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Abstract

NSD1 and EZH2 are SET domain-containing histone methyltransferases that play key roles in the 

regulation of transcription through histone modification and chromatin modelling: NSD1 

preferentially methylates lysine residue 36 of histone 3 (H3K36) and is primarily associated with 

active transcription, whilst EZH2 shows specificity for lysine residue 27 (H3K27) and is 

associated with transcriptional repression. Somatic dysregulation of NSD1 and EZH2 have been 

associated with tumorigenesis. NSD1, as a fusion transcript with NUP98, plays a key role in 

leukemogenesis, particularly childhood acute myeloid leukemia. EZH2 is a major proto-oncogene 

and mono- and biallelic activating and inactivating somatic mutations occur as early events in the 

development of tumors, particularly poor prognosis hematopoietic malignancies. Constitutional 

NSD1 and EZH2 mutations cause Sotos and Weaver syndromes respectively, overgrowth 

syndromes with considerable phenotypic overlap. NSD1 mutations that cause Sotos syndrome are 

loss-of-function, primarily truncating mutations or missense mutations at key residues in 

functional domains. EZH2 mutations that cause Weaver syndrome are primarily missense variants 

and the rare truncating mutations reported to date are in the last exon, suggesting that simple 

haploinsufficiency is unlikely to be generating the overgrowth phenotype although the exact 

mechanism has not yet been determined. Many additional questions about the molecular and 

clinical features of NSD1 and EZH2 remain unanswered. However, studies are underway to 

address these and, as more cases are ascertained and technology improves, it is hoped that these 

will, in time, be answered.
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NSD1 (Nuclear receptor-binding SET domain-containing protein 1) and EZH2 (Enhancer of 

Zeste, drosophila, homolog 2) both encode SET domain-containing histone 

methyltransferases and their germline abrogation results in the childhood overgrowth 

syndromes, Sotos syndrome and Weaver syndrome respectively (MIM 117550 and MIM 
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614421). NSD1 is located at chromosome 5q35.3 and contains ten conserved domains in 

addition to the SET (Su(Var)3-9, Enhancer of zeste, Trithorax) and preceding SAC (SET 

associated cysteine rich) domains: two distinct nuclear interacting domains (NID+L and 

NID−L); two PWWP domains (Pro-Try-Try-Pro motif); five zinc finger, PHD, domains and 

one C5HCH (cysteine/histidine rich) domain. EZH2, at chromosome location 7q36.1, has 

two SANT (Swi3, Ada2, N-cor TFIIIB) domains in addition to the SET and SAC domains 

(figure 1a).

There is considerable phenotypic overlap between Sotos and Weaver syndromes with both 

characterized by pre and post natal overgrowth, a variable intellectual disability and similar 

facial appearance. In addition somatic disruption of both NSD1 and EZH2 has been 

implicated in multiple tumor types, particularly hematological malignancies. It is interesting 

and noteworthy that these two histone methyltransferases should have similar, dual roles in 

tumorigenesis and human development and the current review will explore the similarities 

and key differences between these two proto-oncogenes.

NSD1 and EZH2 are histone methyltransferases but with differing histone/

lysine specificities

Histone methyltransferases play a critical role in the epigenetic modification of histones 

thereby determining chromatin compaction and transcriptional activity. Most histone 

methyltransferases contain a conserved SET domain that catalyses the transfer of methyl 

groups to specific lysine and arginine residues of histone and non-histone proteins (Rea et al 

2000). By comparing homology of the SET domains, four subfamilies of histone 

methyltransferases have been defined; SUV39, SET1, SET2 and RIZ (Kouzarides 2002). 

NSD1 and EZH2 belong to the SET2 and SET1 subfamilies respectively and each is 

associated with specific post-translational histone modifications or “marks”: NSD1 

preferentially catalyses the transfer of up to two methyl residues to lysine residue 36 of 

histone 3 (H3K36) and may additionally have specificity for lysine residue 20 of histone 4 

(H4K20, Qiao et al 2011; Rayasam et al 2003). In contrast, EZH2, (when associated with 

EED (Embryonic Ectoderm Development protein, mouse, homolog of) and SUZ12 

(Suppressor of Zeste 12, drosophila, homolog of) to form the core components of the 

polycomb repressor complex 2 (PCR2)), catalyses the tri-methylation of lysine residue 27 of 

histone 3 (H3K27me3, figure 1b, Cao et al 2002). The histone modifications catalyzed by 

EZH2 have been associated with transcriptional repression whereas those catalyzed by 

NSD1 have primarily been associated with activation but can be associated with repression 

depending on the cellular context (Cao et al 2002; Huang et al 1998; Wagner et al).

NSD1 and EZH2 are proto-oncogenes

NSD1 and EZH2 are proto-oncogenes with somatic mutations identified in multiple tumor 

types. A recurrent cryptic translocation t(5;11)(q35.3;p15.5) involving NSD1 has been 

identified in approximately 5% of childhood acute myeloid leukemia (Cerveira et al 2003). 

The translocation fuses NSD1 to nucleoporin 98 (NUP98), a component of the nuclear core 

complex, and the resultant NUP98-NSD1 fusion protein plays a key role in leukemogenesis 

through H3K36 methylation and subsequent HOX-A gene activation (Wang et al 2007). 

Tatton-Brown and Rahman Page 2

Am J Med Genet C Semin Med Genet. Author manuscript; available in PMC 2016 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Although there are conflicting reports, it is believed that the alternative NSD1-NUP98 

transcript does not have a biologically relevant role in tumorigenesis (Cerveira et al 2003). In 

addition, somatic epigenetic silencing of NSD1, through promoter hypermethylation, has 

been associated with neuroblastoma and gliomas and somatic NSD1 mutations have been 

associated with carcinoma of the upper airway digestive tract (Berdasco et al 2009, 

Catalogue of Somatic Mutations in Cancer).

Somatic disruption of EZH2 is a key event in the development of many tumors, particularly 

hematopoietic malignancies (Chase et al 2011). EZH2 is noteworthy in that both activating 

and inactivating mutations have been associated with tumorigenesis. A recurrent 

monoallelic, gain-of-function alteration, affecting the 646 tyrosine residue and associated 

with enhanced di- and trimethylation of H3K27, has been identified in approximately 7% of 

follicular lymphomas and 22% of diffuse large cell B-cell lymphomas of germinal center 

origin (Morin et al 2010; Sneeringer et al 2010). In contrast, both monoallelic and biallelic 

inactivating mutations, distributed throughout the gene, have been identified in poor 

prognosis myeloproliferative neoplasms and myelodysplastic syndromes (Ernst et al 2010). 

This association of both activating and inactivating mutations with tumorigenesis has been 

interpreted as suggesting that a critical dosage level of EZH2 is required for normal stem 

cell homeostasis and that hematological malignancies develop where there is disruption of 

this normal balance (Sauvageau et al 2010).

Germline disruption of NSD1 and EZH2 function cause overgrowth

Germline, monoallelic disruption of both NSD1 and EZH2 cause the overgrowth syndromes, 

Sotos and Weaver syndromes respectively, but the spectra of mutations associated with the 

genes differs (Kurotaki et al 2002; Gibson et al 2011; Tatton-Brown et al 2011). NSD1 
causes Sotos syndrome through germline haploinsufficiency and, amongst the non-Japanese 

population, intragenic loss-of-function mutations, primarily truncating mutations, account 

for over 80% of NSD1 mutation-positive individuals (Cecconi et al 2005; Rio et al 2003; 

Tatton-Brown et al 2005b; Turkmen et al 2003; Waggoner et al 2005). In the Japanese, 

whole NSD1 gene deletions are the primary cause of Sotos syndrome (Kamimura et al 

2003). This difference in microdeletion frequency between individuals of Japanese and non-

Japanese descent has been attributed to the genomic architecture of the 5q35.3 region where 

three distinct low copy repeat elements flank NSD1. Two of these low copy repeats are in 

the same orientation whilst the third, located between these same orientation elements but 

telomeric to NSD1, is inversely orientated (Tatton-Brown et al 2005a). An inversion 

polymorphism, between the inversely orientated low copy repeats, is quite common in 

Japanese individuals and likely predisposes to deletions mediated by non-allelic homologous 

recombination (Tatton-Brown et al 2005a). The EZH2 mutational spectrum in Weaver 

syndrome is markedly different: >90% of mutations are missense and the rare truncating 

mutations reported to date are in the last exon and are therefore unlikely to initiate nonsense-

mediated RNA decay. This suggests that simple haploinsufficiency is unlikely to be the 

primary pathogenic mechanism of germline EZH2 mutations (Tatton-Brown et al 2011). 

Given these differences, it is interesting that, although mouse models null for both genes die 

in early embryonic development, the NSD1 heterozygous mutant embryo is viable and 
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fertile whereas the EZH2 heterozygous mutants die during the transition from pre- to post-

implantation (O’Carroll et al 2001; Rayasam et al 2003).

The key clinical criteria associated with germline NSD1 and EZH2 

alterations are overgrowth; a characteristic facial appearance and 

intellectual disability

There is considerable overlap between the NSD1 and EZH2-associated phenotypes as 

exemplified by our initial paper on NSD1 and Sotos syndrome that, erroneously, reported 

that Sotos and Weaver syndromes were allelic conditions (Douglas et al 2003). Subsequent 

studies by ourselves and others, have shown that NSD1 alterations are specific to Sotos 

syndrome and are identified in over 90% of individuals with a clinical diagnosis of Sotos 

syndrome (Tatton-Brown et al 2005b). Although EZH2 alterations do not appear to be as 

sensitive or specific for Weaver syndrome (i.e some individuals with EZH2 alterations do 

not have classic Weaver syndrome whilst others with a clinical diagnosis of Weaver do not 

have a germline EZH2 alteration) for the purposes of this review we have used Sotos 

syndrome to describe individuals with an NSD1 mutation and Weaver syndrome to describe 

individuals with an EZH2 mutation.

Facially, children with disruption of both NSD1 and EZH2 can have a high, broad forehead 

and prominent chin (figure 2). However, in classic Sotos syndrome, the palpebral fissures are 

usually down slanting, there is frontotemporal hair sparsity, the face is long and thin and, 

although the eyes can appear hyperteloric, this is generally because of an associated 

bitemporal narrowing rather than a true hypertelorism (figure 2a). In classic Weaver 

syndrome, young children are retrognathic and have large, fleshy ears whilst both children 

and adults with classic Weaver syndrome are hyperteloric and the eyes are almond shaped 

(figure 2b).

Although germline disruption of both NSD1 and EZH2 results in overgrowth, the associated 

growth profiles differ. Children with EZH2 mutations are consistently tall, with heights up to 

eight standard deviations above the mean, but macrocephaly is not a consistent finding 

(~50% of EZH2 mutation-positive individuals are not macrocephalic, Tatton-Brown, 

Rahman submitted). In contrast, not all NSD1 mutation-positive individuals are tall and 

some have isolated macrocephaly (~20%) whilst a small proportion (~10%) are neither tall 

nor macrocephalic (Tatton-Brown et al 2005b)

Most individuals with NSD1 or EZH2 mutations have an intellectual disability, although the 

degree is variable for both genes. Amongst the NSD1 mutation-positive individuals, 

intellectual disability ranges from mild through to severe with a moderate disability most 

frequently reported (~45% of NSD1 mutation-positive individuals have a moderate disability 

compared with 30% and 20% with mild and severe intellectual disabilities respectively, 

Tatton-Brown et al 2005b). In contrast, a mild disability is most frequently reported in 

individuals with EZH2 mutations (~45%) with a moderate and severe disability reported in 

the minority (~30% and ~5% respectively). The proportion of individuals with no 

intellectual disability is correspondingly different, present in 2% of NSD1 mutation-positive 
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individuals and ~20% of EZH2 mutation-positive individuals (Tatton-Brown et al, 2005, 

Tatton-Brown, Rahman, submitted).

Advanced bone age is reported in individuals with both NSD1 and EZH2 mutations. 

However, whilst the bone age is consistently advanced in EZH2 mutation-positive 

individuals, it has been shown to be advanced in only 80% of NSD1 mutation-positive 

individuals (Tatton-Brown et al 2005b), Tatton-Brown, Rahman submitted).

The Sotos/Weaver syndrome phenotypic overlap can make it challenging, even for the 

experienced clinician, to clinically distinguish the two conditions. However, congenital 

cardiac disease, renal anomalies and seizures are more frequently reported in individuals 

with NSD1 than EZH2 alterations. In contrast, a connective tissue phenotype with soft, loose 

skin, umbilical hernia and thin, deep-set nails are more commonly described in the EZH2 
mutation-positive group. Other potentially distinguishing features described amongst 

individuals with EZH2 alterations include a deep hoarse voice and camptodactyly of the 

fingers and/or toes evolving into boutonniere deformities in adulthood (Tatton-Brown, 

Rahman submitted).

There is evidence of an increased risk of certain tumors in Sotos and Weaver syndromes, but 

the absolute risk of cancer is small, in the order of 3% and 5% respectively (Tatton-Brown et 

al, 2005; Tatton-Brown, Rahman, submitted). The spectra of tumors may differ between the 

conditions, for example sacrococcygeal teratoma has been reported in three individuals with 

Sotos syndrome but no individual with Weaver syndrome, although neuroblastoma has been 

reported, very rarely, in both conditions. As the risk of tumors is small and there are 

currently no effective screening modalities for the tumor types observed in either condition, 

screening is not recommended. More appropriate is clinical vigilance and thorough 

investigation of any possible tumor related signs and symptoms.

Conclusions and future directions

The current review has highlighted key similarities and differences between the two histone 

methyltransferases, NSD1 and EZH2, and their associated overgrowth syndromes, Sotos and 

Weaver syndromes. However, there is still much to understand about the molecular and 

clinical features of these two overgrowth genes.

Although NSD1 loss of function mutations cause Sotos syndrome, it is currently not known 

how the germline, predominantly missense, EZH2 mutations cause Weaver syndrome. Given 

that the few truncations to have been identified all target the final exon, and are therefore 

unlikely to be initiating nonsense-mediated RNA decay, haploinsufficiency seems an 

unlikely mechanism. It is also interesting that three identical mutations, Gly159Arg, 

Arg684Cys and Tyr733ter, have been identified, somatically, in myeloid malignancies and, 

constitutionally, in eight unrelated individuals with Weaver syndrome (Chase et al 2011; 

Ernst et al 2010; Nikoloski et al 2010; Tatton-Brown et al 2011). None of the Weaver 

individuals with these mutations have developed malignancies to date. The reason for the 

divergent phenotypes associated with these identical germline and somatic mutations is 

currently unclear but may be related to the age of onset of myeloid malignancies, which tend 
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to occur in later life, compared to the young age of the current EZH2 mutation-positive 

cohort. Alternatively it may reflect additional or different mechanisms whereby the somatic 

mutations are causing tumors and the germline mutations are disrupting normal human 

development and growth.

The NSD1-associated phenotype is well characterized with many hundreds of reported 

cases. However, we do not yet understand what factors determine the variability of the Sotos 

syndrome phenotype. This variability is exemplified by unrelated individuals with the same, 

recurrent mutation but differing degrees of intellectual disability and frequency of associated 

medical issues such as cardiac and renal anomalies, seizures and scoliosis. In addition, we 

still do not understand why there are so few familial Sotos syndrome cases and what factors 

are reducing vertical transmission of mutations.

The number of known individuals with constitutional EZH2 mutations is small. This is 

primarily because EZH2 was only identified as the cause of Weaver syndrome in 2011. It 

may also be because Weaver syndrome is rarer than Sotos syndrome and/or because Weaver 

syndrome is more likely to evade diagnosis because individuals are more often mildly 

affected. The paucity of cases limits current knowledge of the associated clinical features 

and there is also likely to have been a bias towards more severely affected individuals having 

been tested thus far, which might result in inflation of the frequencies of associated clinical 

features.

As genetic testing becomes more accessible it is likely that many more individuals with 

EZH2 and NSD1 mutations are identified enabling (further) clarification of the associated 

phenotypes. In addition, long-term prospective studies will address associated tumor risks 

and the evolution of both the NSD1-associated and EZH2-associated phenotypes. Currently, 

functional work is underway to investigate how somatic EZH2 mutations are causing 

malignancies and constitutional mutations are causing Weaver syndrome. Finally, as 

technology improves, so will our understanding of the other factors which determine 

phenotype and, in the future, we may be able to not only make a diagnosis of Sotos or 

Weaver syndrome, but be able to offer prognostic information about the nature and severity 

of associated clinical sequelae.
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Figure 1. Domain structure of NSD1 and EZH2 SET domain-containing histone 
methyltransferases
a) NSD1 is a 2696 amino acid protein with ten conserved domains in addition to the SET 

and preceding SAC domains whilst EZH2 is a 746 amino acid protein with two SANT 

domains in addition to the SET and SAC. b) NSD1 is a histone methyltransferase which 

preferentially mono or di- methylates lysine residue 36 of histone 3 whereas EZH2 can 

catalyse the transfer of up to three methyl groups to lysine residue 27 of histone 3. NID, 

Nuclear interacting domain; PWWP, Proline, tryptophan, tryptophan, proline; PHD, plant 

homeodomain; SANT, Swi3, Ada2, N-cor TFIIIB.
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Figure 2. Facial appearance of children and adults with a)NSD1 mutations and b) EZH2 
mutations
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