prevent
cancer progression in pancreatic cancer patients, but might
also be effective for high-risk populations such as patients with
familial pancreatitis.
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