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e Background Living organisms are continuously confronted with perturbations, such as environmental changes
that include fluctuations in temperature and nutrient availability, or genetic changes such as mutations. While some
developmental systems are affected by such challenges and display variation in phenotypic traits, others continue
consistently to produce invariable phenotypes despite perturbation. This ability of a living system to maintain an
invariable phenotype in the face of perturbations is termed developmental robustness. Biological robustness is a
phenomenon observed across phyla, and studying its mechanisms is central to deciphering the genotype—phenotype
relationship. Recent work in yeast, animals and plants has shown that robustness is genetically controlled and has
started to reveal the underlying mechinisms behind it.

e Scope and Conclusions Studying biological robustness involves focusing on an important property of develop-
mental traits, which is the phenotypic distribution within a population. This is often neglected because the vast ma-
jority of developmental biology studies instead focus on population aggregates, such as trait averages. By drawing
on findings in animals and yeast, this Viewpoint considers how studies on plant developmental robustness may ben-
efit from strict definitions of what is the developmental system of choice and what is the relevant perturbation, and
also from clear distinctions between gene effects on the trait mean and the trait variance. Recent advances in quanti-
tative developmental biology and high-throughput phenotyping now allow the design of targeted genetic screens to
identify genes that amplify or restrict developmental trait variance and to study how variation propagates across dif-
ferent phenotypic levels in biological systems. The molecular characterization of more quantitative trait loci affect-
ing trait variance will provide further insights into the evolution of genes modulating developmental robustness.
The study of robustness mechanisms in closely related species will address whether mechanisms of robustness are
evolutionarily conserved.
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INTRODUCTION

Perturbations represent a constant challenge to living organ-
isms, so it is remarkable how biological systems often continue
to produce stable phenotypes in spite of perturbations. Such a
property of a biological system to cope with perturbations and
ensure an invariant output in the presence of considerable noise
is called robustness or insensitivity (Kitano, 2004; Wagner,
2007; Masel and Siegal, 2009). Robustness reflects the degree
of variation in biological systems, so it is important for system
evolution. As such, it can be very relevant to plant breeding,
which aims at uniformity of phenotypic traits. It is also impor-
tant in medicine since many diseases can be studied in the con-
text of loss of robustness of normal physiological states
(Kitano, 2007a). Therefore, understanding the mechanisms and
consequences of robustness represents a fundamental problem
in biology in general.

Developmental robustness is defined as the state of reduced
phenotypic variation under a given perturbation. Low pheno-
typic variation can be found, for example, among individuals in
a population or among different cells and tissues within the
same individual. Developmental robustness therefore refers to

an observable property that can be quantified. Related terms,
such as canalization or developmental buffering, mostly refer-
ring to the processes via which robustness is achieved, are often
used interchangeably in the literature (Debat and David, 2001).
Although the study of robustness has lately attracted a lot of at-
tention (Kitano, 2007h; Masel and Siegal, 2009), the realization
of this phenomenon is not new in biology and stems from ex-
tending the notion of physiological homeostasis to developmen-
tal processes (Debat and David, 2001). C. H. Waddington, who
coined the term canalization, first observed ‘that the wild-type
of an organism, that is to say, the form which occurs in nature
under the influence of natural selection, is much less variable in
appearance than the majority of mutant races’ (Waddington,
1942). Waddington famously illustrated the concept of robust-
ness by showing development depicted as a ball rolling down a
slope in well-defined grooves, from which it is difficult to dis-
place the developmental process (Waddington, 1957).
However, the molecular mechanisms ensuring the consistency
of developmental events are only little understood. Recent ad-
vances in developmental biology for precise perturbations and
phenotyping, including techniques for single-cell manipulations
and monitoring, offer unprecedented possibilities for

© The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company.
All rights reserved. For Permissions, please email: journals.permissions@oup.com



700

experimental, mechanistic studies of robustness (Raj and van
Oudenaarden, 2009; Schmidt et al., 2011)

Robustness and sensitivity represent the extremes of a con-
tinuum of possible responses to perturbations. Levels of devel-
opmental robustness may differ between animals and plants,
with plants being perhaps more sensitive, for example, to
environmental signals due to their extended period of post-
embryonic morphogenesis and sessile nature. However, the
same principles apply when it comes to defining developmental
robustness and studying the contribution of genes to stabiliza-
tion of developmental outcomes. We discuss here some robust-
ness lessons from various other systems, focusing on their
potential implications to understanding phenotypic buffering in
plants.

CHOOSING THE SYSTEM AND PERTURBATION:
ROBUSTNESS ‘OF WHAT’ ... ‘TO WHAT’

To study biological robustness experimentally, one needs first
to define precisely two parameters: what is the system of choice
and what is the perturbation the system is facing (Felix and
Wagner, 2008). For the case of developmental robustness, the
answer to the question ‘what is robust’ lies in specifying what
is the developmental trait of interest. For example, a relevant
trait could be any quantifiable phenotype related to the develop-
ment of an organism and at any possible level including gross
morphology, cellular characteristics of a given system (i.e. cell
fate patterns or number of cells), molecular measurements
(i.e protein or gene expression levels), physiological features or
behaviour. The trait of interest may be the final phenotype of a
system (also known as ‘output’ phenotype) or any intermediate
‘endophenotype’ that can be quantified during the developmen-
tal process. It is therefore possible for a given output to be ro-
bust despite considerable variation in intermediate processes.

To answer the question ‘to what the system is robust’ one
needs to define the exact nature of the perturbation.
Perturbations can be internal for an organism or external
(Masel and Siegal, 2009). Internal perturbations include uncon-
trollable stochastic or microenvironmental variation, for in-
stance in the concentration of proteins or variation in gene
expression levels among individuals or cells, and genetic varia-
tion upon heritable mutation accumulation and recombination.
External perturbations are commonly environmental changes
such as temperature, nutrient concentration, humidity and pho-
toperiod that are likely to affect growth and development.
These different sources of perturbations ultimately lead us to
distinguish the types of developmental robustness as microenvi-
ronmental, environmental and genetic robustness.

So what makes a good model system to study developmental
robustness? A leading paradigm from animal studies over the
last few years is the simple cell fate pattern of the nematode
vulva, which is an egg-laying and copulatory organ (Fig. 1)
(Felix and Barkoulas, 2012). There are many reasons why nem-
atodes, and the vulva in particular, represent good experimental
models of developmental robustness. First, robustness studies
rely on differences in trait variance and therefore require large
sample sizes in order to compare distributions, and
Caenorhabditis elegans nematodes are amenable to large sam-
ple phenotyping. Secondly, C. elegans strains are nearly
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isogenic due to their hermaphroditic reproductive mode, which
eliminates the confounding effect of mixing together different
perturbations, for example background genetic variation and
environmental variation when studying robustness. This is in
stark contrast to non-isogenic model systems, where each
individual has a unique genotype and therefore separating the
effects of different types of perturbations on developmental
robustness can be a daunting task. Lastly, the nematode
C. elegans is the only animal for which the entire cell lineage is
known (Sulston and Horvitz, 1977) and the development is
highly stereotypical, allowing precise characterization of devel-
opmental defects with high accuracy and single-cell resolution.
Furthermore, vulval cell fate development in particular has
been studied for 30 years now and it is a textbook example of
animal tissue patterning. Pursuing questions about the mecha-
nisms of robustness can be greatly facilitated by prior knowl-
edge about the molecular underpinnings of a developmental
system and its gene network topology. Although we will not go
into details of the actual molecular players of the vulval net-
work, we need to introduce, for the purposes of this review, that
the master inducer of vulval patterning is an epidermal growth
factor (EGF)-like molecule that is secreted by the dorsally lo-
cated anchor cell of the somatic gonad (Fig. 1A; Felix and
Barkoulas, 2012).

Developmental robustness is a quantifiable trait, and studies
in the vulva have shown that robustness can be high or low.
However, robust systems are not infallible, so robustness has its
limits. For example, the vulval cell fate pattern is highly robust
to stochastic and environmental variation (Fig, 1A; Braendle
and Felix, 2008) as well as to standing genetic variation, as
nematodes which are genetically distant from, but related to,
C. elegans all share the same vulval cell fate pattern (Felix,
2007). However, extensive cell fate phenotyping in the vulva
showed that cell fate patterning errors do happen at very low
frequency (usually <5 %). Furthermore, studies on the vulva
showed that the degree of robustness depends on the exact na-
ture of the perturbation, since the same C. elegans isolate (or
‘accession’ for plant biologists) can be more sensitive to one
perturbation than to some others — for example the lab reference
strain of C. elegans is more sensitive to food starvation than
changes in growth temperature (Braendle and Felix, 2008). The
type of developmental errors also depends on the genetic back-
ground, as different C. elegans isolates respond differently to
distinct perturbations (Braendle and Felix, 2008). Different tis-
sues or cells within an organism may show different degrees of
robustness. For example, despite the stereotypical nematode
cell patterning, vulval cell induction is more robust to stochastic
noise than patterning of some other epithelial cells called seam
cells (Fig. 1). This difference in robustness becomes even more
pronounced when animals are grown at higher (25°C) than
standard (20 °C) temperature (Fig. 1B). It is of note that the
more insensitive a system is, it does not necessarily mean that it
is a better model for robustness and, depending on the biologi-
cal question and approach, a marginal degree of sensitivity may
also be beneficial.

Robustness can also be studied theoretically, using
computational models that mimic a developmental process.
Again, the phenotype of interest could be any developmental
phenotype such as segmentation in flies, bacterial chemotaxis
or vulval cell fate patterning (Barkai and Leibler, 1997; von
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FiG. 1. Comparison of developmental robustness between two Caenorhabditis elegans nematode tissues. (A) Vulval development in C. elegans involves induction of
only three cells (P5.p—P7.p) out of a group of six competent cells, by adopting one of the two following cell fates; the primary cell fate, which is acquired by P6.p
(depicted in blue), and the secondary fate, which is adopted by P5.p and P7.p (depicted in red). The remaining cells P3.p, P4.p and P8.p (in yellow) act as a back-up
system and can only be induced if P5.p—P7.p fail to do so. An EGF-like molecule is the main inducer of the vulva. It is secreted from the anchor cell of the somatic
gonad, which is located dorsally to the Pn.p cells. The average number of induced cells in the population (three in the wild type) can be used as a way to quantity the
phenotype (phenotype 1). The induction index is robust to stochastic noise both at 20 °C (standard growth temperature) and at 25 °C. (B) Seam cells are epithelial
stem cell-like cells in C. elegans. The number of cells (16 per lateral side) can be used as a quantitative phenotype, and this number is robust at 20 °C but not at
25°C (phenotype 2). However, seam cell number at 20 °C is less robust compared with the vulval induction index (note the increase in standard error in seam cell
number). Note the difference in information that can be inferred from analysing the mean (panels in the centre) and phenotypic distribution (right-hand panels). For
example, phenotype 2 distribution is wider at 25 °C, with a bias towards an increase in seam cell number. Data in both (A) and (B) come from our lab after phenotyp-
ing 50 animals of the lab reference strain N2.

Dassow et al., 2000; Ma et al., 2006; Hoyos et al., 2011).
Computational models reinforce experimental results and make
novel predictions about experimental outcomes. For example,
leaf margin patterning in Arabidopsis thaliana relies on
PINFORMEDI1 (PIN1)-mediated auxin maxima that appear se-
quentially along the margin of the growing leaf. A computa-
tional model of leaf margin development predicted that the
CUP-SHAPED COTYLEDON?2 (CUC2) transcription factor
stabilizes these maxima, allowing the consistent generation of
leaf margin serrations (Bilsborough et al., 2011). Mathematical
models can have different degrees of complexity and abstrac-
tion. They often include parameters, such as half-lives of
mRNAs or binding rates, whose values are randomly set as
they are experimentally hard to quantify. Robustness in this
case refers to model output performance upon parameter
change over a certain range. For example, a 40-parameter
model reconstituting the known topology of the vulval gene
network and explaining some key experimental results was
challenged to a ten-fold variation in model parameters. It was
shown that the model is robust to changes in many but not all
parameters, with one point of sensitivity being variation in EGF
synthesis (Hoyos et al., 2011). Such theoretical approaches can

generate novel experimental predictions about the underlying
basis of developmental robustness.

In plants, there is no single system on which scientists have
focused efforts in order to quantify systematically robustness to
various perturbations. Similar to the nematode vulva, quantifi-
cations can be performed for any developmental phenotype of
interest such as organ number (i.e. rosette leaf, cauline leaf,
flower and branches), organ or tissue size and architecture
(i.e. plant height, hypocotyl length and rosette diameter) or de-
velopmental timing traits (i.e. flowering time) (Pouteau et al.,
2004; Fu et al., 2009). Due to the plastic nature of plants, most
of these phenotypes are likely to be more responsive to pertur-
bations and thus more variable than nematode cell patterning.
For example, flowering time is sensitive to fluctuating environ-
mental cues, such as the seasonality of flowering times, which
is affected by the photoperiod, light intensity and temperature
changes acting through the circadian clock (Samach and
Coupland, 2000). However, some phenotypes in plants are
thought to be quite invariable. One example is the number of
cotyledons, which in angiosperms is either one or two, with lit-
tle variance, and pleiocotyly is a developmental deviant pattern
that is rare to find (Conner and Agrawal, 2005). Another
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example is petal or sepal number in arabidopsis that also shows
very little variance (Sieber et al., 2007). We anticipate that ad-
vances in high-throughput and automated phenotyping in plants
will increase systematic and comparative quantification of de-
velopmental phenotypes in different genetic backgrounds and
under various perturbations (Tisne et al., 2013; Yang et al.,
2013).

MEAN VS. VARIANCE OF DEVELOPMENTAL
TRAITS AND TWO-SIDED PHENOTYPIC
ERRORS

Most of modern developmental biology is dominated by mean-
centric approaches, where phenotypic averages are compared
but details about phenotypic distributions in populations are
usually ignored (Geiler-Samerotte et al., 2013). However, phe-
notypic distributions hide valuable information about the indi-
viduals of the population. Phenotypic heterogeneity is in fact
abundant even within genetically identical individuals (Eldar
et al., 2009; Burga et al., 2011), and in many cases this hetero-
geneity may be critical for cell differentiation, patterning and
species evolution (Eldar and Elowitz, 2010; Johnston and
Desplan, 2010; Balazsi et al., 2011). For example, bacterial het-
erogeneity in growth allows some cells to survive antibiotic
treatment (Bishop et al., 2007), and growth heterogeneity also
contributes to chemoresistance in tumours (Roesch er al., 2010;
Sharma et al., 2010). In plants, considerable variability in
growth has been found in the leaf epidermis and the meristem
(Elsner et al., 2012; Kierzkowski et al., 2012; Uyttewaal et al.,
2012), and cell heterogeneity and anisotropic growth
were shown in another study to correlate with sepal growth
(Schiessl et al., 2012). Cell to cell heterogeneities often
arise from stochasticity in gene expression, one example being
photoreceptor choice of individual cone cells in mammals
(Jacobs, 2009) or the monogenic expression of a single odorant
receptor in olfactory sensory neurons (Magklara and
Lomvardas, 2013). In arabidopsis, cell to cell variation in
FLOWERING LOCUS C (FLC) expression due to silencing
may act as a way to register epigenetic memory of cold expo-
sure (Angel et al., 2011).

Analysing phenotypic distributions is very central to studying
the genetics of robustness. We argue here that distinguishing
between gene effects on trait mean and variance is essential for
studying robustness (Fig. 2A). In developmental genetic terms,
understanding the mechanisms of robustness entails identifying
genes influencing phenotypic variance. So let us consider as a
phenotypic example the length of the primary root. In contrast
to the classical approach of isolating mutants showing a signifi-
cant change in the average root length in the population, a tar-
geted robustness screen would rather focus on identifying
factors specifically affecting root length variance without af-
fecting the trait mean (Fig. 2B). The main reason for ideally se-
lecting against changes in mean is that mutants tend to be
generally more variable than the wild type, as first postulated
by (Waddington, 1942), so deviations from the wild-type mean
are commonly accompanied by changes in variance. Genuine
changes in variance are still possible when the trait mean is dif-
ferent. However, one would have to support that there is unex-
pectedly high variance for that given phenotypic mean. This
involves studying in detail the relationship between mean and
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variance, which is phenotype dependent (Levy and Siegal,
2008).

An increase in trait variance coupled with changes in the
mean can simply arise due to partial penetrance or variable ex-
pressivity of mutations, and describing such defects in the light
of robustness failure is a common problem in the recent litera-
ture. For example, in some robust systems, with one example
being the nematode vulva, all mutations affecting developmen-
tal patterning show either partial penetrance or variable expres-
sivity, so any change in the mean is intrinsically linked with a
change in phenotypic variance (Barkoulas er al., 2013).
Moreover, condition-dependent effects on trait mean such as
environmental sensitivity of mutations are indicative of geno-
type X environment interactions, but not good evidence for loss
of developmental robustness. Genotype X environment interac-
tions are indeed a common finding, as demonstrated using the
yeast knockout library in different culture environments
(Hillenmeyer et al., 2008).

It is conceivable that a certain perturbation may lead to a
wider phenotypic distribution but would maintain the pheno-
typic mean if it results in two-sided phenotypic errors within
the population. Going back to the root example discussed
above, a two-sided phenotypic error would mean that some in-
dividuals respond to this perturbation by showing an increase
and some others a decrease in root length within the same geno-
type. Such two-sided errors can be used as a proxy for develop-
mental robustness defects in genetic screens, and their
developmental basis is interesting to understand in the context
of loss of buffering. However, in some cases, developmental
constraints may only allow one-sided phenotypic distributions.

PROBING THE GENETICS OF TRAIT VARIANCE

If developmental robustness evolves under natural selection,
there should be loci in the genome that act as suppressors of
phenotypic variation. As a consequence, inducing mutations in
these particular loci should increase phenotypic variance to a
given perturbation. Such trait variance controllers are often de-
scribed in the literature as ‘phenotypic capacitors’ (Levy and
Siegal, 2008) or ‘master regulators’ of robustness when several
traits are affected (Lempe et al., 2013). From a developmental
genetics point of view, questions arising from the notion of hav-
ing robustness genes include (a) whether these genes can be
found frequently experimentally or are rare; (b) what type of
gene products they encode; (c) whether they are specific to the
trait and source of variation; and (d) whether they harbour natu-
ral genetic variation that could explain within-species differ-
ences in phenotypic robustness. We discuss below how recent
studies, through a combination of classical genetic screens and
quantitative genetics in different systems, have just started pro-
viding some answers to these questions.

Deciphering the full spectrum and frequency of robustness
genes would require unbiased and systematic screens to reveal
all genetic factors shaping phenotypic variation. As argued
above, these robustness screens should focus on discovering
genes affecting specifically trait variance, rather than pheno-
typic means. Such screens have not yet been performed in
plants or any other multicellular eukaryote, but have been car-
ried out in Saccharomyces cerevisiae (Levy and Siegal, 2008;
Rinott et al., 2011; Bauer et al., 2015).
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Fig. 2. Defining robustness genes and robustness to gene expression change. (A) For any quantifiable phenotype, classical developmental mutants are defined herein
as those displacing the mean, leading to either an increased or decreased mean, whereas robustness mutants as those increasing the phenotypic variance without
much effect on the mean. In practice, the most common case is mutants that do both at the same time sensu Waddington. (B) An example showing a strict robustness
defect using root length as the phenotype of interest. (C) Examples illustrating the effect of changing gene expression levels on two different developmental pheno-
types: the nematodes’ vulval cell fate induction (upper panel) in response to EGF expression (presented by the number of mRNA molecules quantified in situ) show-
ing that the induction index tolerates a change in expression ranging from 15 to 50 mRNA molecules (Barkoulas ez al., 2013). Exposure to <15 mRNA molecules
causes hypoinduction, whereas expression of >50 mRNA molecules causes hyperinduction. The lower panel illustrates the example of plant meristem size in re-
sponse to change in expression level of CLAVATA3 (CLV3) relative to the wild type (100 %). Meristem size is shown to tolerate a ten-fold variation in CLV3 expres-
sion (from 33 % to 320 % that of the wild type) (Muller ez al., 2006).

There are a number of messages emerging from these studies
in yeast. First, there are a large number of single genes that con-
tribute to developmental robustness. This was anticipated by
early theoretical work showing extensive loss of robustness in
simulations of single mutants of evolved robust networks
(Bergman and Siegal, 2003), predicting that single-gene disrup-
tion can be sufficient to result in a robustness breakdown. More
recently, Levy and Siegal (2008) identified 300 yeast mutants
in a yeast knockout library that exhibit reduced robustness of
quantitative morphological markers to stochastic variation, and
Rinott ez al. (2011) characterized multiple genes buffering cell—
cell stochastic variability using reporter gene expression as the
phenotypic read-out. These conclusions are supported from
studies in flies, where Takahashi used genomic deficiency lines
to identify multiple genomic regions harbouring loci that are
necessary to buffer wing shape to genetic variation and sensory
bristles to environmental variation (Takahashi et al., 2012;
Takahashi, 2013).

A second message emerging from the yeast studies involves
the molecular identity of phenotypic capacitors, which share
the characteristic of being part of highly connected nodes in
cellular networks such as chromatin maintenance factors, cell
cycle proteins, transcriptional regulators, and components of
the stress response (Levy and Siegal, 2008; Rinott et al., 2011).
Interestingly, some deletions in genes involved in clathrin-
dependent vesicle transport or transcription regulation were
found to decrease rather than increase the phenotypic variance

in growth rate (Levy et al., 2012). This suggests that some loci
in the genome may also act as variance amplifiers for certain
phenotypes. A more recent study reported a high proportion of
phenotypic stabilizers among essential genes (Bauer et al.,
2015). Therefore, the molecular identity of these factors sug-
gests that phenotypic capacitors may be broad regulators of cell
homeostasis, buffering many developmental phenotypes at
once as a result of their high connectivity with several other cel-
lular gene networks. It is still unclear to what extent some tis-
sue-specific components may also affect system robustness.
One example comes from studies in flies where mutations in
the transcription factor gene TAILESS have been shown to af-
fect embryo to embryo variability in segmentation gene expres-
sion patterns (Janssens et al., 2013).

Single genes acting as phenotypic capacitors have also been
identified through candidate gene approaches. The classical ex-
ample is heat shock protein 90 (HSP-90), which is an ATP-
dependent chaperone helping the maturation of a wide range of
proteins through its association with various co-chaperones and
cofactors (Whitesell and Lindquist, 2005). Impairment of HSP-
90 function, first in flies and later in other organisms including
plants, revealed a wide range of developmental abnormalities
(Rutherford and Lindquist, 1998; Queitsch et al., 2002;
Samakovli et al., 2007; Sangster et al., 2008). HSP-90 may
contribute to system robustness to standing genetic variation or
noise either directly through association with mutant interactors
such as kinases, ubiquitin ligases and transcription factors, or
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indirectly by regulating the activity of signal transduction path-
ways. However, developmental abnormalities upon HSP-90 in-
hibition have been mostly studied in a qualitative rather than a
quantitative way in the literature, so it is unclear in many cases
whether HSP-90 impairment affects specifically trait variance
(see Rohner et al., 2013 for a recent exception to this). Another
single-gene disruption in plants related to robustness involves
the circadian clock regulator EARLY FLOWERING 4 (ELF4).
In this case, two-sided phenotypic errors in the circadian clock
period have been found in e/f4 mutants in arabidopsis (Doyle
et al.,2002).

A class of genes thought to be key players in developmental
robustness is micro-RNAs (miRNAs) (Hornstein and Shomron,
2006). miRNAs are post-transcriptional regulators of gene
expression in both animals and plants (Bartel, 2009; Rubio-
Somoza and Weigel, 2011). They function by tuning the
expression levels of their target genes, setting up sharp develop-
mental boundaries of differential gene expression. They also
participate in feedback and feedforward loops within develop-
mental networks buffering the stochastic expression of their tar-
get genes (Wu et al., 2009; Siciliano et al., 2011). One example
in arabidopsis involves the mirl64 family: mirl64abc triple
mutants show increased variance in stem internode size as a
consequence of derepressing CUCI and CUC?2 gene expression
(Sieber et al., 2007). However, miRNAs are often considered
as robustness factors simply based on the condition-dependent
developmental defects of many miRNA mutants, for example
showing phenotypes specifically in one environment and not in
another. Once again, we argue that distinguishing the effects on
mean and variance is very important in order to determine on a
case by case basis whether miRNAs are indeed regulators of
developmental robustness sensu stricto.

In plants, the distinction between gene effects on trait mean
and variance has mostly been discussed so far in the context of
natural variation in robustness. Quantitative trait locus (QTL)
mapping approaches have proved successful in identifying ef-
fects on trait variance, not just the mean (Weller et al., 1988),
and QTL studies and genome-wide association studies have
since been pursued in plants including maize and arabidopsis to
identify loci affecting specifically trait variance upon a given
perturbation (Hall et al., 2007; Ordas et al., 2008; Jimenez-
Gomez et al., 2011; Shen et al., 2012). Phenotypes of choice
include gross plant morphology, metabolite profiling or gene
expression, and the most common perturbation is microenviron-
mental or environmental variation. Similar to lab-induced muta-
tions, a main message emerging from these studies is that
multiple independent genomic regions contribute to natural var-
iation in trait variance, with some of these regions affecting at
the same time the trait mean and variance, while others act spe-
cifically on one or the other (Hall et al., 2007; Ordas et al.,
2008; Jimenez-Gomez et al., 2011). Additionally, some QTLs
were found to affect sensitivity in many different phenotypes or
to act as ‘hotspots’ in the genome, underlying system-wide
buffering of many phenotypic traits (Hall et al., 2007; Fu et al.,
2009). However, in very few cases have the causative alleles
for trait variance been identified down to the nucleotide level.

One example is a QTL identified for variance of rosette leaf
number under long-day photoperiods between the two most
widely used A. thaliana accessions, Columbia and Landsberg
erecta. This QTL maps closely to the ERECTA (ER) gene, a
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member of the leucine-rich repeat/receptor-like protein kinases,
which has pleiotropic functions in plant development (van
Zanten et al., 2009). Interestingly, the effect of ER in this case
was found to be allele specific, with only one of the available
mutations in ER reproducing the variance defect (Hall ef al.,
2007). Another example is genetic variation in the ELF3 gene,
another core component of the circadian clock and protein
interactor of ELF4, which was found to affect differences be-
tween the Bayreuth and Shahdara A. thaliana accessions for
sensitivity to noise in many phenotypes. Interestingly, the
Shahdara ELF3 allele affects noise in a context-dependent man-
ner, increasing trait variance for some phenotypes and decreas-
ing variance for others. This suggests that the exact direction of
the effects for genes influencing trait variance may be pheno-
type dependent. Another good example from yeast revealed the
molecular identity of loci controlling trait variance in natural
populations. Using five isogenic yeast strains, it was shown that
loci related to uracil metabolism and sensing the environment
buffer cell to cell stochastic variation in GFP (green fluorescent
protein) reporter gene expression (Ansel et al., 2008; Fehrmann
et al.,2013).

Findings from single-gene perturbations support the idea that
phenotypic robustness can be genotype specific, especially
when studying related or interconnected traits (Bauer er al.,
2015). However, robustness can also be trait specific. Extensive
phenotyping of cell morphology and intracellular organization
in wild yeast isolates revealed that most strains show trait-
specific noise variation, although some strains can be globally
variable for many phenotypes. The genetic diversity of the
globally variable strains suggested multiple evolutionary transi-
tions to high global variance under different ecological pres-
sures (Yvert et al., 2013)

MECHANISMS AND EVOLUTION

The identification of single genes buffering developmental phe-
notypes raises the question of how robustness is mechanistically
achieved. Developmental robustness is linked to functional re-
dundancy, which ensures trait stability in the face of perturba-
tions by providing back-up opportunities for a given system.
Redundancy in biological systems can be found at many differ-
ent levels, such as in cells, genes and regulatory elements
(Wagner, 2007). For example, in the developmental context of
the vulva, a common phenotypic error is mis-centring of the an-
chor cell above the P5.p cell upon environmental variation,
whereas normally the anchor cell is located above P6.p.
However, three competent cells P(3,4,8).p provide back-up cell
redundancy, and such mis-centring is buffered without leading
to phenotypic consequences. Gene redundancy can provide mu-
tational robustness when a gene duplicate can substitute for a
mutated paralogue or when gene duplicates show different sen-
sitivities to environmental factors such as temperature (Hsiao
and Vitkup, 2008; Keane et al., 2014). Further focusing down
at the nucleotide level, redundancy of regulatory elements such
as transcriptional enhancers ensures insensitivity of gene ex-
pression programmes to macroenvironmental perturbations
(Frankel et al., 2010; Perry et al., 2010)

The mechanistic basis of robustness lies not only in redun-
dant parts, but also in the distribution and connections of parts
within a system. In this case, several components of a system
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contribute to the flow of information and thus system function.
Distributed robustness is very common in metabolic and devel-
opmental networks (Felix and Wagner, 2008). Network topol-
ogy including feedback or feedforward regulatory loops and
signalling pathway cross-talk are important for developmental
robustness (Posadas and Carthew, 2014). In plants, multiple in-
terconnected feedback loops are important for the stability of
the circadian clock (Mas and Yanovsky, 2009). For example,
work on the arabidopsis circadian clock showed that the feed-
back regulatory loop between the LIGHT-REGULATED WD1
(LWD1) and PSEUDO-RESPONSE REGULATORY (PRR9)
is important for the robustness of the circadian rhythm, which
is variable in /wdl;lwd2 double mutant plants under continuous
dark conditions (Y. Wang et al., 2011). Feedback regulation
has been shown in many different systems to result in thresh-
old-like system behaviour and thus to increase output stability
to stochastic, environmental and standing genetic variation
(Becskei and Serrano, 2000; Ramsey et al., 2006; Shinar et al.,
2007; Denby et al., 2012).

Phenotypic variance may be explained through variation in
gene expression across individuals. Variable gene expression
can arise upon many different genetic perturbations. For
example, overexpression of the chromatin remodelling SWI/
SNF2-type ATPase AtCHR?23 in arabidopsis leads to increased
variation in gene expression between individual plants (Folta
et al., 2014). Continuous variation in gene expression may
propagate as a bimodal output for another downstream gene,
and this was shown to be the underlying basis of partial pene-
trance for some intestinal mutations in C. elegans (Raj et al.,
2010). However, biological systems can be robust to a range of
changes in gene dosage (Acar et al., 2010; Barkoulas et al.,
2013). For example, vulva cell fate patterning is sensitive to
changes in the level of EGF-like signalling and exhibits two
distinct thresholds: one below which the vulva is underinduced
and another above which the vulva is overinduced (Barkoulas
et al., 2013). These boundaries of the robustness of cell induc-
tion to EGF expression variation were determined at single-
molecule resolution by quantitative in situ hybridization in C.
elegans (Fig. 2C; Barkoulas et al., 2013). In plants, Miiller and
colleagues addressed what is the range of variation in
CLAVATA3 (CLV3) expression that the meristem can buffer
without changing its size (Muller et al., 2006). The authors
used CLV3 promoter deletion derivatives to modulate the ex-
pression levels of CLV3 and showed that shoot and flower meri-
stem size is robust to a ten-fold change (Muller et al., 2006)
(Fig. 20).

Are changes in  phenotypic variance adaptive?
Developmental robustness is just an observable property, so a
lack or low levels of phenotypic variation does not necessarily
imply that this is the product of selection. It may arise neutrally
because of non-linearity between parameters and phenotypic ef-
fects in biological systems resulting in robustness plateaux
(Lynch, 2007) (Fig. 2C). It may also arise pleiotropically due to
selection for another phenotype or due to selection for robust-
ness to another perturbation. The latter is because it has been
shown that, at least in some cases, there is similarity between
the responses to two different types of variation. For example,
alleles selected for environmental canalization may also be re-
sponsible for genetic canalization (Meiklejohn and Hartl,
2002). To address experimentally whether a certain phenotype
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is maintained under stabilizing selection in the lab, mutation ac-
cumulation lines are very useful, which are constructed in self-
fertile or hermaphrodite species by continuing with a random
single individual for many generations, thus minimizing the ef-
fect of selection. Such lines were used in C. elegans to show
that the high degree of robustness of the vulval cell fate pattern
is likely to be maintained under selection, as it rapidly breaks
down upon random mutation accumulation (Braendle e al.,
2010).

The genetic basis of trait variance suggests that natural selec-
tion may act to optimize phenotypic variation within a popula-
tion. Is it better for a system to be robust or sensitive to
perturbations? A high degree of developmental robustness and
so low phenotypic variation in the population may in some
cases be beneficial for it to withstand various perturbations.
However, phenotypic plasticity and high phenotypic variation
can also be key in order to cope with environmental challenges
or spark evolutionary innovation. Therefore, depending on the
phenotype of interest and the ecological circumstances, natural
selection may act either to stabilize or to destabilize phenotypic
traits. A recent example concerning gene expression compared
the effects of natural polymorphisms in the promoter of the glu-
cose metabolism gene TDH3 within 85 S. cerevisiae strains
with those of random point mutations in this promoter (Metzger
et al., 2015). This study suggested that selection on gene ex-
pression noise has had a greater impact on sequence variation
than selection on mean expression levels, highlighting that puri-
fying selection constrains variation in TDH3 expression among
isogenic individuals (Metzger et al., 2015). It is important in
the future to better link phenotypic variation with fitness.
Phenotypic capacitors identified in genetic screens in yeast rep-
resent highly connected nodes in cellular networks and network
hubs that are probably enriched for pleiotropic effects
(Costanzo et al., 2010). This suggests that increased phenotypic
variation in such mutant backgrounds may only come as a side
effect due to a broader reduction in fitness (G. Z. Wang et al.,
2011). This is not, however, a general conclusion since in-
creased morphological variation in yeast was not found to cor-
relate with a decrease in fitness (Bauer et al., 2015).

Robust systems are still adaptable and they do evolve by ac-
cumulating cryptic genetic variation (Paaby and Rockman,
2014). This is abundant genetic variation that is normally buff-
ered, so it is silent at the phenotypic level, but can be revealed
upon system perturbation such as experimental introgression of
mutations or cell ablations (Milloz et al., 2008). For example,
in the case of HSP-90-mediated buffering, functional impair-
ment of this chaperone pharamcologically, or perhaps by tem-
perature in the wild, leads to background-dependent pleiotropic
defects in develepment (Rutherford and Lindquist, 1998). The
release of cyptic genetic variation in the form of phenotypic
variation can be enriched by selection, allowing adaptation to
new environments (Rohner ez al., 2013).

CONCLUSIONS

By drawing on findings in animals and yeast, we discuss here
how studies on plant developmental robustness may benefit
from strict definitions of what is the developmental system of
choice and what is the relevant perturbation. They will also
benefit from a clear distinction between gene effects on trait
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mean and trait variance. Such a distinction has been discussed
in the context of plant quantitative genetics but very little in the
plant development field. Recent advances in quantitative devel-
opmental biology and high-throughput phenotyping now allow
the design of targeted genetic screens to identify genes amplify-
ing or restricting developmental trait variance and study how
variation propagates across different phenotypic levels in bio-
logical systems. The molecular characterization of more QTLs
affecting trait variance will provide further insights into the
evolution of genes modulating developmental robustness. The
study of robustness mechanisms in closely related species will
address whether mechanisms of robustness are evolutionarily
conserved.
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