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Abstract

Pathologies of the optic nerve and orbit impact millions of Americans and quantitative assessment 

of the orbital structures on 3-D imaging would provide objective markers to enhance diagnostic 

accuracy, improve timely intervention and eventually preserve visual function. Recent studies have 

shown that the multi-atlas methodology is suitable for identifying orbital structures, but challenges 

arise in the identification of the individual extraocular rectus muscles that control eye movement. 

This is increasingly problematic in diseased eyes, where these muscles often appear to fuse at the 

back of the orbit (at the resolution of clinical computed tomography imaging) due to inflammation 

or crowding. We propose the use of Kalman filters to track the muscles in three-dimensions to 

refine multi-atlas segmentation and resolve ambiguity due to imaging resolution, noise, and 

artifacts. The purpose of our study is to investigate a method of automatically generating orbital 

metrics from CT imaging and demonstrate the utility of the approach by correlating structural 

metrics of the eye orbit with clinical data and visual function measures in subjects with thyroid eye 

disease. The pilot study demonstrates that automatically calculated orbital metrics are strongly 

correlated with several clinical characteristics. Moreover, the superior, inferior, medial and lateral 

rectus muscles obtained using Kalman filters are each correlated with different categories of 

functional deficit. These findings serve as foundation for further investigation in the use of CT 

imaging in the study, analysis and diagnosis of ocular diseases, specifically thyroid eye disease.
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1. INTRODUCTION

Pathologies of the optic nerve and orbit, such as glaucoma, thyroid eye disease, multiple 

sclerosis, and optic neuritis impact millions of Americans. Successful treatment of these 

pathologies is sensitive to the early diagnosis. However, current diagnostic techniques are 

dependent on variable clinical presentations between patients and subjective clinical testing. 

A quantitative assessment of the orbital structures would provide objective markers to 

enhance diagnostic accuracy, improve timely intervention and, eventually, preserve visual 

function. Modern image processing and machine learning methods allow for the 

development of automated pipelines for large-scale analysis of these diseases. The primary 

task of such a pipeline is the automated identification of anatomical structures in the visual 

system, such as the optic nerve, extraocular rectal muscles, eye globe, and orbital fat, and 

automated computation of structural metrics to correlate with clinical characteristics. We 

have created a large-scale image processing and data analytics database on Pathologies of 

the Human Eye, Orbit, and The Optic Nerve (PHOTON) to better understand early disease 

stages, enable timely intervention, and improve disease management. PHOTON is a 

collection of electronic medical records and medical imaging spanning 8 major cohorts of 25 

individual diseases. As a pilot study on this database, we study thyroid eye disease using 

statistical label fusion methods and Kalman filters to identify orbital structures of interest 

and investigate correlations between these structures and eye functionality.

Presently, computed tomography (CT) imaging is the modality of choice in evaluating the 

orbit for evidence of thyroid eye disease[1]. In CT, the intensity of a pixel depends on the 

density of the tissue with respect to water. Therefore, distinct structures such as globe, nerve, 

muscle, and fat can be identified with a high accuracy. Extraocular muscle, bone, fat, and 

orbital volume indices are among the metrics used in previous study[2–15] as objective 

findings used to aide in early diagnosis.

Our novel analysis pipeline builds off multi-atlas segmentation methods. Briefly, a human 

expert labels the anatomical structures of interest in a set of representative training images 

(i.e., the atlases). The structures are identified in each target image by registering the training 

atlas and assigning a label to each voxel in the target image by statistical voting. Recent 

studies have shown that the multi-atlas methodology is suitable for identifying orbital 

structures [16–19]. However, challenges arise in the identification of the individual 

extraocular muscles that control eye movement. This is increasingly problematic in diseased 

eyes, where the muscles often appear to fuse (at the resolution of clinical CT) at the back of 

the orbit due to inflammation. We propose the use of Kalman filters to track the muscles in 

three-dimensions and identify individual extraocular rectus muscles. The purpose of our 

study is to investigate a method of automatically generating orbital metrics from CT imaging 

and correlating these to known clinical characteristics.

2. METHODOLOGY

2.1 Data

Subjects were selected based on both having met clinical criteria for thyroid eye disease and 

undergoing CT imaging as part of their regular clinical care. A total of 258 scans were 
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acquired from 102 subjects, of which 24 (23.5%) were male. Variable CT imaging protocols 

(head, orbital, maxillofacial, etc.) were acquired and the highest resolution scan without 

severe orbital artifact and with a field of view including the full optic nerves was manually 

selected. Clinical characteristics including demographic information, ocular mobility, visual 

acuity, color vision, and visual field testing were recorded. Institutional Review Board 

approval for this retrospective study was obtained at Vanderbilt University.

Visual disability was assessed with the American Medical Association Functional Vision 

Score (FVS) which “provides criteria for evaluating permanent impairment of the visual 

system as it affects an individual’s ability to perform activities of daily living” as a 

percentage of disability relative to a healthy control[20]. The FVS is characterized by four 

sub-scores: an individual assessment of visual acuity in each eye, Visual Acuity Score 

(VAS); a composite of visual acuity over both eyes, Functional Acuity Score (FAS); 

individual assessment of field perception in each eye, Visual Field Score (VFS); and the 

composite of field perception over both eyes, Functional Field Score (FFS).

2.2 Multi-atlas segmentation

The selected CT image for each patient was loaded into eXtensible Neuroimaging Archive 

Toolkit [21, 22] and automatically segmented using a previously described multi-atlas 

segmentation pipeline which uses non-local STAPLE, a label fusion algorithm, to identify 

the optic nerves (including surrounding CSF sheaths), chiasm, rectus muscles, globes, and 

orbital bony structures [16, 23]. Briefly, segmentation followed a multi-atlas labeling 

framework[24] in which a set of manually labeled example scans were non-rigidly registered 

to each patient’s scan and statistical fusion was used to combine the labels from each of the 

examples to estimate the structure for each point in the target scan. Figure 1 (a) shows axial 

view of an input CT scan and 1 (b) shows the result of the multi-atlas segmentation pipeline.

2.3 Kalman Filters

We use Kalman filters to identify the Superior Rectus Muscle, Inferior Rectus Muscle, 

Lateral Rectus Muscle and Medial Rectus Muscle from the muscle labels obtained from the 

multi-atlas segmentation pipeline shown in Figure 1(b). For each image volume, we start at a 

coronal slice at the center of the globe, where the muscles are well-separated, and use 

Kalman filters to track each muscle in the z-plane (anterior-posterior). The globe and the 

optic nerve pass through the center of the orbit and can be used as landmarks at each coronal 

slice to help identify the muscle positions. Five Kalman filters are defined for each of the 

four muscles and the landmarks. To keep the model simple, the centroids of the structures 

are used for tracking. Therefore, the state of system is the centroid of the two-dimensional 

slice in the coronal plane. The predicted state at slice z, given state z−1 is

(1)

where ε is the process error defined by covariance R. That is, the process expects the muscle/

nerve structure to be in the same position within a margin of error. Note that the control 

vector is eliminated as the tracking “moves” in the z-plane at a constant rate. At each step, 
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the measured positions are given by a watershed calculation on the distance transform of a 

coronal slice, as seen in Figures 1 (c) and (d). The predicted muscle positions of the previous 

step are used to impose a maxima on the distance transform. The current predicted position 

of each filter is then given by,

(2)

where δ is the measurement error defined by covariance Q.

For each image volume, a region of interest is selected as the set of all the coronal slices 

containing muscle, globe, and the optic nerve. A Kalman filter is initiated for the centroids 

of globe and optic nerve, which are used as landmarks to identify the initial muscle 

positions.

Initial labels for the rectus muscles are assigned based on their relative position to the 

landmark filter. Once the algorithm finds the first slice containing a rectus muscle, it initiates 

a Kalman filter for the muscle at that slice. The Kalman filter is then used to track that 

specific rectus muscle until the end of the orbit. The predicted mean , and variance  of 

the state at each position are given by,

(3)

(4)

Here, A is the identity matrix and R is the process error covariance. The Kalman gain K is 

given by,

(5)

This yields a predicted position μz and variance σ:

(6)

(7)

where, C is the identity matrix and Q is the measurement covariance.

2.4 Automated Structural Metric Calculation

Following multi-atlas segmentation and extraction of individual rectus muscles using 

Kalman filters, we compute descriptive features from the segmentation of the orbital 

anatomy for each patient to assess correlations between functional or clinical data and 

structural measures. These features included the (1) volume, maximum diameter, and 

average diameter for the superior, inferior, medial, and lateral rectus muscles and total rectus 

muscle volume[10, 25–27]; (2) Barrett index[8]; (4) volume and diameter of the globe[11, 

27–29]; (5) orbital volume; (6) volume crowding index[12]; (7) orbital angle; (8) degree of 
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proptosis; and (9) length, volume, average area, and maximum diameter of the optic 

nerve[30, 31]. All metrics were performed bilaterally, which resulted in 24 measures for 

each eye.

3. RESULTS

Kalman filters provide a convenient mechanism to distinguish between individual rectus 

muscles in eye orbits segmented in the multi-atlas framework. Error covariance values for 

the process and the measurement are determined heuristically as follows:

(8)

(9)

Figure 2 shows representative final segmented images in two-dimensional and three-

dimensional views. To assess the utility of this approach we compute geometrical metrics 

based on the identified orbital structures and see how they correlate with the subject’s 

clinical data which is routinely used in the diagnosis of ocular disease[9, 10], such as visual 

disability scores, ocular motility, hertel score, color vision and neuropathy.

In this pilot study, we compute the correlation between structural metrics from the 

segmentations and clinical data using a Spearman correlation. The results of univariate 

correlations for orbital metrics (including orbital volume, volumetric crowding index[15], 

and proptosis) and optic nerve metrics (include length, cross sectional area, volume, and 

diameter) are shown in Table 1. Similarly, the correlations for clinical characteristics with 

muscle metrics are shown in Table 2. Notice from Table 1 that Hertel measurements 

demonstrated strong correlation with nearly all optic nerve and orbital metrics. Additional 

findings included a strong correlation between visual acuity and volumetric crowding index 

and between smoking and degree of proptosis.

Several extraocular muscle metrics including average diameter, maximum diameter, and 

muscle volume of the superior rectus, inferior rectus, and lateral rectus demonstrated strong 

correlation (p-value <0.05) with the presence of ocular motility deficit. On the other hand, 

medial rectus muscle demonstrated only a mild correlation with motility deficit. Color vision 

measurements demonstrated strong correlation (p-value <0.05) with inferior rectus, medial 

rectus, and superior rectus muscle maximum diameters while demonstrating a mild 

correlation (p-value = 0.056) with the lateral rectus maximum diameter. Additional findings 

included a strong correlation between visual acuity and superior rectus maximum diameter.

4. DISCUSSION

Identifying the individual ocular structures has significant advantages for the diagnosis, 

analysis and study of ocular diseases. Traditional methods of orbital segmentation are 
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manual and tedious, or cannot capture the 3-D structure of orbital anatomy. In this study, we 

have shown the significant structural-functional correlations of the orbital structures such as 

muscles, the optic nerve, and eye globe with visual function and other clinical data. Further, 

we highlight the importance of studying each muscle separately by establishing that they 

have varying degrees of predictive power. We demonstrate that Kalman filters provide a 

simple, yet fast and efficient solution to improving muscle segmentation in diseased eye. 

The strong correlation demonstrated by several clinical characteristics with the automatically 

obtained orbital metrics serves as foundation for further investigation. In future study, 

machine learning methods can be employed to find latent features in these structures and 

robust models of disease and treatment can be built based on these algorithms.
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Figure 1. 
Muscle tracking using Kalman filters: (A) Input CT scan (B) output of label fusion (C) 

distance transform with imposed maxima (D) measured muscle pieces (E) Coronal view of 

muscles with respect to landmark (F) the resultant five Kalman filters, for each eye, tracking 

the muscles. Note that the muscles are well-separated in the front of the orbit (B), but as we 

approach the back of the orbit there is no longer a clean boundary between them due to 

inflammation and crowding. The measured positions at each slice are given by a watershed 

calculation as shown in (C) and segmented in (D). A distance function is calculated over 

slice z wherein the value of each pixel is given by the distance to its nearest non-zero pixel 

as shown in (C), creating a contour where there is a maxima at the center of each of the four 

muscles. At each slice, the algorithm examines the top, bottom, right, and left quadrants for 

each of the four muscles as see in (E). In total, ten Kalman filters (5 for each eye) are used to 

track the muscles (F), which results in the 3-D tracks shown in (F).
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Figure 2. 
Representative segmentation in different views: (A) Coronal, (B) sagittal, (C) axial, and (D) 

3-dimensional.
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