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Abstract

The abdominal wall is an important structure differentiating subcutaneous and visceral 

compartments and intimately involved with maintaining abdominal structure. Segmentation of the 

whole abdominal wall on routinely acquired computed tomography (CT) scans remains 

challenging due to variations and complexities of the wall and surrounding tissues. In this study, 

we propose a slice-wise augmented active shape model (AASM) approach to robustly segment 

both the outer and inner surfaces of the abdominal wall. Multi-atlas label fusion (MALF) and level 

set (LS) techniques are integrated into the traditional ASM framework. The AASM approach 

globally optimizes the landmark updates in the presence of complicated underlying local 

anatomical contexts. The proposed approach was validated on 184 axial slices of 20 CT scans. The 

Hausdorff distance against the manual segmentation was significantly reduced using proposed 

approach compared to that using ASM, MALF, and LS individually. Our segmentation of the 

whole abdominal wall enables the subcutaneous and visceral fat measurement, with high 

correlation to the measurement derived from manual segmentation. This study presents the first 

generic algorithm that combines ASM, MALF, and LS, and demonstrates practical application for 

automatically capturing visceral and subcutaneous fat volumes.
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1. INTRODUCTION

The human abdominal wall is an important structure protecting organs within the abdominal 

cavity. Moreover, there is increasing clinical interest the quantification of subcutaneous and 

visceral fat classified as fat tissue outside and inside the abdominal wall, respectively [1]. 

Ratios between these two fat tissues enable the prospective and retrospective analyses of 
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various clinical conditions including ventral hernias, cardiovascular diseases, laboratory 

markers of metabolic syndrome, and cancers. Hence, segmentation of the abdominal wall is 

an important image analysis problem.

Computed tomography (CT) scans are routinely acquired for the diagnosis and prognosis of 

abdomen-related disease. To date, there are no available automated tools for whole 

abdominal wall segmentation on clinically acquired CT. Major challenges include (1) 

variations across subjects, (2) variations across axial slices along the cranial-caudal 

direction, and (3) complexity in shape and appearance of the wall itself and surrounding 

tissues (Figure 1). In a previous study, we characterized the whole abdominal wall structure 

as enclosed by the outer and inner surface, bounded by the xiphoid process (XP) and pubic 

symphysis (PS) [2]. Manually tracing the abdominal wall structures is time-consuming; it 

takes over an hour per scan to label sparsely on axial slices every 5 cm [2]. Ding et al. [3] 

built Gaussian mixture models for the intensity profiles of abdominal muscles after 

identifying skin and bones, used the extracted features to deform a surface mesh and register 

to the inner wall over the region with the presence of rib cage. Zhu et al. [4] developed an 

interactive tool to delineate the inner wall on a few slices, and propagate the surface to the 

entire abdomen using 3D B-spline interpolation. These were developed as tools to remove 

the abdominal wall to improve the registrations and visualization of the internal organs. Yao 

et al. [5] separated the subcutaneous and visceral fat by a single surface at the abdominal 

wall driving by active contour models (ACM). Zhang et al. [6] presented an atlas-based 

approach to segment the thoracic, abdominal, and pelvic musculature using five pre-defined 

muscle atlas models, and then refined with ACM. Xu et al. [7] used texture features to 

improve the level set segmentation of the outer abdominal wall on hernia patients. So far, 

none of these methods addressed the whole abdominal wall segmentation.

Herein, we proposed an automatic approach that combines the merits of active shape model 

(ASM [8]), multi-atlas label fusion (MALF [9, 10]), and level set (LS [11]) to provide robust 

segmentation of the whole abdominal wall in a slice-wise manner (Figure 2). We call this 

approach an augmented active shape model (AASM). Briefly, the central framework builds 

on ASM; where each landmark, under the shape constraint, is updated based on the pre-

trained models of the local intensity profiles along its normal directions. MALF provided a 

probabilistic estimation regardless of the complex underlying structures by transferring a set 

of canonical atlases to the target space via image registrations, based on which a region-

based LS using Chan-Vese (CV) algorithm [12] drives the landmark updates on a global 

sense. The augmentation with MALF and LS effectively extends the searching range, and 

enhances the robustness of ASM. On top of the slice-wise segmentation, we localize three 

biomarkers, i.e., XP, PS, and umbilicus (UB) for each target volume using random forests. 

Based on their locations, we assigned each axial slice between XP and PS to one of five 

classes, where each class was trained individually with exclusive atlases. Finally, the slice-

wise segmentations were regularized across the body via Gaussian smoothing. The 

segmentation of the whole abdominal wall and the subcutaneous and visceral fat 

measurements were validated on 184 axial slices manually labeled on 20 scans.
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2. THEORY

In this section, we focus on the development of ASM augmentation. Implementation details 

can be found in the Methods and Results section.

Active shape model construction

Consider in each of s training images and a structure characterized by n landmarks. The 

landmark coordinates (x1, y1),…(xn, yn) are collected in a shape vector for each training set 

as x = (x1,y1, …, xn, yn)T. The mean , and covariance S of the shape vectors are computed, 

where

(1)

Using principle component analysis (PCA), the Eigenvectors pi with its associated 

Eignenvalues λi are collected. Typically, Eigenvectors correspondent to the t largest 

Eigenvalues were retained to keep a proportion fv of the total variance such that 

, where . Within this Eigensystem, any set of 

landmarks can be approximated by

(2)

where b is a t dimensional vector given by

(3)

b can be considered as shape model parameters, and its values are usually constrained within 

the range of  when fitting the model to a set of landmarks so that the fitted shape is 

regularized by the model.

Local appearance model and active shape search

The intensity profiles along the normal directions of each landmark are collected to build a 

local appearance model to suggest the locations of landmark updates when fitting the model 

to an image structure. For each landmark in the ith training image, a profile of 2k + 1 pixels 

is sampled with k samples on each side of the landmark. Following [13], the profile is 

collected as the first derivative of the intensity, and normalized by the sum of absolute values 

along the profile, indicated as gi. Assuming multivariate Gaussian distribution of the profiles 

among all training data, a statistical model is built for each landmark,

(4)

where  and Sg represent the mean and covariance, respectively. This is also called the 

Mahalanobis distance that measures the fitness of a newly sampled profile g to the model. 

Given a search range of m pixels (m > k) on each side of the landmark along the normal 
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direction, the best match is considered with the minimum f(g) value among 2(m−k)+1 

possible positions.

Level set evolution with Chan-Vese algorithm

In the level set context, the evolving surface is represented as the zero level set of a higher 

dimensional function ϕ(x, t), and propagates implicitly through its temporal evolution 

with a time step dt. ϕ(x, t) is defined as signed distance function (SDF), with negative/

positive values inside/outside the evolving surface, respectively. The CV algorithm evolves 

the SDF by minimizing the variances of the underlying image u0 both inside and outside the 

evolving surface.

Given C1=average(u0) in {ϕ ≥ 0}, and C2 = average (u0) in {ϕ < 0}, the temporal evolution 

of CV can be written as

(5)

where δ (·) is the Dirac delta function,  represents the curvature of SDF, α and μ 
are considered as the evolution coefficient and smoothness factor, respectively.

Adaptive active shape search

Let (x, y) be the current landmark position, ϕ0 the current zero level set. Within each 

iteration of the active shape search, through j iterations of CV evolution, the zero level set 

moves to ϕ′0. The zero-crossing point along the normal direction of (x, y) on ϕ′0 is collected 

as (x′, y′), and considered as the new landmark position after LS evolution. Along (x′, y′), 
the gradient intensity profiles are sampled, then the active shape search suggest an updated 

position at (x″, y″) with its correspondent profile . The adaptively searched 

positions for all landmarks are then projected to the model space by Eq. 3. The shape is then 

regularized in Eq. 2 after the constraint on the model parameter.

3. METHODS AND RESULTS

Data

Under institutional review board supervision, abdominal CT data on 250 cancer patients that 

were acquired clinically were retrieved in anonymous form. 40 patients were randomly 

selected, where we used 20 as training datasets, and the other 20 for testing purposes. The 

field of views of the selected 40 scans range from 335 × 335 × 390 mm3 to 500 × 500 × 708 

mm3, with various resolutions (0.98 × 0.98 × 5 mm3 ~ 0.65 × 0.65 × 2.5 mm3). Various 

numbers (78 ~ 236) of axial slices with same in-plane dimension (512 × 512) were found. 

All 40 scans were labeled using the Medical Image Processing And Visualization (MIPAV 

[14]) software by an experienced undergraduate based on our previously published labeling 

protocol [2], where essential biomarkers (XP, PS, UB) were identified, and the abdominal 

walls were delineated on axial slices spaced every 5 cm with some amendments (contour 

Xu et al. Page 4

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2016 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



closure required here). 177 and 184 axial slices were obtained with whole abdominal wall 

labeled for the training and testing datasets, respectively.

Slice localization and class assignment

The proposed slice-wise segmentation was trained and tested on five exclusive classes given 

the position of the axial slices with respect to XP, PS, and UB. These three biomarkers were 

acquired from manual labeling for the training sets, while estimated using random forest for 

the testing sets. We used 10 random scans from the training data to characterize the centroid 

coordinates of the biomarkers with long-range feature boxes following [15], and yielded the 

estimated biomarkers positions on the testing data with a mean distance error of 14.43 mm. 

Four bounding positions were empirically defined among the vertical position of the three 

biomarkers to evenly distribute the available training data (25, 35, 50, 31, 36 slices for each 

class, ordered from bottom to top). Given a target testing volume, each axial slice between 

the estimated positions of XP and PS was extracted, and assigned a class based on the 

estimated bounding positions.

Slice-wise pre-processing

All slices (training and testing) were centered in the image after body extraction and 

background removal to reduce variations. A body mask can be obtained by separating the 

background with k-means clustering, and then filling holes in the largest remaining 

connected component. A margin of 50 pixels was padded to each side of the slices, which 

makes the slice size 612 × 612.

Multi-atlas label fusion

For each test slice, all training slices from the same class were considered as atlases, and 

non-rigidly registered to it using NiftyReg [16]. The registered atlases were combined by 

joint label fusion [10] to yield an probabilistic estimation of the abdominal wall. Default 

parameters were used for both registrations and label fusion.

Active shape model

On each training slice, landmarks were collected along the outer and inner wall contours 

using marching squares. The horizontal and vertical middle lines of the slice were used to 

divide each closed contour into four consistent segments across all slices assuming all 

patients were facing toward the same direction in the scan. 53 correspondent landmarks were 

then acquired on each of the segments via linear interpolation (212 for each of outer and 

inner wall). Each set of the landmarks was first centered to the origin, and then sets of 

landmarks from the same class were used to construct one active shape model covering 98% 

of the total variances. The shape updates were regularized within ± 3 standard derivations of 

the Eigenvalues.

Active shape search

An intensity gradient profile of 5 pixels was collected along each side the normal directions 

of each landmark (11 pixels in total) for training the local appearance model. The searching 

range during testing for the landmark update was 8 pixels along each side of the normal 
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direction. A multi-level scheme (for both training and testing) was used to extend the 

searching range. We allowed 100 iterations for three levels of shape updates.

Level set evolution

A region-based LS evolution with five iterations using CV algorithm was used to drive the 

landmark movement based on the global probabilistic estimation within each iteration of the 

active shape search. The time step, evolution coefficient, and smoothness factor and was set 

to 0.01, 100000, and 0.1, respectively.

Customized configuration

In this study, a two-phase scheme was used to improve the robustness of whole abdominal 

wall segmentation. The proposed approach was first applied to only the outer wall. 

Initialized by the position of the outer wall segmentation, our approach was then applied to 

the combination of the outer and inner wall, while the outer wall landmark positions were 

fixed during the second phase shape updates. Active shape model and local appearance 

model were thus trained on (1) outer wall, and (2) outer and inner wall. The level set 

evolution for the second phase only considered the region within the outer wall segmentation 

obtained in the first phase.

Body regularization

The slice-wise segmentations were transferred back to the original body space, converted 

into SDF, smoothed by a Gaussian 21 × 21 × 21 kernel with a standard deviation of 5, and 

finally converted to the binary segmentation of the whole abdominal wall for the body 

(Figure 3).

Fat Measurement

Following [5], the fat tissue was obtained by using a two-stage fuzzy-c means. For each 

slice, the subcutaneous fat was considered as outside the outer surface of the abdominal 

wall, while the visceral fat as inside the inner surface.

Results validation

The segmentation results were validated against the manual labels on 184 testing slices 

using Dice similarity coefficient (DSC) and Hausdorff distance (HD) with comparison to 

results using MALF, ASM, and LS individually. Qualitatively, our proposed method 

presented the most robust result, while MALF and LS have speckles and holes in the 

segmentations, or leak into the abdominal cavity where structures with similar intensities to 

muscles were present. ASM was sensitive to initialization, and could be trapped into local 

minimum (Figure 4). Large decreases in HD were observed when using the proposed AASM 

approach without undermining the DSC performance. More importantly, the nature of ASM 

kept the topology of the abdominal wall, and enabled the compartmental fat measurement. 

The absolute differences in subcutaneous and visceral measure using our augmented ASM 

against the measurement using manual labels were largely reduced comparing to traditional 

ASM (Table 1). The Pearson’s correlation coefficient between our measurement and the 
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truth was 0.93, 0.96, and 0.87 for subcutaneous fat, visceral fat, and the ratio of visceral to 

subcutaneous fat, respectively (Figure 5).

4. DISCUSSION

The abdominal wall and its surrounding structures are extremely complicated. Our definition 

of the whole abdominal wall covers thoracic, abdominal, and pelvic regions, and includes 

not only the musculature, but also the kidneys, aorta, inferior vena cava, lungs, and some 

related bony structures to make the inner and outer boundaries anatomically reasonable. In 

this study, we presented the first automatic AASM approach to coherently integrate three 

distinctive image segmentation techniques, i.e., ASM, MALF, and LS, and used it to 

segment the whole abdominal wall on CT scans. This challenging problem benefitted from 

the shape regularization and topology preservation of ASM, contextual robustness of MALF, 

and global optimization of region-based LS, and was thus handled appropriately by largely 

reducing HD comparing to methods using only individual techniques above. The whole 

abdominal wall segmentation also enabled the calculation of subcutaneous and visceral fat 

with a high correlation to its counterparts based on manual segmentation. Further 

improvement can be achieved by augmenting the training datasets, especially a better 

classification system for axial slices over various locations.
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Figure 1. 
For each patient (A and B), one coronal slice and five axial slices at different locations are 

shown to illustrate variability in anatomy and wall appearance.
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Figure 2. 
Flowchart of the proposed AASM approach for whole abdominal wall segmentation. For a 

target volume, XP, SP, and UB are localized by random forest, based on which, each axial 

slice between XP and SP is extracted and assigned to one of five classes. The slice-wise 

segmentation uses region-based LS to evolve on the probabilistic estimation obtained by 

MALF to augment the traditional active shape search by global optimization. The active 

shape regularization preserves the abdominal wall topology. Note the red and green markers 

at the bottom row indicate the landmark positions before and after the operation of the 

associated block. Body regularization is achieved by 3D Gaussian smoothing the collected 

slice-wise segmentation.
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Figure 3. 
Surface rendering of the segmented whole abdominal wall (red – outer surface, blue – inner 

surface) for two patients. Patients A and B correspond to those shown in Figure 1.
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Figure 4. 
Qualitative comparison of the proposed approach and other segmentation techniques applied 

individually. The green arrows indicate segmentation outliers including speckles, holes, 

over-segmentation, and label leaking problems
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Figure 5. 
Validation of the fat measurement. The subcutaneous and visceral fat area, and the ratio of 

visceral to subcutaneous fat were measured based on the automatically segmented 

(estimation) and manually labeled (truth) abdominal wall. Three examples were illustrated 

where the red, blue, and green represent the segmented abdominal wall, visceral fat, and 

subcutaneous fat, respectively.
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Table 1

Quantitative comparison of the proposed AASM approach and other techniques applied individually.

Method MALF ASM LS AASM

DSC 0.89 ± 0.07 0.76 ± 0.14 0.89 ± 0.07 0.86 ± 0.09

HD (mm) 46.03 ± 14.45 47.74 ± 16.26 43.40 ± 15.34 33.80 ± 15.13

Abs. Diff. of S. Fat (cm2) N/A 39.80 ± 52.32 N/A 16.72 ± 37.69

Abs. Diff. of V. Fat (cm2) N/A 49.13 ± 48.14 N/A 15.38 ± 17.39

Note the subcutaneous fat area across the validated axial slices is 166.87 ± 108.01 cm2, the visceral fat area is 105.12 ± 76.01 cm2. Label fusion 
(LF), and level set (LS) cannot guarantee two closed surfaces for the outer and inner abdominal wall respectively, thus not applicable for fat area 
calculation.
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