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ABSTRACT

Understanding the mechanisms by which cancer stem cells (CSCs) survive chemotherapy is essential for
the development of new therapies. Recently, we demonstrated that ovarian CSCs survive cisplatin
treatment through enhanced expression of DNA polymerase 71 (Pol ). Identification of micro RNA-93 (miR-
93) as the regulator of Pol 7 provides a novel target to improve the outcome of platinum-based therapy.

In recent years, cancer stem cells (CSCs) have gained much
attention as key “tumor-initiating” cells. The survival of CSCs
following cancer treatment is thought to be responsible for the
subsequent tumor recurrence and metastasis. Understanding
the mechanisms by which CSCs survive conventional chemo-
therapy, particularly with DNA damaging agents such as plati-
num (Pt)-based chemotherapeutic agents, is essential for
developing new therapeutic strategies to prevent tumor relapse.
We have recently demonstrated that ovarian CSCs survive cis-
platin treatment through DNA-directed polymerase eta
(POLH, best known as Pol 7)-mediated translesion DNA syn-
thesis (TLS). Specifically, enhanced expression of Pol 5 in ovar-
ian CSCs facilitates bypass of the unrepaired cisplatin-induced
DNA lesions and rescues DNA replication arrested by the
DNA damage, leading to the survival of cisplatin-treated CSCs.
Furthermore, we also revealed that enhanced expression of Pol
n can be attributed to the low expression of micro RNA-93
(miR-93) in ovarian CSCs.! Our results identified Pol -medi-
ated TLS as a key player in cisplatin resistance of ovarian CSCs,
and have implications for targeting miR-93 to improve the effi-
cacy of Pt-based chemotherapy (Fig. 1).

One of the major mechanisms of cisplatin resistance is a
decreased effective concentration of drug in the cell, resulting
in reduced lethal DNA damage. This can result from either
decreased influx or increased efflux of the drug. Increasing evi-
dence indicates that the chemoresistance of CSCs is partially
due to increased expression of ATP-binding cassette (ABC)
transporters, which are also considered CSC markers.” There-
fore, it is logical to reason that the high capacity of CSCs to
efflux drugs reduces the concentration of cisplatin in the cells,
leading to fewer DNA intra-strand crosslinks. In addition, an
enhanced DNA damage response has been described in various
CSCs.> Therefore, exploitation of an enhanced DNA repair
mechanism by CSCs may also contribute to the inefficiency of
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DNA damaging agents. However, we were unable to show
decreased cisplatin-induced DNA crosslinks in ovarian CSCs
compared with corresponding bulk cancer cells when they were
treated with equivalent doses of cisplatin, and did not observe
an increased DNA repair efficiency to remove cisplatin-induced
intra-strand crosslinks in the ovarian CSCs. Our data clearly
indicate that inefficient formation of DNA lesions and
enhanced DNA damage responses are unlikely to contribute to
the cisplatin resistance of ovarian CSCs.

Translesion synthesis is believed to contribute to the devel-
opment of cisplatin resistance by rescuing cells from the col-
lapse of the replication fork induced by DNA intra-strand
crosslinks following cisplatin treatment.* TLS allows the DNA
replication machinery to bypass a site of unrepaired DNA dam-
age using special polymerases. Among many polymerases
tested in vitro, the Y-family DNA Pol 5 is the most efficient
and accurate at bypassing cisplatin-induced intra-strand cross-
links.* Our data have revealed elevated expression of Pol 7 in
ovarian CSCs, indicating that Pol  might be a critical contribu-
tor to the chemoresistant property of CSCs." It is well known
that downregulation of Pol 7 in cancer cells results in increased
sensitivity to cisplatin.” Our in vitro and mouse xenograft stud-
ies also demonstrated that downregulation of Pol 7 significantly
enhanced the response of ovarian CSCs to cisplatin treatment,"
indicating that downregulation of Pol 7 can facilitate the eradi-
cation of ovarian CSCs by cisplatin. Given that CSCs are
believed to be responsible for the initiation and recurrence of
tumors, inhibition of the Pol n-mediated TLS pathway in CSCs
would be a promising therapeutic strategy to promote the erad-
ication of CSCs by platinum-based chemotherapy.

Novel therapeutic approaches are currently being developed
based on selective inhibitors for polymerases involved in DNA
repair and/or TLS. However, it is difficult to develop a selective
inhibitor by rational drug design because of the common
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Figure 1. Sensitizing cancer stem cells to platinum-based therapy through miR-93.
The depleted miR-93 in ovarian cancer stem cells (CSCs) is unable to suppress DNA
polymerase 7 (Pol ) expression, which promotes translesion DNA synthesis (TLS)-
mediated resistance to platinum (Pt). Overexpression of miR-93 in ovarian CSCs is
expected to reduce the expression of Pol 1, inhibit TLS, and sensitize CSCs to Pt-
based chemotherapy.

structural features of currently characterized DNA polymer-
ases.’ To solve this problem, the crystal structure of human Pol
n has been analyzed and a unique hydrophobic pocket by
W297 has been identified that might serve as a potential target
for the development of selective inhibitors of human Pol .
Furthermore, we demonstrated in our study that Pol 5 expres-
sion is regulated by miR-93." Our data also revealed a depletion
of miR-93 in ovarian CSCs. Enforced expression of miR-93 in
ovarian CSCs reduced Pol 1 expression and increased their sen-
sitivity to cisplatin.' Therefore, targeting miR-93 could be a bet-
ter approach to increase the efficacy of cisplatin treatment in
ovarian cancer.

The extensive involvement of miRNAs in various human
diseases suggests that they could be used as new therapeutic tar-
gets. Their small size and conserved sequence make them
potential candidates from a development standpoint. As thera-
peutic agents, miRNAs have the ability to target multiple genes.
Moreover, the direct downstream targets of a single miRNA are
often linked genes that function in a signaling cascade. This

indicates that targeting a single miRNA is likely to have a dra-
matic effect as a result of the combinatorial effect of gene
expression changes in several related downstream targets.® One
of the major challenges in the use of miRNA therapeutics is tis-
sue-specific delivery.” In recent years, many efforts have been
made to improve the delivery of miRNA in order to treat differ-
ent types of cancer. Several approaches, such as hydrodynamic
injection, engineered viral vectors, and nanoparticles, have
been developed for delivery of miRNA into cells to modulate
gene expression.'’ Entrapping miR-93 mimics in suitable car-
riers might be a novel molecular approach to increase the effi-
cacy of cisplatin treatment in ovarian cancer.
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