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Abstract

Data in the biological, chemical, and clinical domains are accumulating at ever-increasing rates 

and have the potential to accelerate and inform drug development in new ways. Challenges and 

opportunities now lie in developing analytic tools to transform these often complex and 

heterogeneous data into testable hypotheses and actionable insights. This is the aim of 

computational pharmacology, which uses in silico techniques to better understand and predict how 

drugs affect biological systems, which can in turn improve clinical use, avoid unwanted side 

effects, and guide selection and development of better treatments. One exciting application of 

computational pharmacology is drug repurposing- finding new uses for existing drugs. Already 

yielding many promising candidates, this strategy has the potential to improve the efficiency of the 

drug development process and reach patient populations with previously unmet needs such as 

those with rare diseases. While current techniques in computational pharmacology and drug 

repurposing often focus on just a single data modality such as gene expression or drug-target 

interactions, we rationalize that methods such as matrix factorization that can integrate data within 

and across diverse data types have the potential to improve predictive performance and provide a 

fuller picture of a drug's pharmacological action.

Modern pharmaceutical research faces serious challenges1-4 with decreasing productivity in 

drug development and a persistent gap between the many therapeutic needs and the types of 

available treatments. The number of drugs approved per dollar spent on research and 

development is declining2, 4, with recent studies estimating 15 years and over $1 billion to 
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bring a new drug to market5. This is partially due to high attrition rates; only 10% of 

compounds that make it to Phase II clinical trials are eventually approved6, with the majority 

of failures either resulting from safety concerns or poor efficacy7, 8. Amidst the declining 

productivity, there is also a pressing need to provide treatments for rare diseases. According 

to the National Organization for Rare Disorders9, there are roughly 7,000 rare diseases that, 

taken together, affect about 10% of the first-world population, and yet only a few percent of 

these diseases have any pharmacological treatments available10. With current research and 

development costs, developing de novo therapies for each of these rare diseases is infeasible. 

All of this taken together points to a need for innovative approaches, both for identifying 

new therapeutic opportunities, as well as improving our knowledge surrounding drug action 

and side effects of investigational compounds.

Against this backdrop, advances in genomics and computational methods present new 

opportunities in research and drug development. Data such as gene expression, drug-target 

interactions, protein networks, electronic health records, clinical trial reports, and drug 

adverse event reports are rapidly accumulating and becoming increasingly accessible and 

standardized11, 12. However, these data are often complex, high-dimensional, and noisy, 

presenting new challenges and opportunities to develop computational methods that can 

assimilate these data in order to accelerate drug discovery and generate novel insights 

surrounding drug mechanisms, side effects, and interactions.

Computational pharmacology is the growing set of techniques aiming to address precisely 

the challenges above. In this review, we will cover three specific aims within the realm of 

computational pharmacology (see Figure 1). The first is the prediction of drug-target 
interactions, which are fundamental to the way that drugs work and often provide an 

important foundation for other aims in computational pharmacology. Next, we will discuss 

methods to predict or explain potential side effects or adverse drug reactions. This is 

important, as an improved understanding of off-target effects would result in fewer 

therapeutic failures due to unintended physiological responses. Third, we will discuss 

methods for drug repurposing, i.e. finding new uses for existing drugs.

In this review, we discuss integrative or “multi-scale” methods in computational 

pharmacology that integrate across multiple data resources or data for many compounds (see 

Figure 2). Pharmacological space comprises a variety of data types, each one having its 

peculiarities and challenges. Integration of non-orthogonal dimensions of data can help to 

reduce noise and improve the predictive ability of high-dimensional data sets13-18. 

Systematic data integration across a single dimension can also enable new types of data 

inquiry; e.g., “What can information about one drug teach us about another drug?” 

Examples include similarity-based approaches (also sometimes called guilt-by-association) 

that evaluate if “similar” drugs could share common targets19-23, or have similar side 

effects24, or treat the same disease25-28 (see Figure 3). There are many different ways to 

define similarity and to make use of this idea, and herein we illustrate several examples.

We start by discussing how different aspects of pharmacological space can be measured and 

quantified, including a description of some important databases and resources. We then give 

an overview of three applications of computational pharmacology: predicting drug-target 

Hodos et al. Page 2

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interactions, predicting and explaining side effects, and drug repurposing. We close with a 

discussion of data integration in computational pharmacology and some comments on future 

directions in the field.

QUANTIFYING AND REPRESENTING DRUG SPACE

The properties of a drug or drug-like compound and its interactions with the human body 

can be described or quantified in a variety of ways. We can quantify the physicochemical 

properties of a drug such as chemical structure, melting point, or hydrophobicity. We can 

quantify interactions between compounds and biological targets using measures of binding 

and kinetic activities. We can quantify downstream biological perturbations by measuring 

changes in cellular state or gene expression. We can also represent drugs using categorical 

metadata, such as diseases and conditions for which use of a drug is indicated, side effects, 

or known physiological interactions with other drugs. Such quantities and metadata lend 

themselves to numerical representations, which can then be analyzed to find patterns and 

relationships between compounds and generate new hypotheses.

Chemical structure

There are several different approaches to represent the chemical structure of small molecule 

compounds. The three-dimensional geometry of atoms and their electronic structure can be 

used in simulation-based analyses such as molecular docking. Alternatively, the structure 

can be codified into a character string or line notation such as SMILES29, which is obtained 

by printing the atomic symbols during a depth-first tree traversal of the chemical graph (See 

Figure 4A) or the more recently introduced InChI30 string (pronounced in-chee), which 

encodes various layers of information such as atoms, bonds, electronic charge, and 

tautomers. While SMILES is generally considered more human-readable, InChI can capture 

more information and in contrast to SMILES, is unique, making database mapping easier31. 

While these character string representations can be analyzed algorithmically, they are 

variable-length and non-numeric, which can be difficult to work with. To address this, fixed-

length binary fingerprints32, 33 have been developed (see Figure 4A), where each bit might 

correspond to the presence or absence of a particular atom, moiety, aromatic ring, etc. 

Distance between two chemical structures can then be quantified easily, e.g. using the 

Tanimoto coefficient (Tc), which is the Jaccard similarity (|A∧B|/|A∨B|) of the two 

fingerprints. PubChem34 and ChEMBL35 are both widely used databases of chemical 

compounds containing chemical structure as well as many other properties, with information 

on over 60 million and 1 million compounds, respectively.

Drug-target interactions

A drug-target interaction (DTI) can be measured using a variety of experimental techniques 

such as direct binding or competition binding assays22, and can be summarized in a dose-

response curve, plotting some readout corresponding to the amount of protein-ligand 

complexes formed relative to the logarithm of ligand (drug) concentration. If there is 

significant interaction, this curve is generally sigmoidal, with the inflection point and height 

of the curve characterizing the compound's potency and efficacy against the target, 

respectively (see Figure 4B). This inflection point is either called the EC50 or IC50 value, 
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for the half-maximal [inhibitory/effective] concentration, depending on whether the curve is 

increasing or decreasing with concentration. While the EC50/IC50 values can vary 

depending on the experimental setup (e.g. target concentration), these can sometimes be 

related36 to the binding affinity, denoted by Ki, which is an unchanging property of the 

intrinsic strength of the interaction.

Various levels of DTI information are available in public databases. Binary-level 

information, i.e. simply indicating the presence or absence of an interaction, is available in 

DrugBank37 for several thousand drugs, representing over four thousand unique targets. This 

could naturally be constructed into a binary target interaction profile vector for each drug, 

with length equal to the number of targets. Alternatively, more detailed, experimentally-

determined binding data for hundreds of thousands of drugs and drug-like compounds are 

captured in databases such as ChEMBL35, PubChem Bioassay34, and BindingDB38.

Drug perturbations of gene expression

Genome-wide mRNA expression levels can be used as a proxy to measure chemical 

perturbations of cellular state by comparing expression in cellular samples with and without 

exposure to a chemical compound. Each perturbation can be represented as an expression 

profile, where each gene is assigned a number corresponding to the degree of up- or down-

regulation relative to control (e.g. the difference of mean expression values); or this can be 

further processed by discretizing the values into a signature, defined here to mean the sets of 

significantly up- and down-regulated genes. Though less commonly used, one could 

alternatively consider differential variance39, or drug-induced changes in the gene-gene 

covariance, also called differential coexpression40 (see Figure 4C). Several publicly 

available resources are worth mentioning here. The Connectivity Map41 (Cmap) and its 

recent update utilizing the L1000 technology as part of the LINCS42 project have generated 

publicly available expression measurements from thousands of in vitro drug perturbations to 

multiple human cell lines; while GEO43 serves as a public gene expression repository with 

over one million samples to date, covering a wide variety of experiments including both 

drug and disease perturbations. Also, as part of a crowdsourcing project44 organized by the 

LINCS data integration and coordination center (DCIC), over 900 drug-perturbation 

experiments have been extracted from GEO and processed into signatures that are freely 

available for download. Different metrics can be used to evaluate the similarity between two 

expression profiles and/or signatures45, 46, including correlation, cosine distance, and Gene 

Set Enrichment Analysis (GSEA)41.

Cell and animal phenotypes

Moving beyond the molecular level, one can also measure or observe a compound's 

phenotypic effects on a cellular sample or in an animal model, e.g. cytotoxicity in cancer 

cells47-49 or sleeping patterns in zebrafish50. In fact, until roughly thirty years ago this was 

the primary approach to drug discovery until it was largely replaced by rational (i.e. target-

centric) drug discovery, and yet has remained an important source of new therapies, e.g. 

contributing the majority of first-in-class FDA approvals between 1998 and 200851. 

Phenotypic screens are advantageous in that they evaluate a drug's effects within the 

complexities of biological systems, enabling identification of hits whose mechanism may 
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depend on novel and/or multiple targets, and which may translate more easily into the 

clinic52. Within the phenotypic screening paradigm, Zheng, et al.52 discusses trade-offs 

between the use of cellular versus animal models, e.g. cell-based screens usually have higher 

throughput while animal models enable probing of more complex phenotypes.

While phenotypic screens are usually performed one assay at a time with a particular disease 

or outcome in mind, data from multiple screens could potentially be aggregated to provide a 

phenotypic profile for each compound. For example, the Bioassay feature of PubChem53 

contains over 740 million data points from both biochemical and phenotypic screens 

covering over 1 million small molecules, with many compounds having results from 

hundreds or even thousands of assays. ChEMBL also contains bioassay data, with over 12 

million data points35. There are also some publicly available data resources containing 

(relatively) full drug-by-phenotype matrices. For example, NPCPD255 contains results of 

nearly 2,500 clinically approved compounds screened in 35 phenotypic assays designed to 

focus on cardiovascular disease, diabetes, and cancer. Additionally, the NIH Chemical 

Genomics Center has also compiled a dataset56 of roughly 2,500 approved compounds 

screened in about 200 phenotypic and target-based assays, focusing on various cancers, 

malaria, nuclear receptors, and signaling pathways.

Finally, a noteworthy set of cell-based phenotypic screens are cancer cell line sensitivity 

studies47-49, where cellular growth rates (also called cell viability) are measured before and 

after drug exposure, for a panel of cancer cell lines. For example, the Cancer Therapeutic 

Response Portal47 (CTRP) measured sensitivity of 242 genetically characterized cancer cell 

lines to 354 small molecule probes and drugs. Another example is the Genomics of Drug 

Sensitivity in Cancer49 (GDSC) database, which measured 138 anti-cancer drugs across 700 

cell lines. The Cancer Cell Line Encyclopedia57 (CCLE) provides complementary 

information to these data, providing detailed genetic characterization of 1,000 cancer cell 

lines, which e.g. might be used to assess cell line similarity and predict drug-perturbed 

growth rates in additional cell lines58.

Drug classifications

Various drug classifications, e.g. based on therapeutic usage or pharmacological action, 

provide an additional layer of information to the drug space. These classification systems are 

generally organized into some sort of hierarchical, structured ontology, where higher levels 

refer to more general categorizations and lower levels to more specific terms and 

associations, and oftentimes multiple, synonymous terms are stored together in the 

hierarchy, to support a wide variety of queries and mappings. Such information can be 

translated into binary feature vectors for each drug by simply flattening the ontology tree at 

a particular depth and only respecting distinctions up to that level (See Figure 4D). 

Similarity between these vectors could then be computed using Jaccard similarity.

There are many examples of drug ontologies. The Anatomical Therapeutic Class59 (ATC) 

coding system classifies the active ingredients of drugs into five levels, starting with the 

organ system[s] on which the compound acts (e.g. the nervous or respiratory system), and 

subsequently drilling down into more detail such as chemical or pharmacological categories. 

Drug ATC codes are available on DrugBank's website60. The National Drug File Reference 
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Terminology61 (NDFRT) provides an alternative classification of drugs based on properties 

such as mechanism of action, physiologic effect, and therapeutic category, and is cross-

referenced to other vocabularies including MESH62 and RxNorm63. A third example is the 

ChEBI64 ontology, which contains multiple sub-ontologies: one based on molecular 
structure, e.g. dividing organic and inorganic compounds; another based on chemical role, 

e.g. as an inhibitor, ligand, or surfactant; another based on biological role, e.g. antibiotic, 

antiviral agent, coenzyme, or hormone; and finally another for applications, e.g. pesticide or 

anti-rheumatic drug. Additional drug classifications or controlled vocabularies are provided 

by KEGG65, MeSH62, and MedDRAa.

A practical issue that can arise when working with multiple drug databases is that a single 

drug often carries many different names and identifiers. RxNorm63 addresses this problem 

by providing standardized compound names that are mapped to many other names and 

identifiers, enabling easier data integration.

Disease indications

Known therapeutic indications of a drug can be treated as additional metadata providing 

clues e.g. for predicting side effects or new indications. Drug-disease associations are 

available from a variety of sources, including DrugBank, Pharos66, and PharmGKB67. 

Pharos is a relatively new resource that connects drugs, targets, and diseases, where drug-

disease associations include both those in clinical trials as well as approved indications, and 

disease terms are mapped to Disease Ontology ids (see below). PharmGKB is a database 

focusing on pharmacogenetics and pharmacogenomics (i.e. identifying drug/gene 

associations) but contains drug-disease relationships from FDA labels, such as those used in 

the work of Yang and Agarwal15. Information can also be directly mined from the FDA, e.g. 

using “the Orange Book”68 or FDALabel69, the latter enabling full-text searching of drug 

labels including prescription drugs, biologics, and over-the-counter medicines. Finally, 

clinical trials information can be considered a “noisy” indication of drug-disease 

relationships, with later-stage clinical trials representing increased confidence in the 

association, relative to early-stage trials70. At the time of writing, ClinicalTrials.gov71 

contained information on nearly 200,000 trials.

Similar to the above-described drug classifications, disease terms and indications are also 

organized into various classifications and ontologies. Both the Disease Ontology72 and 

MedDRA® provide structured ontologies over disease terms, hence enabling numerical 

representations for each drug based on its known disease indications, in a similar way as just 

described in the previous section. Mappings of unstructured disease terms between datasets 

is made easier by controlled vocabularies such as Medical Subject Headings62 (MeSH) and 

others within the Unified Medical Language System73 (UMLS).

aMedDRA®, the Medical Dictionary for Regulatory Activities terminology, is the international medical terminology developed under 
the auspices of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for 
Human Use (ICH).
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Side effects and adverse drug events

A final example of potentially useful drug-related information is given by side effects and 

adverse drug events (ADEs). Similar to disease indications, side effects terms and adverse 

events are represented in structured ontologies such as MedDRA®. Several important 

resources organize complementary aspects of side effect information. First, SIDER74 is a 

public side effect database with compiled information from FDA package inserts connecting 

888 drugs to 1,450 side effect terms. Another resource is the OFFSIDES75 database, 

generated by analyzing over 400,000 adverse effects not listed on the FDA's official drug 

label, and identifying an average of 329 off-label ADEs per drug. Finally, the FDA Adverse 

Event Reporting System (FAERS) is a database of information on adverse event and 

medication error reports submitted to the FDA by manufacturers, health care professionals, 

and the general public.

Now that we have considered various ways to quantify and represent drug-related 

information, we will see how such information can be used in several different applications 

of computational pharmacology, starting with target prediction.

PREDICTING DRUG-TARGET INTERACTIONS

At the most basic level, drugs exert their effects on biological systems by binding with 

protein targets and affecting their downstream activity, and hence knowledge of these 

interactions provides a key toward understanding and predicting higher-level information 

such as side effects, therapeutic mechanisms and novel indications. However, there are still 

many gaps in our knowledge of which drugs bind to which targets. At the time of writing, 

DrugBank37 lists on average less than 2 targets per drug, whereas a recent article76 predicted 

that the true average number of targets per drug is a staggering 329. Even if this is a gross 

overestimation, it provides some indication that there are many more interactions than are 

currently known. Filling these gaps by experimentally testing all drugs against all possible 

protein targets is currently infeasible, and hence a variety of computational methods have 

been developed to predict likely interactions. De novo prediction, i.e. based only on 

structure, is useful for virtual screening of large compound libraries, while other methods 

make use of related interactions to generate new predictions for compounds that have 

already been shown to have pharmacological activity.

De novo structure-based prediction

Molecular docking is a popular approach that uses three-dimensional modeling and 

computer simulation to dock a candidate drug into a protein binding pocket and then score 

the energetic favorability or likelihood of the pair's interaction77, 78. This approach is 

advantageous in that it can provide structural insights into the nature of the interaction (see 

Figure 5A), which might enable further optimization of the compound's structure to increase 

binding affinity for its target. However, molecular docking depends on the existence of a 

reliable three-dimensional model of the protein, and for certain target classes such as 

membrane-bound proteins, this often does not exist due to experimental limitations. Further, 

the approach is very computationally demanding, limiting its feasibility for large scale, 

many-to-many DTI prediction tasks.

Hodos et al. Page 7

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



While molecular docking is considered a target-based approach since each compound is 

evaluated against the selected target's structure, one can alternatively take a ligand-based 
approach, constructing a sort of abstract “pseudo-drug” representation called a 

pharmacophore model (see Figure 5B), containing the chemical features deemed to be 

important for interaction with the chosen target79. Compounds can then be aligned and 

scored against the model through a process that is much less computationally demanding 

than molecular docking. Pharmacophore models can be constructed from analysis of the 

target's binding pocket, or (moving beyond the de novo prediction setting) could 

alternatively be derived using a set of positive and negative examples of compounds 

interacting with the target. Compared with molecular docking, this approach is more 

computationally efficient, and some studies indicate that it generally has better 

accuracy80, 81. Pharmacophore models are often used to screen large compound libraries 

(e.g. millions of compounds) in order to prioritize potential lead compounds for 

experimental follow-up82, sometimes improving hit rates by an order of magnitude. 

However, the hit rate will naturally depend on the quality of the pharmacophore model, 

which can be sensitive to the specific compounds or algorithm used and hence prone to high 

false-positive and false-negative rates.79

Learning from related interactions

If there are already established examples of compounds that interact with the same or a 

similar target, this information can be included as an additional layer useful for predicting 

new interactions. This is accomplished by employing (either implicitly or explicitly) a guilt-

by-association (GBA) principle, i.e. that similar drugs may share common targets, or 

likewise, similar proteins may be targeted by the same drug. This line of thinking is 

supported by recent work which found that among the roughly 20,000 human proteins, there 

are only about 1,000 unique shapes of binding pockets83, implying that proteins have many 

shared binding pockets and in turn, shared binding partners. Providing additional support for 

the guilt-by-association approach, Paolini, et al.84 integrated drug-target interaction data 

from multiple sources to construct a bipartite DTI network and found that proteins from the 

same class tend to share common drug interaction partners.

Various approaches exist that incorporate knowledge of related interactions. One was 

already mentioned in the previous section: DTI-based pharmacophore modeling. Another 

common approach85, 86 is to frame the problem as binary classification and employ 

supervised machine learning models where the inputs are physicochemical features of the 

drug and/or protein in question, and the output (either known or predicted), is the presence 

or absence of an interaction. For example, Nidhi, et al.85 used a Naïve Bayes framework to 

predict targets based only on chemical structure, achieving 77% recall of known interactions 

among the top three predicted targets for each drug. As an alternative to binary 

classification, one can also formulate DTI prediction as a regression problem where the aim 

is to estimate binding affinities. Examples of this include the work of Bock and Gough87, in 

which support vector regression was used to identify high-affinity ligands for orphan 

GPCRs; and the more recent work of Cao et al.88 in which random forest regression on both 

drug and target features achieved AUC's of up to 0.96.
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Deep neural networks have also recently been explored to predict drug-target interactions 

from chemical structure along with known interactions90, 91. For example, Ramsundar, et 

al.90 integrated millions of data points representing both positive and negative examples of 

DTIs for over 200 unique targets. They used a “multi-task” framework, in which prediction 

for each target was considered a separate task requiring its own [linear] classifier, but where 

all classifiers used the same feature representation, which was optimized using the neural 

network. The deep-learning based approach achieved a maximum cross-validated AUC (area 

under the receiver operating curve) of 0.87 and demonstrated that the multi-task aspect of 

their approach consistently provided slight improvements (roughly 0.01 increase in AUC) 

over an equivalent single-task analysis with the same amount of data. Note that the task-

specific linear classifiers as well as the previously mentioned machine learning models are in 

some sense analogous to a pharmacophore model, in that all of these models “decide” which 

structural features are most important for the interaction.

All of the above-described methods only implicitly invoke the similarity principle, e.g. by 

fitting coefficients to drug and/or protein features, so that drugs with similar features would 

have similar predictions. However a number of machine learning methods have been 

developed which explicitly employ a similarity-based framework by working directly with 

similarity matrices between drugs and/or targets. A very simple example is a nearest-

neighbor method20, where, e.g. one could predict whether an interaction would occur 

between drug D and target T based on whether the drug “nearest” to D interacts with T, or 

alternatively, whether the target nearest to T interacts with D. In this same vein, Bleakley, et 

al.19 propose a slightly more sophisticated approach they call bipartite local models, training 

a different support vector machine (SVM) classifier for each drug and each target, where 

user-specified drug- and target-similarity matrices are input to the SVM algorithm, and 

known interactions serve as labels. Ding, et al.20 provide a cogent and insightful review of 

similarity-based machine learning approaches, along with some experiments benchmarking 

the ability of eight different algorithms to recover known DTIs. While their results did not 

reveal a clear winner, AUCs reached as high as 0.98 for ion channels, but varied significantly 

per target class (likely due at least in part to varying amounts of available data per class), and 

are hence difficult to compare against the AUCs from the deep-learning approach described 

above.

While compound structural similarity is perhaps the most natural and well-supported metric 

used for DTI prediction, other notions of similarity have also found success. For example, 

Campillos, et al.21 developed a metric for side effect similarity over a set of 746 marketed 

compounds, finding ~1,000 side effect driven drug-drug relationships and confirming 9 out 

of 20 subsequent DTI predictions in cell-based assays. Interestingly, about one quarter of 

their identified drug pairs were both chemically dissimilar and also had different therapeutic 

indications, demonstrating that side effect information provides a somewhat orthogonal view 

of compound relationships that is still informative of target activity. Keiser, et al.92 present 

an alternative framework based on their similarity ensemble approach (SEA)22, where each 

target is represented by its known binding ligands (including endogenous ligands), and then 

similarity between the candidate drug and the ligand set is evaluating using a statistical 

framework developed by the authors22. 23 of 30 tested predictions were experimentally 

confirmed, including the activity of the drug DMT on serotonergic receptors, indicating a 
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different mechanism of action for DMT than was currently understood. A final example 

using an alternative notion of similarity is the network-based inference (NBI) method23, 

which simply uses known DTIs to predict new ones; i.e. the drug similarity metric in this 

case (though not explicit in the NBI framework) is based on the target interaction profiles.

One important consideration when employing any such technique based on related 

interactions is the paucity of high-confidence negative examples; i.e. it is difficult to know 

whether a particular drug-target interaction is, in fact, not possible, or if an interaction may 

occur in a different biological context. Recent work89 aimed to address this problem by 

developing an in silico method to identify high-confidence negative examples and further 

demonstrating that such examples boost predictive performance.

DTI prediction is a fairly well studied problem, with many different techniques that together 

use a variety of data including chemical structure, protein structure, side effect associations, 

ligand sets, and other drug-target interactions. While computational chemistry can be used to 

generate de novo predictions and hence explore new areas of pharmacological space, 

similarity-based techniques offer the advantage that they can improve in accuracy as more 

data become available. Many of these methods have demonstrated a high degree of accuracy 

and have proven to be useful both in virtual screening settings to prioritize compounds for 

HTS, as well as for identifying new targets for known drugs. We will see in the next sections 

how these techniques can also provide a foundation to predict side effects and discover new 

therapeutic indications.

PREDICTING AND EXPLAINING SIDE EFFECTS AND ADVERSE EVENTS

Drug safety is a critical factor in the success of commercial drug development. Improved 

ability to model and predict drug side effects and adverse events is crucial for improving the 

efficiency of drug discovery, as early identification of undesirable toxicity can prevent 

further investment of resources in a non-viable drug entity. The current standard approach to 

safety screening is pre-clinical testing in animal disease models. However, such experiments 

are costly93, and leave a large degree of uncertainty as to whether the results will translate 

into humans94, 95 due to genetic and environmental differences.

Computational approaches can help address some of these challenges. In silico techniques 

have the potential to predict unwanted side effects at earlier stages in the drug development 

pipeline, e.g. based on predicted drug-target interactions76, 96 or in vitro drug-induced gene 

expression perturbations97. Further, Lum et al.98 suggest that translational uncertainty 

between animal models and humans could be lessened by taking a computational systems 

biology approach, modeling the conserved responses of molecular networks across species.

Identification of new side effect associations with approved compounds is also an important 

aim and falls under the heading of pharmacovigilance. Such associations might be missed in 

clinical trials, e.g. due to the rarity of occurrence, or a delay between start of medication and 

onset of symptoms99. Computational techniques are particularly relevant in this case, given 

the added ability to mine data surrounding the compound's post-market use and 

effects24, 99, 100.
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Target-mediated connections

Some protein targets have been identified as causally implicated for undesirable 

effects101, 102, and this information can be used to link drugs with such effects. For example, 

Lounkine, et al.96 used the SEA method22 described in the previous section to evaluate the 

activity of 656 marketed drugs on 73 side effect-associated proteins. They developed a 

method to identify predicted off-targets that explained side effects better than any of a drug's 

established targets. From this came a prediction that abdominal pain from the synthetic 

oestrogen chlorotrianisene is mediated by its newly discovered and validated interaction 

with the enzyme cyclooxygenase-1. Zhou, et al.76 took a similar approach, using their 

FINDSITEcomb method103 to predict DTIs for all drugs in DrugBank compared against a 

majority of proteins in the human proteome. Combining these predicted DTIs with known 

drug-side effect associations enabled association of targets with side effects, even if the 

targets had no experimentally verified drug interactions. Finally, the authors introduced a 

killing index, which estimates the likelihood that a compound has serious side effects such 

as death, stroke or heart failure. They found that 44% of small molecules from DrugBank 

were predicted to have a killing index > 0, whereas this was true for only 16% of FDA 

approved drugs, providing some validation to their analysis and suggesting that this killing 

index might be useful, e.g. to filter out investigational compounds in early stages of drug 

development.

Molecular network modeling

While the approaches just described are based on established connections between targets 

and side effects, molecular network modeling can be used to hypothesize new connections 

between targets and side effects and help to elucidate physiological mechanisms. This is 

exemplified by the work of two different groups aiming to explain a fatal hypertensive 

response among some people taking the CETP inhibitor torcetrapib which lead to the drug 

(intended for atherosclerosis) failing Phase III clinical trials104. An understanding of the 

molecular mechanisms inducing the fatal response would help to avoid repetitions of this 

scenario in the future and clarify whether other CETP inhibitors should continue to be 

pursued. Chang, et al.105 developed a framework using structure-based target prediction and 

a technique called metabolic modeling106 to implicate targets for the hypertensive response, 

hypothesizing that the side effect was due to renal regulation of blood pressure via 

metabolite reabsorption and secretion. Using structure-based target prediction, they 

identified a list of 41 metabolic proteins predicted to be off-targets of the drug. Then they 

used a renal metabolic network model constructed over 338 genes to simulate phenotypic 

consequences of inhibition of each of the targets, yielding 6 out of 41 “hits” predicted to 

alter renal function. Two of these hits had literature support connecting the targets to 

hypertension in humans, mice and/or rats, while the remaining four were novel hypotheses. 

Fan et al.107 also used network analysis to explore potential explanations for the torcetrapib-

induced hypertension. They constructed a context-specific human signaling network filtered 

by a set of genes that were differentially expressed in adrenal carcinoma cells treated with 

torcetrapib, identifying several enriched signaling pathways with previous associations to 

hypertension.
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Other approaches

A variety of other approaches have been used to analyze or predict connections between 

drugs and adverse effects. Scheiber, et al.108 used known drug-ADE associations to connect 

specific chemical features of drugs to 4,210 ADE terms using an extension of Naïve Bayes 

modeling. An example of a resulting model is shown in Figure 6, depicting a well-known 

example of structural associations with QT interval prolongation, which causes cardiac 

arrhythmia. Along similar lines, Liu, et al.109 used causality analysis based on Bayesian 

network structure learning to connect both chemical and biological features of drugs to 

ADEs, in a way that could be causally interpreted. As a final example, Vilar et al.24 used a 

guilt-by-association approach on a large insurance claims database to estimate drug 

associations with four diverse ADEs: acute renal failure, acute liver failure, acute myocardial 

infarction, and upper gastrointestinal (GI) ulcer. The authors evaluated various compound 

similarity metrics such as chemical structure, targets, ATC code, and other ADEs, finding 

that the latter two metrics, both informed by phenotypic associations, achieved the top 

AUPRs (Area Under the Precision-Recall Curve) in three of the four ADEs tested.

Side effect prediction and analysis is an important yet challenging aim in computational 

pharmacology. Part of the challenge stems from the difficulty in defining side effects 

unambiguously. Additionally, relative to drug-target interactions, side effects are generally 

quite downstream in a cascade of biological events initiated by drug exposure, and hence 

drug-side effect relationships are more indirect and hence elusive.

DISCOVERING NEW CONNECTIONS BETWEEN DRUG AND DISEASE

One area of computational pharmacology that has gained increasing amounts of attention in 

recent years is drug repurposing (also called “repositioning”), which seeks to find new uses 

for known drugs as well as for early-stage assets or shelved compounds. Two key insights 

help explain why drugs could be used for more than one purpose: first, many drugs have 

multiple protein targets84, 110, and second, different diseases can share genetic factors, 

molecular pathways, and/or clinical manifestations111, 112, and hence a drug which acts on 

such overlapping factors may be beneficial to both conditions. Drug repurposing is not a 

new idea. Examples of successfully repurposed drugs include Minoxidil, developed for 

hypertension and now indicated for hair loss, Viagra, repurposed from angina to erectile 

dysfunction, and Thalidomide, originally for morning sickness and now used to treat 

symptoms of leprosy113, 114. However, while these examples were due to serendipitous 

observations, we will discuss computational methods that explore the drug repurposing 

space systematically.

Drug repurposing offers many benefits over de novo drug development. The time and cost 

toward approval of a new indication can be greatly reduced for a drug with an established 

safety record, with estimates of 3-10 years for a repurposed compound as compared with 

10-17 years for a new molecular entity (NME)115. Approval rates are also much higher, e.g. 

25% of repurposed candidates succeed from Phase II to approval, compared with 10% for a 

NME6. Furthermore, drug repurposing is a promising avenue to address unmet therapeutic 

needs for rare and neglected diseases116-122, and can also identify drugs that are more 

efficacious or cost-effective than existing ones. Finally, some of the in silico techniques 
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described here provide the additional benefit of generating hypotheses about biological 

mechanisms of a drug or disease in the process of predicting new repositioning candidates, 

compared with traditional drug development strategies which sometimes treat biological 

systems as “black boxes”.

Note that, in the following paragraphs, we will describe how various sources of information, 

including DTIs and side effects, can provide clues for drug repurposing. This can be 

effective even when these clues are predicted from other information sources such as 

chemical structure15, and hence in this way we can view drug repurposing as a natural 

extension of methods described in the previous sections.

Target-centric approaches

One approach for identifying a new indication is to repurpose a drug based on the biological 

role that a target plays in disease. A rather straightforward example in this regard is the work 

of Chavali, et al.120, who used metabolic modeling to generate a list of 15 genes and 8 

double-gene combinations predicted to be relevant targets for the neglected tropical disease, 

leishmaniasis major. The authors were able to associate these genes with 254 FDA-approved 

compounds based on drug-target interactions, and found validation for 14% (10 out of 71) of 

these compounds which overlapped with an independent HTS screen against leishmaniasis. 

Another example that employs this approach in a more complex manner is the work of 

Chen, et al.70, who integrated a large number of information sources including drug-target 

interations, disease-gene associations and protein-protein interactions networks into a 

heterogeneous network they call DrugNet, connecting drugs, targets, and diseases. The 

authors use a network propagation algorithm called ProphNet123 that, given an input query 

node, either a drug or disease, ranks the remaining nodes of the other type, i.e. drugs for a 

disease query, and vice versa. They achieved a leave-one-out cross-validation AUC of 0.96 

in recapitulating known drug-disease associations.

From side effects to discoveries

While side effects usually carry negative connotations, sometimes these unintended 

consequences offer clues toward new therapeutic directions. For example, the testosterone 

reductase inibitor Finasteride was initially tried and ultimately approved to treat benign 

prostatic hyperplasia124. During the trials, however, an unintended treatment outcome was 

hair growth. Rather than dismissing this side effect as a negative, this observation ignited the 

idea to repurpose Finasteride for the hereditary condition Androgenetic Alopecia 

(colloquially called male pattern baldness). In another example, the anti-depressant drug 

bupriopion was noted to have an anti-smoking effect during the clinical trials for treating 

depression125. This finding lead to the development of a new smoking cessation drug 

marketed as Zyban126.

These serendipitous observations raise the question of whether the discovery of new 

indications can be accelerated by automated, systematic mining of side effect information. 

Indeed, Zhang, et al.16 found that side effect information was even more predictive of 

disease indications than chemical structure or protein target information. Yang and 

Agarwal15 merged drug-side effect data from SIDER127 with drug-disease information from 
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PharmGKB128 to identify a set of side-effect-disease relationships, which were then used to 

build Naïve Bayes models for 145 disease indications using the side effects as features (see 

Figure 7), achieving AUCs above 0.8 for 92% of the models. Ye, et al.25 similarly 

hypothesized that drugs with similar side effects might share common indications. They 

constructed a network over drugs based on Jaccard similarity of their associations with 6,495 

side effects. Disease indications were then predicted based on enrichments of FDA-approved 

indications among neighboring compounds, and while the authors did not compute ROC 

curves, they found that over 70% of the predictions were FDA-approved, and another 10% 

supported by pre-clinical/clinical trials or scientific literature. Interestingly, the results varied 

widely for different classes of drugs, with the best performance for treatments of diabetes 

and obesity as well as laxatives and antimycobacterials.

Of course, side effect information is only available for drugs that have at least reached 

clinical trials if not approval, and hence approaches using side effect information alone 

would generally only apply in these cases. However, there are ways around this; for 

example, predicting side effects from chemical structure and then connecting these side 

effects to potential indications15.

Gene expression as a common language between drug and disease

Gene expression data provide a high dimensional readout of cellular state and biological 

perturbation resulting from drug treatment or the presence of disease. Gene expression 

profiling enables quantitative molecular comparisons between drug- and disease-perturbed 

states. One advantage of transcriptomic approaches is that this type of data can be generated 

for nearly any chemical compound or disease, regardless of the compound's approval status, 

and agnostic to drug or disease mechanisms. Further, while information on side effects and 

targets has many false negatives, expression profiling provides an unbiased, genome-scale 

view for each drug and disease perturbation.

One key approach used in many expression-based drug repurposing studies113, 129-132 is 

alternatively called signature reversion, signature matching, or connectivity mapping41, 

which matches drugs and diseases with opposing or anti-correlated expression profiles, 

reasoning that if gene expression is perturbed in one direction in a diseased state, and in the 

reverse direction upon exposure of a drug, then perhaps that drug could “push” the disease-

perturbed expression back toward a more normal state, and hence provide therapeutic benefit 

for the disease133 (see Figure 8). For example, Sirota, et al.129 systematically compared gene 

expression signatures derived from Cmap for 164 small molecule compounds against a set of 

expression signatures derived from GEO for 100 different diseases, generating over one 

thousand drug repurposing predictions, connecting at least one of the 164 compounds to 

each of 53 diseases. Two predictions from this work were selected for experimental 

validation in animal models, both yielding positive results. Specifically, topiramate, an anti-

convulsant predicted to be therapeutic for both ulcerative colitis and Crohn's disease, was 

shown to ameliorate symptoms in a rat model of irritable bowel disorder134, and also 

cimetidine, an antihistamine approved for inhibition of gastric acid secretion was predicted 

to treat lung adenocarcinoma (LA), and showed dose-dependent reduction of LA tumor 

growth in mice129.
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Signature matching can also be used to connect between drugs. Iorio, et al.97 used pairwise 

similarity been drug-perturbed gene expression profiles to construct a network over 1,302 

drugs. Highly connected communities in this graph were significantly enriched for 

compounds with similar MoA (Mechanisms of Action) and also revealed new mechanisms 

and indications, for example predicting and subsequently verifying that the drug Fasudil 

enhances cellular autophagy, indicating potential for certain neurodegenerative disorders. 

Note that this is another similarity-based approach, since mechanisms are hypothesized to be 

shared between similar compounds, where similarity is now based on gene expression 

perturbations.

One drawback of these expression-based approaches is that some drugs and diseases do not 

induce strong expression perturbations, and hence the signal for such perturbations would be 

noisy and hence lead to higher false-positive or false-negative rates. Another consideration is 

that the signature reversion principle may fail, e.g. if the disease expression profile is a result 
instead of a cause of the diseased state, in which case reverting the profile with a drug may 

not be therapeutic.

Finally, there are some interesting opportunities for future work here. First, there is an 

opportunity to better explore and leverage the tissue- or cell type-specificity of drug 

transcriptional perturbations, as most existing approaches ignore this dimension of 

information, and in some cases such context has been shown to be very important135. Also, 

instead of simple, pairwise-comparisons of expression profiles, it might be fruitful to better 

understand or map out these drug- or disease-perturbed transcriptional landscapes, providing 

more meaningful context or metrics for subsequent comparisons. This is one example of 

data integration within a single modality. Some work has already ventured in this direction, 

e.g. analyzing bi-clusters136 of genes co-regulated by a subset of compounds, or applying a 

generalization of Bayesian principal component analysis to project drug-perturbed 

expression profiles into a lower-dimensional linear subspace137. One simple, yet relatively 

unexplored direction within this vein would be to incorporate covariance between genes 

(often called coexpression) into a similarity metric.

Drug- and disease-similarity

The guilt-by-association principle can also be applied to make new connections between 

drug and disease26-28. For example, Chiang and Butte26 hypothesized that if two diseases 

have medications in common, then other medications currently used for only one of the two 

diseases may also be therapeutic for the other. They compiled FDA-approved as well as off-

label uses connecting 2,022 drugs to 726 diseases, and applying this simple guilt-by-

association rule, generated about 57,000 novel drug-use suggestions. As validation, the 

authors found that their predicted drug-disease pairs were 12 times as likely to be found in 

recent clinical trials than those that were not suggested by their method. Another example is 

the work of Zhang, et al.27, who developed a matrix factorization framework to implement a 

more general version of a drug and disease guilt-by-association rule, where instead of 

connecting disease pairs based on sharing the exact same medication, they incorporate a 

variety of both disease similarity and drug similarity information. They achieve 10-fold 

cross-validation AUC of 0.87. This method offers the added benefit of a quantitative 
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estimate of the relative contribution of each source of similarity information, here finding 

that side effect information had the largest contribution, followed by chemical structure and 

then known targets.

Mining and validating drug repurposing signals in electronic health records

Electronic health records (EHR) offer a promising new resource to be explored for 

generating and validating drug repurposing hypotheses. EHR provide massive, longitudinal 

data on thousands or even millions of patients, including lab results, diagnosis codes, 

prescriptions, and physician notes. As EHR databases are becoming more standardized and 

integrated across multiple hospital systems, they are gaining increasing attention from the 

informatics community as a resource to be mined, e.g. to assess quality of patient care, build 

early prediction models for disease, re-evaluate medication usage, and identify off-label 

usage138. By identifying matched cohorts within an EHR database that either have or have 

not been prescribed a particular medication, one could conceivably perform observational 

studies as proxy for randomized controlled clinical trials, mining for unexpected effects 

associated with the prescribed medication. In contrast to many observational study contexts, 

the vast scale of EHR databases would enable this to be done in parallel to test a large 

number of drug repurposing hypotheses and analyze effects over larger patient populations 

and longer time durations. While we are not yet aware of any such published analyses 

generating novel drug repurposing hypotheses from EHR analysis, Xu and collagues139 

demonstrated the utility of EHR data for a similar use- to provide external validation to an 

existing drug repurposing hypothesis. They used the case study of metformin, a drug 

traditionally used to treat type 2 diabetes (T2D) but recently hypothesized to be associated 

with reduced cancer mortality. To test the hypothesis, the authors identified patients in two 

separate EHR databases diagnosed with both cancer and T2D, and applied Kaplan-Meier 

survival analysis to find that patients taking metformin indeed had improved survival. While 

we foresee that more drug repurposing studies will be published using EHR data, current 

work with EHR databases is often impeded by privacy concerns as well as data cleaning and 

modeling issues, including incomplete and irregularly sampled information, inaccurate 

diagnosis codes, and unstructured clinical notes138.

While computational drug repurposing is still waiting to see its first compound reach the 

market, experimental and quantitative evidence is accumulating in support of the feasibility 

of this approach. The field will likely continue to draw new attention, both from researchers; 

as new data such as internet search queries100 and electronic health records are incorporated 

into analytic pipelines; as well as from the general public, as evidence for this strategy 

continues to grow. One way to make this evidence more convincing and advance the field 

more systematically would be to adopt standardized validation datasets so that different 

methodologies could be compared on the same footing (e.g. see Cheng, et al.46). Potential 

datasets that could serve this purpose might come from clinical trials data as used by 

Martinez, et al.70, drug therapeutic classification as used by Napolitano, et al.17, or drug-

disease associations, such as those used by Cheng, et al.46

Finally, enough examples of repurposed compounds have been generated that we can begin 

to ask questions like, “Are there certain features of a compound that make it more or less 
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repurposeable”? Or similarly, “Are there certain classes of diseases or conditions for which 

repurposing hits are more likely”?

DATA INTEGRATION IN COMPUTATIONAL PHARMACOLOGY

While we have already described many integrative approaches as they apply to different 

pharmacological aims, in this section we bring data integration into the spotlight, first 

highlighting the benefits of such approaches, and then critically discussing several 

computational methodologies that lend themselves well to data integration.

The case for data integration

As pharmacological space comprises a variety of data types, each one having its own 

peculiarities and challenges, it is natural that the first attempts to mine these data often focus 

on just one or two of these information sources. However, in the same way that multiple 

camera angles can help clarify a sports play, it is intuitive that multiple data angles would 

generally improve predictive performance and help clarify the story surrounding a particular 

drug and its potential effects on the human body. A statistical rationale for the benefit of 

integrative approaches is that some component of the noise contained in each data modality 

will be independent, and hence, combining these modalities would lessen the obfuscating 

effects of such noise.

Quantitative evidence in support of integration across data types has been demonstrated for a 

variety of tasks in areas related to computational pharmacology13-18. For example, 

Napolitano, et al.17 demonstrated the benefits of data integration for predicting drug 

therapeutic class; incorporating gene expression, chemical structure, and target interaction 

profiles into a single drug-similarity matrix that was input to a multi-class SVM classifier. 

The authors compared ROC curves generated using the multi-source similarity matrix 

against curves generated using three different single-data source similarity matrices, 

achieving higher accuracy with the integrative approach, as shown in Figure 9. Vilar, et al.13 

used principal component analysis to integrate five different types of features including 

chemical structure and target interaction profiles to predict drug-drug interactions, and 

showed that the integrated features were as good or better than any individual feature, and 

the advantage, as measured by AUC, was magnified in an independent test dataset. Another 

example is the work of Zitnic et al.14 who incorporated a variety of drug, gene and disease 

information sources using a simultaneous matrix factorization approach to build a data-

driven disease classification system that, impressively, found literature support for all 14 

predicted disease-disease associations not already present in the Disease Ontology. 

Furthermore, by systematically removing each data source one at a time and measuring the 

change in recall of disease-gene associations, the authors demonstrated that each individual 

data source contributed positively to model performance. All of these examples demonstrate 

the power of combining multiple data dimensions in the chemical, biological, and 

phenotypic spaces to build predictive models related to drug and disease.
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Comparison of integrative methods

Here, we highlight three algorithmic frameworks that stand out among recent work in 

computational pharmacology as relatively well-suited for multi-scale data integration, 

namely: similarity-based methods, network modeling, and matrix factorization. Each makes 

certain modeling assumptions and has various practical benefits and drawbacks.

Similarity-based methods—Similarity-based methods13, 20, 21, 24-28 comprise a wide 

variety of approaches applicable to all three aims reviewed in this article. Similarity-based 

approaches lend themselves naturally to data integration in that a variety of information 

sources and metadata can be used to define similarity between compounds, targets, side 

effects, and diseases. Further, multiple similarity measures for the same type of entity can 

often be combined into a single similarity matrix, e.g. combining multiple drug-similarity 

matrices into an SVM classifier13, 17. However, one should use caution when combining 

similarity information, as different modalities can be somewhat orthogonal, as found in the 

work of Campillos, et al.21 where drugs were connected based on side effects but did not 

share targets or known indications (as described earlier). In this case, averaging different 

similarity measures might hide a signal that comes from only one dimension, and therefore, 

one might consider alternative ways to combine similarity information, such as taking the 

maximum similarity among all measures.

The premise that similar compounds have similar properties, though not always true140, is an 

intuitive notion and has substantial empirical support, particularly in the case of structural 

similarity revealing shared target interactions21, 83, 84. Further, based on the premise that 

DTIs are the fundamental effectors of downstream biological and physiological 

perturbations, it is reasonable to extend the similarity principle to such downstream effects, 

e.g. side effects and disease indications. One drawback of similarity-based approaches is the 

reliance on data existing “nearby” in pharmacological space, hence limiting applicability for 

discovery of truly novel classes of compounds, targets, etc.

Network methods—Networks provide an intuitive framework to integrate a wide variety 

of information sources, capturing both quantitative and qualitative relationships between 

entities, such as gene expression correlation, or the presence or absence of an interaction70. 

Network topology can be utilized in graph-based algorithms such as label propagation 

methods141 that iteratively propagate information to neighboring nodes; network-based 

inference23 methods that make new connections based only on local topology; and shortest-

path algorithms to identify parsimonious explanations of network perturbations142.

Molecular networks such as gene regulatory networks and metabolic models have many 

applications in computational pharmacology143. Gene regulatory networks constructed from 

genome-wide transcriptional profiles and intrinsic genomic variation are able to estimate 

causal relationships between molecules and identify key drivers of disease144-146. This new 

field of network pharmacology is still in the early days147 but is already illuminating fruitful 

drug targets for treating diseased states148-150 and producing accurate estimates of off-target 

effects151, 152. Alternatively, metabolic models constructed from sets of metabolic reactions 
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can be used to simulate enzyme kinetic activities and perform in-silico gene knockouts, 

which can e.g. help to identify and prioritize new drug targets120, 153.

One practical drawback of some network approaches is a tendency to be somewhat ad hoc in 

nature, having many tuning parameters154, e.g. thresholds to determine presence or absence 

of edges, or how exactly to extract subnetworks, or to what degree nodes should share 

information with their neighbors. Systematic exploration of the robustness of the analysis to 

various parameter settings should ideally be performed, however this can be time-consuming 

and may lead to ambiguous conclusions, and hence a researcher may simply resort to using 

default parameters. However, in some cases, selection155 of parameters can be guided by 

[relatively crude] heuristics such as a constraint that the network structure satisfies the scale-
free property156.

Bayesian network modeling, used e.g. to model gene regulatory networks157, 158, presents 

some specific practical challenges. Bayesian network inference is computationally intensive 

and requires a large number of samples (at least hundreds or thousands) in order to derive 

accurate results159. In addition, there are sometimes multiple Bayesian network graph 

structures that can equally represent the same dataset. To illustrate, the two graphs, X -> Y 

and Y <- X are semantically equivalent in the language of Bayesian networks, essentially 

representing the idea that correlation does not imply causation. In such cases, however, 

additional data can sometimes be used to resolve directional ambiguities, e.g. using intrinsic 

genomic variation160 or time series data161.

While it is natural to model biological systems and, more abstractly, pharmacological space, 

as a set of entities with local interactions, an implicit modeling assumption that is often 

made in network-based approaches is that information travels along paths consisting of local 

relationships23, 70, 141, i.e. long-range interactions and pathway cross-talks leading to 

nonlinearities might be ignored. While these assumptions simplify modeling and analysis 

considerably and may provide reasonable results, this should be considered carefully before 

proceeding down this path.

Matrix factorization—Recent applications of matrix factorization-based 

methods14, 27, 162-164 demonstrate some important advantages of this type of approach, in 

particular, ease of multi-scale integration as well as data imputation within a mathematically 

rigorous formulation. Matrix factorization approximates a [usually large] matrix as a product 

of lower-rank matrices. This approximation can be interpreted as making the modeling 

assumption that there are a small number of “factors” (i.e. less than the number of data 

points) that are responsible for the main variations in the data. Another interpretation is that 

the data can be projected from a higher-dimensional space to a lower-dimensional linear 

space, by applying some linear transformation. When the factorized matrix represents self-

similarity (e.g. a drug-drug matrix) the lower-dimensional space corresponds to a more 

succinct, and hopefully more natural, feature representation of the data. Alternatively, if the 

factorized matrix represents relationships between two entities, e.g. a drug-disease matrix, 

then this lower-dimensional space corresponds to one into which both drugs and diseases 

can be projected27, 162, and hence compared quantitatively.
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The method developed by Zhang, et al.27 (described earlier) presents a unified framework 

for incorporating multiple drug- and disease-similarity measures along with known drug-

disease associations in order to predict new therapeutic associations. All three relationships 

(drug-drug, disease-disease, and drug-disease) are represented by matrices, which are 

factorized. The key idea here that makes this a truly integrative approach, is that a single, 

common low-dimensional drug projection is sought to be maximally consistent with all of 

the drug-similarity matrices, and likewise, a common disease-projection matrix is sought to 

be consistent with all of the disease-similarity matrices. Then, these two projections are used 

in combination to factorize the drug-disease matrix. The entire process is optimized to 

maximally recapitulate known drug-disease associations. A similar approach was presented 

by Zitnic et al.14 (also described earlier) for disease classification, where e.g., five different 

gene-gene similarity matrices were all factorized using a common projection matrix. In 

addition to disease classification and drug repurposing, matrix factorization has also been 

used for DTI prediction163 and drug-ADR associations164.

Another advantage of matrix factorization is its utility for data imputation via “matrix 

completion,” where missing entries in a matrix are filled in based on the observed entries. 

Many techniques165-167 to solve this problem were developed as a result of the Netflix 

competition168, which posed movie recommendation as a matrix completion problem. As an 

example of a biological application, Chi, et al.169 used matrix completion to impute 

genotype information.

Conclusion

Computational pharmacology and drug repurposing are burgeoning areas of research that are 

enabling new ways to systematically explore the drug space and generate novel hypotheses 

surrounding drug action and indications. These techniques are helping to accelerate the drug 

discovery process and generate novel hypotheses from diverse data, helping to augment 

research beyond what might be possible based solely on human intuition or observation.

As new sources of drug-related information become available and molecular measurements 

(e.g., -omics) become more routine, we foresee several new and exciting directions that 

could be explored within the space of computational pharmacology. First, under-utilized data 

sources such as quantitative binding data38 and phenotypic screens170, as well as newer data 

sources such as EHR and internet search engine queries100 will likely provide further 

avenues of development in the near future. Second, we believe that matrix factorization is a 

very promising approach that should be explored in terms of its ability to integrate across 

diverse data and impute missing information. Tensor decomposition, the natural extension of 

matrix factorization to data structures that extend across more than two dimensions (e.g. 

gene expression across many drugs and cell types) might also be explored, e.g. to analyze 

LINCS L1000 gene expression data or to construct low-dimensional representations of 

patient state from EHR data171. Third, recent big-data approaches are generating improved 

disease classifications14 and subtype stratifications172, and this will likely lead to an 

improved ability to identify therapies targeted to more specific patient populations. Finally, 

some drug repurposing methodologies translate naturally into a personalized medicine 

setting; most notably, signature matching techniques, where the disease signature could 
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easily be replaced by an individual's expression signature. Perhaps there are other techniques 

developed for drug repurposing that could be easily translated into this new setting. For 

example, it is likely that more types of -omics data will soon be available on a large scale, 

providing alternative, high-dimensional disease quantifications that could readily translate 

into personalized medicine applications in the coming years.
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Figure 1. A visual map of this article
We can discover new associations between drugs and molecular targets, side effects, or 

diseases, using a variety of techniques. Some of the existing strategies reviewed in this 

article are listed in the three segments.
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Figure 2. Data can be integrated across compounds and/or across data types
Note that this is a simplified illustration in the sense that both targets and gene expression 

responses to a compound can vary depending on the biological conditions in which they are 

assayed, e.g. different cell lines, dosages, etc.135
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Figure 3. Various guilt-by-association strategies in computational pharmacology
The top-left panel could be expressed by the statement “similar drugs may have common 

targets [or side effects or diseases]”; the top-right panel could be expressed as “similar 

targets may interact with the same drug” while the bottom-left panel expresses “similar 

drugs may interact with similar targets.”
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Figure 4. Quantifying and representing drug space
4A: Representing chemical structure. A two-dimensional representation of chemical 

structure can be processed into line notation such as the SMILES string, or into a binary 
fingerprint, as shown in the figure. To construct the SMILES string, first hydrogens are 

removed and any cycles are broken by removing one edge from each cycle. The SMILES 

string is then generated by printing the node symbols during a depth-first tree traversal of the 

chemical graph, and using parentheses to denote branches of the tree. In the example, the 

gold-colored path represents the main backbone for traversal. A binary fingerprint can be 
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generated by pre-defining chemical features such as the ones shown, and then using a ‘1’ or 

‘0’ to indicate the presence or absence of each feature in the chemical structure.

4B: Quantifying drug-target interactions. A dose-response curve is shown, plotting the 

percent of ligand (drug) bound with a candidate target, as a function of the logarithm of 

ligand concentration. Since the slope is positive, the inflection point is called the EC50 value 

(see text). This is a measure of potency, with a lower EC50 corresponding to a more potent 

effect of the drug on the target. The height of the curve at the inflection point is a measure of 

the strength of the effect, i.e. efficacy.

4C: Quantifying drug-perturbed gene expression. Gene expression can be used to 

characterize the effect of a drug on a group of cells by comparing expression between treated 

and untreated samples. The data can be processed into a differential expression profile, or 

processed further into a signature of up- and down-regulated genes. One could also 

summarize the perturbation using differential variance or differential coexpression.

4D: Representing categorical associations such as side effects, diseases, or therapeutic 

classes. Categorical metadata can often be mapped to a structured ontology (see text for 

examples), where the highest level of the tree corresponds to the broadest categorization, and 

deeper levels divide these into more and more detailed distinctions. A numerical 

representation can be generated by selecting a level of detail in the ontology tree and 

indicating presence or absence of a drug's association with each category using a ‘1’ or ‘0’.
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Figure 5. Computational chemistry approaches for target prediction
5A: Result of a molecular docking simulation. The globular surface of the protein is 

shown in grey, and its docked ligand is in blue.

5B: Example of a pharmacophore model. A pharmacophore model is used to represent the 

chemical features deemed to be important for interaction with a chosen target. The features 

are arranged in three-dimensions along with some tolerance radius in an attempt to account 

for dynamic conformational changes of both protein and ligand. A pharmacophore model 

can be constructed from structural analysis of the target's binding pocket, or could be based 

on previously known interactions with the target. Compounds can then be aligned and 

scored against a pharmacophore model in order to prioritize likely interactions. Colors 

indicate different chemical descriptors such as hydrogen bond donor, or hydrogen bond 
acceptor, or hydrophobic region.

Hodos et al. Page 39

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Connecting chemical features to side effects
Scheiber, et al.108 used known drug-ADE associations to connect specific chemical features 

of drugs to 4,210 ADE terms using an extension of Naïve Bayes modeling. An example of a 

resulting model is shown here, associating specific chemical features with QT interval 

prolongation, which causes cardiac arrhythmia.
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Figure 7. Connecting side effects to diseases
Yang and Agarwal15 constructed 145 disease-specific models using drug side effects as 

predictive features to evaluate each drug's therapeutic potential for the disease. Shown is 

their predictive model for hypertension, where the association between hypertension and 

each side effect (quantified by the Matthews correlation coefficient, MCC) is depicted by 

both color and edge-thickness. Binary associations between drugs and side effects are shown 

in grey. Notice that many of the features such as postural hypotension and cold extremities 

seem reasonable in that they are commonly associated with low blood pressure.
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Figure 8. “Connectivity mapping” for drug repurposing
The connectivity mapping approach hypothesizes that a drug and disease with opposing or 

anti-correlated expression profiles might be a therapeutic match, reasoning that if gene 

expression is perturbed in one direction in a diseased state, and in the reverse direction upon 

exposure of a drug, then perhaps that drug could “push” the disease-perturbed expression 

back toward a more normal state, and hence provide therapeutic benefit for the disease.
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Figure 9. Improved performance of data integration
Napolitano, et al.17 demonstrated the benefits of data integration for predicting drug 

therapeutic class; incorporating gene expression (GEX), chemical structure (CHEM), and 

target interaction profiles (TAR) into a single drug-similarity matrix that was input to a 

multi-class SVM classifier. They compared the ROC curve generated using the multi-source 

similarity matrix against curves generated using three different single-data source similarity 

matrices, with the former achieving higher accuracy, as shown.
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