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Background-—Endocrine functions of the heart have been well established. We investigated the hypothesis that cardiac secretion
of a unique phospholipase A2 recently identified by our laboratory (cardiac secreted phospholipase A2 [sPLA2]) establishes a heart–
liver endocrine axis that is negatively regulated by matrix metalloproteinase-2 (MMP-2).

Methods and Results-—In Mmp2�/� mice, cardiac (but not hepatic) sPLA2 was elevated, leading to hepatic inflammation, immune
cell infiltration, dysregulation of the sterol regulatory element binding protein-2 and liver X receptor-a pathways, abnormal
transcriptional responses to dietary cholesterol, and elevated triglycerides in very low-density lipoprotein and in the liver.
Expression of monocyte chemoattractant protein-3, a known MMP-2 substrate, was elevated at both mRNA and protein levels in
the heart. Functional studies including in vivo antibody neutralization identified cardiac monocyte chemoattractant protein 3 as a
possible agonist of cardiac sPLA2 secretion. Conversely, systemic sPLA2 inhibition almost fully normalized the cardiohepatic
phenotype without affecting monocyte chemoattractant protein-3. Finally, wild-type mice that received high-performance liquid
chromatography–isolated cardiac sPLA2 from Mmp2�/� donors developed a cardiohepatic gene expression profile similar to that
of Mmp2�/� mice.

Conclusions-—These findings identified the novel MMP-2/cardiac sPLA2 pathway that endows the heart with important endocrine
functions, including regulation of inflammation and lipid metabolism in the liver. Our findings could also help explain how MMP2
deficiency leads to cardiac problems, inflammation, and metabolic dysregulation in patients. ( J Am Heart Assoc. 2015;4:
e002553 doi: 10.1161/JAHA.115.002553)
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M atrix metalloproteinase-2 (MMP-2), sometimes
referred to as gelatinase A or 72 kDa collagenase, is

a member of a family comprising 25 different Zn-dependent
endoproteases. A spectrum of cellular processes covering
cellular proliferation, angiogenesis, and inflammation is mod-
ulated through MMP-2–dependent cleavage and regulation of

extracellular matrix components, cell membrane receptors,
latent growth factors, and cytokines.1

Among the cytokines targeted by MMP-2 is monocyte
chemoattractant protein-3 (MCP-3 encoded by Ccl7).2,3 MCP-
3 is a CC-motif (N-terminus has 2 consecutive conserved
cysteine residues) chemokine that is 76 amino acids long.
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Binding of the hemopexin domain of MMP-2 to MCP-3
facilitates cleavage of MCP-3 at a glycine/isoleucine bond.
The resultant MCP-3 peptide serves as a general antagonist of
CC-chemokine receptors that inhibits inflammation signaling
by intact MCP-3 and other chemokine receptor ligands.2

MCP-3 is also reported to be a physiological substrate of
MMP-2 in arthritis.2 Interestingly, humans with genetic loss of
MMP-2 activity suffer from crippling arthritis4–6 and a
spectrum of cardiovascular problems including congenital
cardiac malformations, transposition of the great arteries,
mitral valve prolapse, bicuspid aortic valve, and atrial and
ventricular septal defects.4,7 The molecular mechanisms
underlying these pathologies are unknown, leaving clinicians
without effective treatments.4 In addition to inflammatory
diseases, obesity has been linked to single-nucleotide poly-
morphisms in the human MMP2 gene8 and MMP2 gene
promoter.9 Genetic loss of MMP-2 (Mmp2�/�) in mice results
in an arthritis-like phenotype associated with skeletal, bone,
and craniofacial defects.5 In addition, Mmp2�/� mice resist
diet-induced obesity during development,10,11 exhibit cardiac
inflammation at baseline,12 and are predisposed to hyperten-
sive heart disease due to abnormal regulation of the sterol
regulatory binding protein 2 (SREBP-2) pathway in the heart.13

The evident coexistence of inflammation and metabolic
dysregulation with MMP-2 deficiency is of potential clinical
significance but is very poorly understood. In this study, we
report that the hepatic metabolic phenotype in Mmp2�/�

mice can be largely explained by a novel heart–liver axis
involving myocardial secretion of a unique phospholipase A2
(PLA2), which we coined cardiac secreted PLA2 (sPLA2).

12 Our
findings identify a novel functional link between cardiac
inflammation and hepatic metabolism.

Materials and Methods
Oil Red O stain, alkaline phosphatase, and cholesterol were
from Sigma-Aldrich. Dulbecco minimum essential medium,
antibodies against liver X receptor (LXR), TaqMan quantitative
reverse transcription–polymerase chain reaction (qRT-PCR)
primers, TRIzol reagent, random primers, Superscript II, and
penicillin/streptomycin were from Life Technologies. SREBP-2
antibody was from Abcam. The “high carb” TD.88122 mouse
diet (74% calories from carbohydrates) was from Harlan
Laboratories. Recombinant human pro–MMP-2 was from EMD
Millipore. Collagen-coated cell dishes were from Greiner Bio-
One. Varespladib was from Selleck Chemicals. PNGase F was
from Promega. Enhanced chemiluminescence western blot-
ting detection reagent was from GE Healthcare. Horseradish
peroxidase–conjugated antirabbit antibodies and Bio-Rad
Protein Assay were from Bio-Rad. The Pierce bicinchoninic
acid protein assay kit was from Thermo Scientific. MCP-3,
neutralizing MCP-3 antibody, and control isotype-matched

IgG1 were from R&D Systems, Inc. Densitometry was
performed using ImageQuant 5.1 (Molecular Dynamics).

Animals
All protocols were approved by the University of Alberta
animal care committee and conducted in accordance with
institutional guidelines issued by the Canada Council on
Animal Care. Except as otherwise stated, wild-type (WT) mice
aged 10 to 15 weeks were purchased from Charles River
Laboratories (Wilmington, DE) or Jackson Laboratory (Bar
Harbor, ME) and compared with age- and sex-matched
Mmp7�/� and Mmp9�/� mice purchased from Jackson
Laboratory. Mmp2�/� and Mmp2+/� mice were bred at the
University of Alberta. All mice were of a C57BL/6 background
and were housed in the Health Sciences Laboratory Animal
Services of the University of Alberta with a 12-hour light/dark
cycle. Mice were fed a chow diet ad libitum (PicoLab Rodent
Diet 20; Lab Diet), which was used in all experiments unless
otherwise specified. At the end of the experiments, mice were
euthanized with 65 mg/kg of sodium pentobarbital, the blood
was collected with EDTA-coated syringes and tubes, and the
organs were excised and snap-frozen in liquid nitrogen. Of
note, we found that Mmp2�/� reproduced very slowly in our
facility. Consequently, this study was conducted with limited
numbers of mice available to us at any time. Typically, 4 to 5
mice were used per treatment group.

In Vivo Responses to Dietary Cholesterol,
Fasting, and Fasting–Refeeding
The dietary regimens in these studies followed previously
described protocols.14 In the cholesterol supplementation
studies, Mmp2�/� or WT mice (aged 12 to 14 weeks) were
fed chow supplemented with 0% or 0.15% cholesterol for 2.5
or 6.5 days. In this study, the mice were not fasted before
being euthanized. In the fasting and fasting–refeeding studies,
mice (aged 10 to 22 weeks) were fasted for 16 hours or were
fasted for 16 hours, fed a high-carbohydrate diet (TD.88122
mouse diet) for 4 hours, and then euthanized.

In Vivo Pharmacological Studies
To study the contribution of systemic sPLA2 to the inflamma-
tory and lipid metabolic phenotype of MMP-2 deficiency,
mice were gavaged with the sPLA2 inhibitor varespladib
(10 mg/kg per day). The varespladib stock was prepared in
dimethyl sulfoxide, as per the manufacturer’s instructions,
and diluted to the working concentration before each
experiment. Aqueous dimethyl sulfoxide solution of the same
concentration as in the varespladib working solution (equiv-
alent to dimethyl sulfoxide 2.6 lL/kg per day) was used in
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control experiments (vehicle). Treatment was conducted for
2.5 or 5 days, followed by euthanasia. To study the contri-
bution of MCP-3 to the phenotype of MMP-2 deficiency,
Mmp2�/� mice were injected (intraperitoneally) with neutral-
izing MCP-3 antibody (0.6 mg/kg per day) for 2.5 days, and
their responses were compared with those of WT mice that
underwent exactly the same protocol. The dose regimen
followed a previous report.3

Metabolic Studies
Metabolic caging studies were conducted at the Core Facility
of the Cardiovascular Research Center, University of Alberta.
Mice were individually housed in Oxymax/CLAMS metabolic
chambers (Columbus Instruments) in which O2 consumption,
CO2 production, food and water consumption, and movement
were measured over 2 days and 2 nights.

Cell Culture Studies
Primary cardiomyocytes were isolated from WT or Mmp2�/�

mouse hearts using the classical method of retrograde
perfusion with collagenase through the coronary arteries to
digest the extracellular matrix of the heart.15 This method
resulted in the release of calcium-tolerant, rod-shaped mouse
cardiomyocytes from adult hearts, as confirmed by micro-
scopy. The isolated myocytes were seeded at a density of
�104 cells/cm2 and cultured in serum-free Dulbecco mini-
mum essential medium on collagen-coated dishes. The effects
of extracellular MMP-2 or brefeldin A on sPLA2 activity were
analyzed in primary cells cultured in Dulbecco minimum
essential medium supplemented with 0.1% filter sterilized BSA
in the absence or presence of human recombinant MMP-2
(40 nmol/L) or brefeldin A (1 lmol/L) for 16 hours.

qRT-PCR
Tissue was extracted by homogenizing 30 to 50 mg pieces of
frozen tissue at 4°C in 1 mL of TRIzol reagent using the Bullet
Blender (Next Advance). RNA was isolated from TRIzol
according to the manufacturer’s instructions, and cDNA was
generated from RNA using random primers and Superscript II
reverse transcriptase. RNA isolated for each mouse’s tissue
was quantitated in triplicate to obtain a value representative
of the relevant tissue for each mouse. Expression analysis of
the reported genes was performed by TaqMan qRT-PCR using
an ABI 7900 HT sequence detection system (Applied Biosys-
tems). For data normalization, both Gapdh and Actb (to
confirm interpretation of data relative to Gapdh) were used as
internal standards at steady state. The qRT-PCR data chosen
for the figures are relative to Gapdh because we did not
observe any significant quantitative differences in Gapdh

versus Actb expression among WT, Mmp2�/�, Mmp7�/�, and
Mmp9�/� mice fed chow. The genes chosen to characterize
the cardiohepatic phenotype of Mmp2�/� mice and reported
throughout the figures were found by experimentation to be
differentially expressed across these genotypes of MMP
deficiency and thus provide useful markers for studying the
metabolic pathways modulated by these MMPs.

Protein Determinations
Colorimetric measurement of total protein was done using the
Bio-Rad Protein Assay or Pierce bicinchoninic acid protein
assay kit, according to the manufacturer’s instructions.
Determination of hepatic liver LXR-a and SREBP-2 protein
levels was conducted by western blotting. Briefly, 15- to 25-mg
liver pieces were homogenized using the Bullet Blender at 4°C
in a buffer of 5 mmol/L CaCl2, 150 mmol/L NaCl, 0.5 mmol/L
NaN3, and 25 mmol/L Tris, pH 7.4, with complete protease
inhibitor (Roche). The homogenate was incubated for 1 hour
at 37°C with 50 units of alkaline phosphatase, then NP-40
was added to a concentration of 1%, and the samples were
sonicated. The samples were incubated for 3 hours at 37°C
with PNGase (10 units/lL). Homogenate was diluted at 1:5
(vol/vol) with SDS-PAGE loading buffer (15% SDS, 8 mol/L
urea, 10% 2-mercaptoethanol, 25% glycerol, 0.2 mol/L Tris
pH 6.8), heated at 37°C for 20 minutes, and subjected to 10%
SDS-PAGE using the SE260 electrophoresis system (Hoefer).
Following electrophoresis, proteins were transferred to a
nitrocellulose membrane using the TE22 system (Hoefer).
Membranes were visualized with Ponceau S acid stain;
scanned to assess protein load; blocked in 5% BSA in
20 mmol/L Tris, 150 mmol/L NaCl, pH 7.4, containing 0.1%
Tween-20; probed overnight with primary antibodies to LXR-a
or SREBP-2; rinsed; probed for 30 minutes with secondary
antibodies; and washed in 20 mmol/L Tris, 150 mmol/L
NaCl, pH 7.4 containing 0.1% Tween-20 to remove excess
antibody. Immunoreactivity was revealed using enhanced
chemiluminescence detection reagent.

In Vitro Assays of PLA2 Enzymatic Activity and
Inhibitor Profiles
PLA2 activity was measured by 2 different methods.
Dr Fernandez-Patron’s laboratory used the commercial assay
kit (Cayman) with diheptanoyl thio-phosphatidyl choline as
substrate, per the manufacturer’s instructions. Ex vivo tissue
release of sPLA2 activity was equally measured using the
Cayman kit, as described earlier.12 Confirmatory studies and
the extended characterization of cardiac sPLA2 biochemical
properties were conducted by Dr Lambeau’s laboratory using
the highly sensitive [3H]-oleic acid–radiolabeled Escherichia
coli membrane assay. Of note, E coli membranes are richer in
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phosphatidyl ethanolamine than in phosphatidyl choline, thus
the Cayman kit and E coli assay methods display different
sensitivities. For comparative biochemical characterization,
cardiac and plasma sPLA2 activity was assessed in the
presence and absence of a panel of inhibitors of various
enzyme classes. Briefly, whole hearts (�100 mg) were lysed
in 1 mL PBS using Lysing Matrix D (Bio 101 Systems) and
centrifuged at 20 000g for 15 minutes. A soluble fraction of
the lysate was collected and used in analyses. Next, sPLA2
enzymatic activity was assayed at 37°C for 1 hour in 250 lL
of assay buffer (0.1 mol/L Tris-HCl, pH 8.0; 10 mmol/L
CaCl2, 0.1% BSA) with the addition of �100 000 decays per
minute of [3H]-oleic acid–radiolabeled E coli membranes.
Sample volume was adjusted in proportion to the amount of
added sPLA2 and ranged from 10 to 0.003 lL (60 to
0.190 lg of total protein) for heart lysates and 3 to
0.003 lL (126 to 0.112 lg of total protein) for pools of WT
and/or Mmp2�/� plasma (4 WT and 5 Mmp2�/� mice were
used in these experiments). After the appropriate incubation
time, reactions were stopped by the addition of 300 lL stop
buffer (0.1 mol/L EDTA, 0.2% fatty acid-free BSA). Samples
were then centrifuged (3 minutes; 28 893 g), and the
supernatant was submitted to scintillation counting.16

To assess the specificity of the observed activity, samples
were incubated prior to the assay for 15 minutes at room
temperature in the presence of different inhibitors: DTT
(10 mmol/L, reducing agent, incubation 30 minutes at 56°C;
Euromedex), EDTA (40 mmol/L, a nonspecific inhibitor of
Ca2+-dependent PLA2; Euromedex), MJ33 (30 lmol/L, PLA2
inhibitor; Santa Cruz Biotechnology), KH064 (10 lmol/L,
sPLA2 inhibitor; Sigma-Aldrich), YM 26734 (10 lmol/L, sPLA2
inhibitor; Tocris Bioscience), AACOCF3 (10 lmol/L, cytosolic
PLA2 and calcium-independent PLA2 inhibitor; Interchim),
N-(p-amylcinnamoyl)anthranilic acid (100 lmol/L, PLA2 inhi-
bitor; Calbiochem), bromoenol lactone (3 lmol/L, calcium-
independent PLA2 inhibitor; Interchim), or heparin (100 lg/
mL, PLA2 inhibitor; Sigma-Aldrich).

Time-Resolved Fluoroimmunoassay for Detection
of sPLA2 Protein Levels
Time-resolved fluoroimmunoassay has equal or higher sensi-
tivity than the [3H]-oleic acid–radiolabeled E coli membrane
PLA2 enzyme assay and was performed as described previ-
ously,17 using antibodies specific for the following sPLA2:
mGIB (PLA2G1B), mGIIA (PLA2G2A), mGIID (PLA2G2D), mGIIE
(PLA2G2E), mGIIF (PLA2G2F), mGV (PLA2G5), or mGX
(PLA2G10)18 with 0.5 lL of pooled plasma (20 lg total
protein) or 5 lL of heart lysate (31 lg total protein). Samples
from 2 WT and 2 Mmp2�/� mice were used for time-resolved
fluoroimmunoassay. Recombinant sPLA2 proteins were
prepared as described19 and served as positive controls.

Measurements of Eicosanoids
Prostaglandin E2 in the heart and liver was measured by the
Prostaglandin E2 Express EIA Kit (Cayman).

Oil Red O Stain
Oil Red O stain was used to image droplets containing neutral
lipids (triglycerides, diglycerides, and cholesteryl esters) in 10-
lm-thick sections of frozen liver. The sections were cut with a
cryostat from Optimal Cutting Temperature-embedded liver
pieces. The sections were deposited onto glass microscope
slides, stained with 0.5% Oil Red O in isopropanol, rinsed with
60% isopropanol then water, and then mounted with a
coverslip for microscopic inspection.

Extraction of Lipids From Tissues
Lipids were extracted from tissues, as described previ-
ously.20 Tissue was homogenized in 8 to 30 lL of water/mg
of tissue using the Bullet Blender. A total of 500 to 1000 lL
of homogenate or lysate was mixed at a ratio of 3:4:8
aqueous homogenate/lysate:methanol:chloroform and vor-
texed for 1 minute and then centrifuged for 15 minutes to
separate phases. The bottom phase containing lipids was
transferred into a new tube, dried down under argon, and
resuspended in 100 lL chloroform to be used for down-
stream lipid analysis.

Chromatographic Determinations of Lipid
Content
High-performance liquid chromatography (HPLC) and fast-
performance liquid chromatography analyses were performed
at the Lipid and Lipid Metabolite Analysis Core Facility, part
of the Women and Children’s Health Research Institute and
Faculty of Medicine and Dentistry at the University of
Alberta. Hepatic lipids were extracted in the presence of
50 lg dipalmitoyl-phosphatidyl dimethylethanolamine as an
internal standard and separated by HPLC, as described
previously.21 Lipid species were separated in an Onyx
monolithic silica normal-phase column (Phenomenex) using
a 3-solvent system in an 1100 series HPLC system
(Agilent Technologies) and quantified using in-line detection
with an Alltech ELSD2000 evaporative light-scattering
detector (W. R. Grace). Plasma lipoprotein particles were
resolved in a Superose 6 10/300 gel-filtration fast-
performance liquid chromatography column isocratically with
50 mmol/L NaCl buffer using a 1200 series HPLC system
(Agilent Technologies). Cholesterol or triglycerides in
lipoproteins were detected enzymatically by in-line reaction
at 37°C.
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Hepatic Cell Isolation and Flow Cytometric
Analysis
Hepatic cells were isolated according to a previously described
method22 with minor modifications. To enumerate absolute
number of immune cell subsets, mice were fully perfused with
PBS to minimize contamination of peripheral blood, and livers
were cut into same-sized (same-volume) segments. To enu-
merate absolute number of immune cell subsets, mouse liver
was cut into same-sized segments. Each segment was
incubated with an enzyme mixture containing 675 U/mL
collagenase I, 18.75 U/mL collagenase XI, and 9 U/mL
hyaluronidase (Sigma-Aldrich) in calcium- and magnesium-
containing Hanks’ balanced salt solution for 40 minutes at
37°Cwith gentle shaking. After digestionwith enzymemix, cells
were washed and further processed by percoll (Roche) gradient
to enrich CD45+ immune cells. Single-cell suspensions were
incubated in culture supernatant from the 2.42G2 hybridoma
(Fc receptor block, ATCC HB-197) prior to staining with the
indicated antibodies (BioLegend). Stained cells were acquired
using a BD LSRFortessa flow cytometer (BD Biosciences) and
analyzed with FlowJo (Tree Star). Side-scattered light (SSClow)
and forward scattering light (FSClow) dead cells and doublet
cells were gated out and analyzed with FlowJo.

Isolation of Cardiac sPLA2 by a Multidimensional
Orthogonal Strategy
Cardiac tissue was washed 2 times with sterile PBS, finely
minced, and homogenized in sterile PBS (1 mL per 100 mg of
cardiac tissue) using the Bullet Blender. The homogenate was
next subjected to differential centrifugal fractionation. First,
we produced a 300g pellet by centrifuging at 4°C for
10 minutes. The resultant supernatant was centrifuged at
10 000g at 4°C for 30 minutes. The resultant pellet was
resuspended in 250 lL of the Cayman sPLA2 activity kit
buffer (25 mmol/L Tris-HCl, pH 7.5, 10 mmol/L CaCl2,
100 mmol/L KCl, and 0.3 mol/L Triton X-100). An sPLA2-
rich supernatant was obtained after centrifugation at
100 000g at 4°C for 60 minutes.

Analysis of sPLA2 activity distribution reproducibly showed
that the 100 000g supernatant contained most of the cardiac
sPLA2, regardless of whether frozen or fresh cardiac tissue was
subjected to the centrifugal fractionation scheme. We con-
centrated cardiac sPLA2 at�20°C by subjecting the 100 000g
supernatant to precipitation with acetone. Briefly, supernatant
was mixed 1:4 (vol/vol) with acetone, and protein was left to
precipitate at �20°C for 2 hours. Following centrifugation at
28 893 g, the organic phase was removed, and precipitated
protein was dried at 37°C for 10 minutes, sonicated, and
resuspended in 250 lL of Cayman sPLA2 activity kit buffer.
Aliquots were kept at �80°C for later use.

In studies to establish cardiac sPLA2 as a biological
mediator and determinant of the cardiohepatic phenotype of
MMP-2–deficient mice, we subjected hearts from 5 different
Mmp2�/� mice to the earlier fractionation scheme. Next,
80 lL of the acetone concentrate was resolved using an
HPLC system equipped with a size exclusion column
(25 cm94.6 mm) packed with Superdex 75 prep grade (GE
Healthcare Life Sciences). The separation was carried out
under isocratic conditions using sterile PBS supplemented
with 10 mmol/L CaCl2 as the mobile phase and a flow rate of
200 lL/min. Fractions were collected every 10 minutes. The
described combination of differential centrifugation, acetone
precipitation, and size exclusion chromatography reproducibly
yielded a distinct low-molecular-weight (<20 kDa) fraction
with high cardiac sPLA2 activity and little protein content,
confirmed by both SDS-PAGE and Bradford assays. The sPLA2
activity detected when WT hearts were subjected to the above
fractionation protocol was negligible. Size exclusion fractions
with the most sPLA2 activity typically corresponded to
fractions F6 to F8. In experiments described in this paper,
fractions F6 and F7 were combined and used to intraperi-
toneally inject WT mice (denoted recipient mice) with or
without the pan-sPLA2 inhibitor varespladib (10 mg/kg per
day) for 5 consecutive days.

Statistical Analysis
Unless otherwise indicated, the results are reported as
mean�SEM. Results were analyzed with the SigmaPlot 11
software (Systat Software) using 1-way ANOVA or Student t
test, as appropriate. ANOVA with repeated-measures analysis
was conducted to determine differences among groups in
time-course experiments. Whenever the normality and equal
variance assumptions were not met, statistical significance
(P<0.05) was determined by applying nonparametric Wilcoxon
signed rank sum tests and Kruskal–Wallis tests.

Results

Loss of MMP-2 Affects Systemic Metabolism
Compared with age-matched WT mice, male Mmp2�/� mice
aged 10 to 14 weeks exhibited normal food intake and
reduced locomotor activity that were associated with
decreased body weight and increased energy expenditure
(Figure 1).

Loss of MMP-2 was associated with changes in hepatic and
plasma lipids: Fasted Mmp2�/� mice had elevated triglyc-
erides in the liver (Figure 2A and 2B) and very low-density
lipoprotein (Figure 2C, top) and decreased cholesterol in high-
density lipoprotein (Figure 2C, bottom). Nonfasted Mmp2�/�

mice also had elevated hepatic triglycerides (Figure 2D).
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The qRT-PCR analysis revealed Nr1h3 (encoding LXR-a) to
be the most downregulated gene in the liver of Mmp2�/�

mice (Figure 3A). Reduced LXR-a protein was confirmed by
western blotting (Figure 3B). Consistent with LXR-a promo-
tion of the transcription of genes involved in fatty acid
synthesis,23 mRNA expression of hepatic Fasn (encoding fatty
acid synthase) was repressed in Mmp2�/� mice (Figure 3A).
Likewise, expression of another LXR-a target, lysophos-
phatidylcholine acyltransferase 3 (LPCAT3, encoded by
Lpcat3), was downregulated (Figure 3A). LPCAT3 catalyzes
the attachment of polyunsaturated fatty acids to membrane
phospholipids.24,25 Downregulation of LXR-a and Lpcat3 (one
of its target genes) suggested a potential link between the
metabolic phenotype of MMP-2 deficiency and hepatic
membrane phospholipid remodeling, a process potentially
associated with inflammation signaling in MMP-2–deficient
mice12 and that was investigated in the experiments
described below.

The hepatic gene expression phenotype in Mmp2�/� mice
was complex, with some LXR-a target genes being signifi-
cantly upregulated, for example, cholesterol 7a-hydroxylase
(the rate-limiting enzyme in the classical bile acid biosynthesis
pathway, encoded by Cyp7a1) and ATP-binding cassette G5
and G8 (2 cholesterol transporters, encoded by Abcg5 and
Abcg8) (Figure 3C).

Moreover, we detected increased hepatic expression of the
transcription factor SREBP-2 (encoded by Srebf2) and many of
its target genes including Hmgcr, Ldlr, and Pcsk9 in Mmp2�/�

mice (Figure 3C). Hmgcr encodes 3-hydroxy-3-methylglutaryl-
coenzyme A reductase, the rate-limiting enzyme in the choles-
terol and isoprenoid synthesis pathways. Ldlr encodes the
low-density lipoprotein receptor, which is involved in clearance
of low-density lipoprotein from circulation. Pcsk9 encodes
proprotein convertase subtilisin/kexin type 9, a protein that
binds and negatively regulates hepatic low-density lipoprotein
receptor protein levels.26 The upregulation of SREBP-2 protein
and its proteolytically processed transcriptionally active form
(nuclear SREBP-2) was confirmed by western blotting (Fig-
ure 3D) and was restricted to cardiac and hepatic tissues
(Figure S1). LXR-a and SREBP-2 expression profiles were similar
inMmp2�/� and haploinsufficient (Mmp2+/�) mice (Figure 3E,
left panel). Furthermore, male and female Mmp2�/� mice
exhibited similar gene expression profiles, demonstrating lack
of sexual dimorphism in the regulation of LXR-a or SREBP-2 by
MMP-2 (Figure 3E, right panel).

Loss of MMP-2 (or MMP-7 or MMP-9, as determined in
studies with Mmp7�/� and Mmp9�/� mice) (Figure S2) had
only a limited impact on carbohydrate and nitrogen
metabolism and bile acid production. Of note, insulin resis-
tance was evident in the stress phase of the insulin-tolerance
test, which is driven by adrenocorticotropic hormone–medi-
ated signals such as cortisol release from the adrenals.27

These data revealed MMP-2 as a modulator of the hepatic LXR
and SREBP pathways.

MMP-2 Modulates Transcriptional Responses to
Dietary Cholesterol
To investigate the contribution of MMP-2 to hepatic tran-
scriptional responses to metabolic cues, we subjected mice to
dietary cholesterol supplementation. Dietary cholesterol
inhibits the SREBP-2 pathway to decrease hepatic synthesis
and uptake of cholesterol; at the same time, oxysterols
activate LXR-a signaling to increase the clearance of hepatic
cholesterol.28,29 Consistently, WT mice fed chow supple-
mented with 0.15% cholesterol exhibited decreased hepatic
expression of Srebf2 and Hmgcr along with a powerful
induction of Cyp7a1 and Cyp27a, 2 rate-limiting enzymes in
the bile acid synthesis pathways. In contrast, in Mmp2�/�

mice, the same genes (ie, Srebf2, Hmgcr, Cyp7a1, and
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Figure 1. Systemic metabolic abnormalities of matrix metallo-
proteinase 2–deficient mice. A, Heat/energy expenditure (nor-
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weight. E, Total food consumption. n=11 Mmp2�/� mice, n=5 WT
mice. *P≤0.05 vs WT. The studies were conducted in metabolic
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Cyp27a) showed blunted transcriptional responses reminis-
cent of a hepatic insensitivity to dietary cholesterol, whereas
other genes such as Srebf1 and Fasn, were clearly uncoupled

in their responses (Figure 4). These data identified MMP-2 as
a modulator of hepatic transcriptional responses to dietary
cholesterol.

T 3 70 kDa

BA Liver

1 2 2 7 dl ck d 1 ra rg 2 1 4 6 a 3 a 1 b n 3Fo
ld

 C
ha

ng
e 
vs

W

–3

–2

1

2

70 kDa -

- LXR-α

55 kD

70 kDa -

55 kDa -

40 kDa -
SREBP pathway
LXR pathway

Ponceau

T

A
co

x
S

lc
2a A
co

A
da

m
1

A
ca G

M
ly

c
A

bc
a

P
pa

P
pa

N
r1

h
N

pc
1l

N
r1

h
C

d3
A

ca
c

Lp
ca

t
C

pt
1

Lr
p

A
ca

c
Fa

s
N

r1
h 55 kDa -

40 kDa -

DC SREBP-2
(precursor)

SREBP-2
(nuclear)

stain
2 8 5 1 4 1 1 1 1 r c 1 1 2 2 p 9 r 2 1 1 1 1 2 9 1 3 4 lFo

ld
 C

ha
ng

e 
vs

W

–4
–3
–2

1
2
3
4

130 kDa - 70 kDa -

130 kDa -
70 kDa -

-SREBP-2

SREBP pathway
LXR pathway

Ponceau

S
re

bf
A

bc
g

A
bc

g
S

re
bf

P
dk

S
oa

t
C

yp
7a A
co Id
h

H
m

gc
C

pt
1

P
ck

S
ca

rb
In

si
g

P
dk

S
ca

P
cs

k Ld
l

U
cp

A
ca

t
C

ps
C

yp
27

a
U

cp
A

da
m

1
M

m
p

In
si

g
U

cp
S

lc
2a

M
lx

ip

Male FemaleE

stain

f2 r f1 n 3 2 1 2

R
N

A
 e

xp
re

ss
io

n
(%

 o
f m

al
e 

W
T)

0
50

100
150
200
250

f2 cr f1 sn h3 h2 1 2m
R

N
A

 e
xp

re
ss

io
n

(%
 o

f W
T)

0
50

100
150
200
250

N
D

*
*

* ** **

††

*
** **

*
* *

* *

*

*
N

D
SREBP pathway
LXR pathway**

SrebHmgc
Sreb Fas

Nr1hNr1h
Cyp

7a
Mmp

m

WT
Mmp2–/–

SrebHmg
Sreb Fa

Nr1 Nr1
Cyp

7a
Mmp

Mmp2+/+ (WT)
Mmp2+/–
Mmp2–/–

Figure 3. Lipid metabolic gene expression profile analysis of the hepatic phenotype of MMP-2–deficient
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genes were confirmed in multiple studies and different batches of WT and Mmp2�/� mice. B, Western blot
confirming reduced hepatic LXR-a protein in Mmp2�/� mice. Pool of 4 per genotype. C, qRT-PCR analysis
identified several upregulated metabolic genes in Mmp2�/� mice. These results are representative of 4
mice per genotype. The data for the SREBP-2 (encoded by Srebf2) pathway genes were confirmed in
multiple studies and different batches of WT and Mmp2�/� mice. D, Western blot confirming elevated
hepatic SREBP-2 protein in Mmp2�/� mice. Pool of 4 per genotype. E, The major lipid metabolic
gene expression abnormalities of MMP-2 deficiency are present in both sexes and in haploinsufficient
mice. (Left) Male mice with both copies (Mmp2+/+), lacking 1 copy (Mmp2+/�), or lacking both copies
(Mmp2�/�) of Mmp2. n=4 for Mmp2+/+ and n=4 for Mmp2�/�, n=3 for Mmp2+/�. *P≤0.05 vs WT.
†P≤0.05 vs Mmp2+/�. (Right) Female mice. n=5. *P≤0.05 vs WT. LXR-a indicates liver X receptor a; MMP-
2, matrix metalloproteinase 2; ND, not detected; qRT-PCR, quantitative reverse transcription–polymerase
chain reaction; SREBP-2, sterol regulatory binding protein 2; WT, wild type.

DOI: 10.1161/JAHA.115.002553 Journal of the American Heart Association 8

Identification of a Novel Heart–Liver Axis Hernandez-Anzaldo et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



A Heart–Liver Axis Mediated by Cardiac sPLA2
and Negatively Regulated by MMP-2

Cardiac sPLA2 localizes to cardiomyocytes

Recently, we reported an MMP-2/cardiac sPLA2 mechanism
that modulates blood pressure homeostasis, cardiac inflam-
mation, and lipopolysaccharide-induced fever.12 We con-
firmed the heart as a major source of systemic sPLA2
activity in Mmp2�/� mice (Figure 5A). We also detected
elevated sPLA2 activity in the aorta but not in skeletal
muscle or the liver (Figure 5A). Ex vivo release of sPLA2
activity was evident from the heart but not from the liver
(Figure 5A and inset). Cardiac sPLA2 activity was signifi-
cantly elevated in Mmp2�/� mice (versus WT) whether the
substrate was diheptanoyl thio-phosphatidyl choline or [3H]-
oleic acid–radiolabeled E coli membranes. Analysis of plasma
sPLA2 activity with the highly sensitive E coli membrane
assay indicated a 1000-fold elevation in Mmp2�/� mice
(Figure 5A inset, Figure S3). Cardiac sPLA2 activity was
evenly distributed across left and right cardiac atria and
ventricles (Figure 5B). Cardiomyocytes isolated from
Mmp2�/� whole hearts displayed significantly elevated
intracellular sPLA2 activity (Figure 5C). Culture of Mmp2�/

� cardiomyocytes with recombinant human MMP-2 at
40 nmol/L, a concentration that approximates that of
plasma MMP-2, reduced sPLA2 activity (Figure 5C, left
panel). Brefeldin A (1 lmol/L), an inhibitor of the classical
secretory pathway at the level of the endoplasmic reticulum

to Golgi transition, blunted sPLA2 activity in Mmp2�/�

cardiomyocytes (Figure 5C, right panel).

Cardiac sPLA2, an elusive unique enzyme, circulates in
plasma

We reported previously that cardiac and plasma sPLA2 had
similar molecular weights (�18–20 kDa), had similar apparent
Michaelis–Menten constants for diheptanoyl thio-phosphatidyl
choline of �235 lmol/L, required calcium for activity, and
were not cleaved or inactivated by incubation with MMP-2.12

Cardiac and plasma sPLA2 had strikingly similar activity profiles
against a panel of inhibitors indicative that the cardiac enzyme
is present in the circulation (Figure 5D, top panel). The pan-
sPLA2 blocker varespladib

30 decreased cardiac sPLA2 activity
with a half maximal inhibitory concentration of 10 lmol/L,
similar to what we reported for indoxam (�2 lmol/L)12 and
different from PLA2G5 (Figure 5D, bottom panel). Using a time-
resolved fluorescence immunoassay with highly specific anti-
bodies against various mouse sPLA2 isoforms, we excluded
PLA2G1B, PLA2G2A/2D/2E/2F, PLA2G5, and PLA2G10 as
major components of either cardiac or plasma sPLA2 in
Mmp2�/� mice (Figure S4).

Systemic sPLA2 activity contributes to the hepatic
inflammatory and lipid metabolic phenotype of MMP-2
deficiency

Treatment of Mmp2�/� mice with the pan-sPLA2 inhibitor
varespladib (10 mg/kg per day) reduced sPLA2 activity time
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dependently to baseline (ie, WT) levels in the heart (Figure 6A,
left) and in plasma (Figure 6A, right). Furthermore, vares-
pladib normalized numerous lipid metabolic genes (in partic-
ular, Nr1h3 [encodes LXR-a] and Srebf2 [encodes SREBP-2])
and proinflammatory markers in the liver (Figure 6B) and the
heart (Figure 6C) as well as immune cell infiltration in the liver
of Mmp2�/� mice (Figure 7). Similarly, varespladib lowered
prostaglandin E2 levels in the heart and liver (Figure S5) and
normalized the levels of hepatic triglycerides in Mmp2�/�

mice (Figure 2D).

Adaptive transfer of cardiac sPLA2 evokes the
cardiohepatic phenotype of MMP-2–deficient mice

When HPLC-isolated cardiac sPLA2 from Mmp2�/� donors
was injected into WT mice (fractions F6 and F7), the recipient
WT mice displayed highly elevated plasma and cardiac sPLA2
activity (Figure 8). Moreover, the cardiohepatic gene
expression profile of WT mice that received HPLC-isolated
cardiac sPLA2 from Mmp2�/� donors was strikingly similar to
that of Mmp2�/� mice. The phenotypic changes evoked by
cardiac sPLA2 from Mmp2�/� donors were blunted in mice
that also received the pan-sPLA2 inhibitor varespladib
(Figure 9).

No phenotypic transformation was evident in mice that
received the HPLC fractions F6 and F7 from WT donors,
which, despite originating from the same amount (500 mg)
of cardiac tissue, contained negligible sPLA2 activity (Fig-
ure S6).

These results clearly show that circulating cardiac sPLA2 is
a biological mediator and determinant of the cardiohepatic
phenotype of MMP-2–deficient mice. Taken together with the
potent in vivo effects of varespladib on sPLA2 activity
(Figure 6), the upregulation of both plasma and cardiac sPLA2
in WT mice administered HPLC-isolated cardiac sPLA2 from
Mmp2�/� donors is consistent with the autocrine feed-
forward loop proposed previously for sPLA2.

12,31

Evidence in support of MCP-3 as an agonist of cardiac
sPLA2
The data to date indicate that cardiac sPLA2 is a unique
enzyme produced and released by cardiomyocytes into
plasma, where it circulates and affects liver function.
Furthermore, cardiac sPLA2 intracellular activation is inhibited
by extracellular MMP-2, likely by blocking an agonist.

To identify possible triggers of cardiac sPLA2 activity, we
first examined the impact of feeding and fasting. Neither
fasting nor fasting and refeeding with a high-carbohydrate diet
(Figure S7) or dietary supplementation with polyunsaturated
fatty acids (data not shown) or cholesterol12 affected cardiac
sPLA2 activity.

Second, we examined the influence of circadian rhythm on
cardiac sPLA2 activity. We observed small increases in the
mRNA levels for conventional sPLA2 isoforms in Mmp2�/�

mice euthanized at night but no differences in cardiac sPLA2
activity at night (9:30 PM�0.5 hour) versus day
(11:30 AM�0.5 hour) (Figure S8).

Third, we examined whether MCP-3 (a proinflammatory CC-
chemokine bound, cleaved, and inactivated by MMP-22)
had the potential to induce cardiac sPLA2 activation or
secretion.

Although Ccl7 mRNA (encodes MCP-3) was elevated at
baseline in both Mmp2�/� liver and heart (Figure 6B and 6C),
MCP-3 protein levels were significantly elevated only in the
heart, not in the liver or plasma, of Mmp2�/� mice
(Figure 10). The reason for the cardiac-specific overexpres-
sion of MCP-3 was not investigated further.

To assess the in vivo significance of MCP-3 for cardiac
sPLA2 activity, we injected mice with either neutralizing MCP-
3 monoclonal antibody or isotype-matched IgG1 at a dose
(0.6 mg/kg per day, intraperitoneally) validated in a previous
study.3 Neutralizing MCP-3 antibody (but not control IgG1)
treatment normalized cardiac MCP-3 protein levels in
Mmp2�/� mice (Figure 10). Ex vivo incubation during 3 hours

Figure 5. Tissue profiling and intracardiac localization of sPLA2. A, The heart is the predominant source of sPLA2 activity in Mmp2�/� mice. The
sPLA2 activity (pools of 4 mice per genotype) was analyzed in duplicate. *P≤0.05 vs WT (statistical unit was the duplicate). (Inset) Ex vivo release
of sPLA2 activity was elevated for specimens of left ventricle, but not liver, from Mmp2�/� mice. Ex vivo release results are representative of 3
determinations conducted on different days with different mice.*P≤0.05 vs WT. B, Intracardiac distribution of sPLA2 activity in Mmp2�/� mice.
Frozen heart sections (�1 mm thick) were divided into pieces with approximately equal surface area (�1 mm2), homogenized, and individually
assessed for sPLA2 activity. Diagrams present mean values of sPLA2 activity normalized to protein content in each piece of tissue. n=3 mice per
genotype. C, Cardiac sPLA2 localizes to cardiomyocytes. Isolated Mmp2�/� cardiomyocytes grown on 6-well plates in MMP-free media had
significantly elevated intracellular sPLA2 activity that was blunted by extracellular MMP-2 and brefeldin A. Intracellular sPLA2 activity pooled from
3 individual wells (�105 cells per well) and analyzed in duplicate per genotype. *P≤0.05 vs WT untreated (�). †P≤0.05 vs Mmp2�/� untreated
(�). No activity was detected in conditioned media. Results are representative of 3 independent preparations of cardiomyocytes. D, (Top) PLA2
activity inhibitor profiling indicates that cardiac sPLA2 is present in plasma. Pools of 4 WT and 5 Mmp2�/� were analyzed in duplicate. (Bottom)
Varespladib inhibition clearly differentiated between sPLA2 from Mmp2�/� heart homogenates and human (rh)PLA2G5. Comparison of the
enzyme obtained in 2 independent heart homogenizations corresponding to 8 different Mmp2�/� mice. AACOCF3 indicates Arachidonyl
trifluoromethyl ketone; ACA, N-(p-amylcinnamoyl)anthranilic acid; BEL, bromoenol lactone; cPLA2, cytosolic phospholipase A2; DTT, dithiothreitol;
iPLA2, calcium-independent phospholipase A2; L, left; MMP-2, matrix metalloproteinase-2; R, right; rh, recombinant human; SH, sulfhydryl; sPLA2,
secreted phospholipase A2; WT, wild type; YM 26734, 1,10-[5-[3,4-Dihydro-7-hydroxy-2-(4-hydroxyphenyl)-2H-1-benzopyran-4-yl]-2,4,6-trihydroxy-
1,3-phenylene]bis-1-dodecanone.
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Figure 6. High systemic sPLA2 activity sustains the inflammatory and lipid metabolic gene expression
phenotype of matrix metalloproteinase 2–deficient mice. A, Cardiac and plasma sPLA2 activity inMmp2�/�

mice administered the pan-sPLA2 inhibitor varespladib (10 mg/kg per day). B, Hepatic expression of
inflammatory and lipid metabolic genes in mice administered varespladib (10 mg/kg per day). C, Cardiac
expression of inflammatory and lipid metabolic genes in administered varespladib (10 mg/kg per day).
Analysis of 12 mice per genotype (n=4 per time point). *P≤0.05 vs WT (time 0 days). †P≤0.05 vsMmp2�/�

(time 0 days). sPLA2 indicates secreted phospholipase A2; WT, wild type.
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with MCP-3 (200 nmol/L) enhanced the release of sPLA2
activity by 87% from WT heart and 39% from Mmp2�/� heart;
however, sPLA2 release from liver was unchanged regardless
of genotype (Figure 11). Most important, neutralizing MCP-3
antibody (but not IgG1) fully normalized cardiac and plasma
sPLA2 activity in Mmp2�/� mice (Figure 12A). Neutralizing
MCP-3 antibody partially restored gene expression of
Mmp2�/� mice including LXR-a, SREBP-2, and inflammatory
markers in the heart (Figure 12B) and liver (Figure 12C). In
contrast to neutralizing MCP-3 antibody, systemic sPLA2
inhibition with varespladib did not normalize MCP-3 protein
expression in the heart of Mmp2�/� mice (Figure 10). These
results identified cardiac MCP-3 as a possible agonist acting
upstream of cardiac sPLA2; however, the possibility that other
cytokines or mechanisms contribute to cardiac sPLA2 activa-
tion or release warrants further research.

Discussion
Our study identified a novel endocrine function of the heart:
the production and secretion of a unique PLA2 by cardiomy-
ocytes. Secretion of cardiac sPLA2 into the plasma enables a
previously unknown heart–liver axis that is activated, at least
in part, by the proinflammatory CC-chemokine MCP-3 and
negatively regulated by extracellular MMP-2, which cleaves
MCP-3.2 This heart–liver endocrine axis profoundly influences
the inflammatory and lipid metabolic gene expression char-
acteristics of the liver, effectively increasing the levels of
hepatic and very low-density lipoprotein triglycerides.
Because the heart is a major user of very low-density
lipoprotein triglycerides, the MMP-2/cardiac sPLA2 system
may enable the heart to signal the liver to satisfy the energy
needs (Figure 13). Our findings identify cardiac sPLA2 as a
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key biological mediator of the cardiohepatic phenotype
associated with MMP-2 deficiency in mice. These findings
could also help explain how MMP2 deficiency leads to cardiac
problems and delayed growth in patients.4–6,32

The endocrine function of the heart was first suggested in
the days of the discovery of the circulatory system by William
Harvey in the 17th century.33 The concept has since evolved
through the work of many. In 1921, Loewi discovered the
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release of acetylcholine from cardiac sympathetic nerves.34

Investigations conducted between 1971 and 1983 by de
Bold’s team revealed the secretion of cardiac natriuretic
peptides from granules present in the atria (but absent in
ventricles).35 In addition to natriuresis, cardiac natriuretic
peptides mediate vasodilation in the failing heart,35 increase
glucogenesis in the liver,36 regulate lipolysis in adipocytes,37

and promote thermogenesis and energy expenditure.38 The
heart is also source, albeit not exclusively, of other polypep-
tide hormones, including adrenomedullin and endothelins,
which—acting in autocrine, paracrine, and endocrine fashion
—provide additional cardiovascular and metabolic regulatory

mechanisms.35 Likewise, the heart may regulate white
adipose tissue and liver function through as-yet-unidentified
factors produced and released downstream of mediator
complex subunit 13, a protein with transcription that is
negatively regulated by the heart-specific microRNA-208a.
This latter mechanism may promote resistance to obesity
induced by a high-fat diet and improve insulin sensitivity.39,40

Bidirectional interactions between the heart and the liver have
been demonstrated in mice bearing a hypertrophic cardiomy-
opathy-causing mutation in myosin (R403Q).41 This mutation
is associated with decreased cardiac lipid uptake and
increased plasma and hepatic lipid content together with
increased gluconeogenesis and blood glucose that may
ultimately exacerbate cardiac disease.41

Our previous studies revealed autocrine/paracrine actions
of cardiac sPLA2 involving the modulation of inflammatory and
lipid metabolic gene expression in the heart.12 Furthermore,
we documented the systemic effects of cardiac sPLA2 on
systolic blood pressure and fever.12 Extending these obser-
vations, our current research identifies the liver as the first
target organ of cardiac sPLA2.

Pioneering work on MMP-2–deficient mice revealed lipodys-
trophy as an important trait.11 In this study, we identified new
metabolic traits of MMP-2 deficiency. These include (1) hepatic
lipid deposition; (2) altered expression of transcription factors
and enzymes involved in sensing, biosynthesis, and catabolism
of lipids in the liver; (3) altered transcriptional responses to
dietary cholesterol; and (4) abnormal oxygen consumption and
locomotor activity patterns.
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Our study provides several lines of evidence indicating that
this complex phenotype is caused, at least in part, by activation
of a heart–liver axis mediated by cardiac sPLA2. This axis is

broken down as follows. First, systemic absence of MMP-2
increases the bioavailability of MCP-3; this was shown by the
cardiac-specific excess ofMCP-3 protein observed in this study.
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Figure 12. MCP-3 affects the cardiohepatic phenotype of Mmp2�/� mice mimicking effects of sPLA2.
A, Cardiac and plasma sPLA2 activity levels in mice administered nMCP-3 Ab or isotype-matched IgG1

(0.6 mg/kg per day). B, Cardiac gene expression in mice administered nMCP-3 Ab or IgG1 (0.6 mg/kg
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Second, MCP-3 enhances cardiac sPLA2 release. Once
secreted, cardiac sPLA2 reaches distant target organs (eg,
liver) where hydrolysis of the outer leaflet of membrane
phospholipids releases sn-2 esterified fatty acids.42,43 Such
fatty acids include precursors of eicosanoids and ligands of
nuclear metabolic transcription factors such as LXR-a.25,43,44

Downstream changes in the transcription of multiple inflam-
matory and lipid metabolic genes would profoundly affect
cardiac, hepatic, and systemic metabolism.45–49 Indeed, we
detected abnormally highprostaglandin E2 levels and significant
dysregulation of the LXR-a and SREBP-2 pathways in the liver of
MMP-2–deficient mice. Moreover, thesemice exhibited hepatic
immune cell infiltration, specifically, monocytes and macro-
phages, which are key cells for inflammation. We also detected
elevated numbers of dendritic cells, T cells, B cells, and natural
killer cells; however, the contribution of these cell types to the
observed phenotype requires further investigations.

Importantly, treatment of mice with the pan-sPLA2 inhibitor
varespladib almost fully normalized the altered expression of
the lipid metabolic pathways and inflammation in Mmp2�/�

mice. The beneficial effects of varespladib were not attributed
to reduction in MCP-3 levels but rather to inhibition of sPLA2
activity.

MMP-2 serves as a metabolism modulatory signal and may
exert multipronged anti-inflammatory actions.2,11,50,51 Conse-
quently, one may expect that pharmacological MMP-2 inhibi-

tion could affect metabolic and inflammatory pathways,
perhaps by elevating cardiac sPLA2, as we demonstrated
recently for doxycycline.12 Currently, doxycycline is the only
MMP inhibitor approved by the US Food and Drug Adminis-
tration for clinical use. The therapeutic efficacy of doxycy-
cline-based formulations are currently being explored in
pathologies associated with extracellular matrix destruction
and inflammation such as periodontitis, arthritis, Marfan
syndrome, atherosclerosis, and arterial aneurysm.52,53 Our
findings may support better understanding of the therapeutic
principles of MMP inhibitors.

Our results indicate that cardiac sPLA2 is a unique enzyme
predominantly expressed in the heart and secreted to plasma in
MMP-2 deficiency, a condition that can be genetic or pharma-
cologically induced.12 The chemical identity of this sPLA2 with
myocardial secretion that defines a novel heart–liver axis,
remains elusive. Our data, however, excluded PLA2G1B,
PLA2G2A/2D/2E/2F, PLA2G5, and PLA2G10 as major com-
ponents of either cardiac or plasma sPLA2 in Mmp2�/� mice.
Our qRT-PCR, immunological, and chemical inhibitor data
gathered to date would suggest that cardiac sPLA2 may not be
a classical sPLA2 or may belong to an atypical or even unknown
PLA2 class.42,54,55 Proteomic studies are ongoing in our
laboratories to address this still open question.

In summary, our data identify a novel endocrine function of
the heart to modulate lipid metabolic pathways and inflam-
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homeostasis. LXR-a indicates liver X receptor-a; MCP-3 indicates monocyte chemoattractant protein 3;
MMP-2, matrix metalloproteinase 2; sPLA2, secreted phospholipase A2; SREBP-2, sterol regulatory binding
protein 2; TG, triglyceride; VLDL, very low-density lipoprotein.
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mation in the liver. The key component of this heart–liver axis
is secretion of cardiac sPLA2, a unique enzyme the release of
which from cardiomyocytes is enhanced by chemokines that
are substrates of MMP-2–mediated proteolysis, such as MCP-
3. We propose that the MMP-2/cardiac sPLA2 system enables
the heart to signal the liver to satisfy the energy needs. Our
findings may support understanding of the development of
metabolic, inflammatory, and cardiac disturbances associated
with MMP-2 deficiency in patients4,6,8,9 and may provide a
rationale for the development of future therapies.
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