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Abstract

Adopting high performance cloud computing for medical image processing is a popular trend 

given the pressing needs of large studies. Amazon Web Services (AWS) provide reliable, on-

demand, and inexpensive cloud computing services. Our research objective is to implement an 

affordable, scalable and easy-to-use AWS framework for the Java Image Science Toolkit (JIST). 

JIST is a plugin for Medical-Image Processing, Analysis, and Visualization (MIPAV) that provides 

a graphical pipeline implementation allowing users to quickly test and develop pipelines. JIST is 

DRMAA-compliant allowing it to run on portable batch system grids. However, as new processing 

methods are implemented and developed, memory may often be a bottleneck for not only lab 

computers, but also possibly some local grids. Integrating JIST with the AWS cloud alleviates 

these possible restrictions and does not require users to have deep knowledge of programming in 

Java. Workflow definition/management and cloud configurations are two key challenges in this 

research. Using a simple unified control panel, users have the ability to set the numbers of nodes 

and select from a variety of pre-configured AWS EC2 nodes with different numbers of processors 

and memory storage. Intuitively, we configured Amazon S3 storage to be mounted by pay-for-use 

Amazon EC2 instances. Hence, S3 storage is recognized as a shared cloud resource. The Amazon 

EC2 instances provide pre-installs of all necessary packages to run JIST. This work presents an 

implementation that facilitates the integration of JIST with AWS. We describe the theoretical cost/

benefit formulae to decide between local serial execution versus cloud computing and apply this 

analysis to an empirical diffusion tensor imaging pipeline.
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1. Introduction

The increasing accumulation of open-source multi-modal images makes it imperative to 

deploy local processing of images into cloud-based environments. An example of such a 

image processing framework is the Java Image Science Toolkit (JIST) [1–3], a biomedical 

plugin for MIPAV[4], which is entirely developed in the Java programming language[5,6] 

and is hosted on the Neuroimaging Informatics Tools and Resource Clearinghouse (NITRC). 

Amazon Web Services (AWS) provide reliable, on-demand, and affordable cloud computing 

services [7] that is promising for medical image processing. Different types of optimized 
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Amazon Elastic Cloud Computing (EC2) instances are offered in AWS [8]. Amazon Simple 

Storage is easy to apply, cost oriented, and highly scalable as data/object storage [9]. Despite 

the promise, workflow definition/management and cloud configurations are two key 

challenges in this realm. We exploited the NITRC Computational Environment (NITRC-CE) 

[10,11] hosted by Amazon’s AWS, to distribute each JIST “Execution Context” (process) on 

a separate cloud node. Through an applicable cost/benefit analysis, users are able to specify 

a grid size, automatically boot up a private network, install JIST into MIPAV, and set up all 

requirements for processing. All monitoring is managed through the standard JIST Process 

Manager.

Our contributions are summarized as follows.

• We provide a concrete workflow definition/management for JIST to deploy a local 

project to be distributed and processed in the cloud.

• We integrate JIST to Amazon AWS (a reliable, on-demand, and inexpensive cloud 

computing services) to execute high performance computing.

• We demonstrate a cost/benefit analysis of a pipeline that can be easily parallelized 

and requires memory that would limit the processes to serially execute only on a 

local lab machine.

This paper is organized as follows. In Section 2, we introduce in detail the JIST cloud 

deployment framework with a glimpse of its implementation. We present cost/benefit 

analysis especially focusing on project total running time estimation. Section 3 describes 

performance analysis for a multi-subject diffusion tensor imaging experiment.

2. Method

2.1 Workflow framework

Cloud configuration is based on Amazon AWS (of which S3 storage and EC2 are two 

components). Amazon S3 storage is mounted by every pay-for-use Amazon EC2 instance. 

Hence S3 is recognized as a shared cloud resource for all EC2 machines that are ordered by 

clients. S3 stores all necessary packages including MIPAV’s install file, JIST plugins, JIST 

Library and other files related to configuration. Each Amazon EC2 machine can get the 

source packages from S3, and install related packages to run JIST.

Briefly, JIST pipelines are stored in a “layout” file, which specifies inputs and outputs as 

well as algorithm classes used for execution. The user’s layout is later sent to S3 storage, 

and all processing is handled in the cloud virtual machines. The local host (local machine) 

meanwhile monitors the processing process in cloud. Rather than run whole layout on a 

typical cloud machine, each processing command (a JIST “execution context”, which is a 

single process in the process manager) generated by the JIST scheduler is distributed to any 

of the free EC2 instances. The process manager periodically sends jobs that are ready to run 

to the cloud when idle machines are found. Each job has a local monitor that periodically 

pulls back its debug and error info in the cloud so that users can view the progress of a 

running job. Status “Complete” represents a process that has completed, and all files that 

have been produced during the proceeding have been replicated back to local workstation. 
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Note, to copy files between systems, the directory paths must be modified to represent 

differences in mount points and local structures. Thus, outputs are available to operate on 

locally even though processing happens on AWS. The workflow framework is presented in 

Figure 1.

2.2 Configuration

Several modes to run a layout can be selected in the JIST layout preference panel (e.g., run 

on a DRMAA compliant grid, run locally, or run in the Amazon Cloud). Users should 

choose “use AWS EC2” option to activate cloud computing (Figure 2-(a)).

Using the Cloud Dashboard, users are able to configure, initialize (“init”), boot, and 

terminate an Amazon AWS NITRC-CE cloud instance with predefined machine information 

(Figure 2(b)). Access Key Id, Secret access key and region information are used to validate 

an AWS account so that user can access Amazon EC2 and S3 resources. Custom S3 buckets 

are a top-level folder on S3, the name of which must be globally unique in Amazon S3. This 

bucket is used to store necessary packages and JIST layout projects with the same structure. 

A standard cryptographic key pair is needed to securely log in and connect to remote cloud 

instances. Inbound and outbound connection rules including IP and port permission range 

are defined in security groups. Also, users can select several different types of pre-

configured Amazon machines and any number of identical machines to boot. These 

machines have different processor speeds and memory installments. The initialize and install 

processes are executed once all necessary files and settings are prepared. In JIST’s “Progress 

Manager”, project input files are then uploaded to cloud and they wait for processing.

2.3 Cost/Benefit analysis

Time usage and expense are two integral factors to be considered cloud computing. Here, we 

consider if there is a way to estimate cloud usage costs relative to running serially on local 

lab machines. Total runtime in the cloud can be estimated by the following where TA 

represents runtime in the cloud.

for the Amazon machine instance type A. The above variables are defined in detail in the 

following sections. Briefly, B is bandwidth, Sdata is input data size, Sout is the output data 

size, g(n) is the function to compute estimated execution time for all jobs, and n is the total 

number of cloud instances.

AWS provides a considerable spectrum of instances family for on-demand purpose, i.e., 

“General Purpose” (balance of compute, memory, and network resources), “Compute 

Optimized” (highest performing processors with lowest cost/compute), “Memory 

Optimized” (memory-intensive applications and have the lowest cost/GiB of RAM), and 

“Storage Optimized” (SSD storage with low cost high IOPS) [9]. Different types of 

instances have different processors, which need to be considered when predicting 

performance. Within each instance class, instances use same kind of processors with 
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different total number. Memory should also be considered into install process (especially 

means installing MIPAV in each EC2 machines) and each job-processing time estimation. A 
is a weight value between (0, 1), when smaller cache and low memory allocation instance is 

applied, the value of A is more close to 0 (i.e., the machine is slower).

Input data size Sdata: Input image data size is also used to estimate processing time of a 

single job. In the example that we present, the process nearly linearly increases as the 

number of voxels increase. Amazon machine instance type A also affects the job time when 

taking processor cache and memory into consideration.

Bandwidth B: When running a big layout with lots of data that gets generated and multiple 

processing algorithms, upload/download time is not a primary factor in the model. However, 

if a layout is small, it is worth considering as the transfer process may end up taking as long, 

if not longer, than the processing time. On the same note, installation processes are also 

taken into consideration. The NITRC-CE includes many popular image processing toolkits, 

but is not guaranteed to have a compatible version of MIPAV and JIST --- these are 

transmitted and installed for each newly created cloud node in the S3 bucket. In general, a 

small layout is a project when it is applied only one single process to run the entire job, the 

total time is smaller than an hour, and the process needs less than 500G memory. The 

uploading time depends on the size of the project, or Sdata, because the file size is usually 

bigger than any other type of input files in the JIST project (i.e., “.input”, “.output”, 

“.LayoutXML”). However, the output file size(s) Sout need to be estimated. Subsequently, 

install upload and download time is then computable via bandwidth B.

Before explaining the details of g(n), we first introduce the job dependency tree D. JIST’s 

scheduler can handle the graph of execution dependencies. A lower priority value results in 

later execution and vice versa. The scheduler itself can also estimate execution time of a job. 

If several jobs are ready to run with the same priority at the same time, the job that has the 

smallest execution time will run first. For example, there are 4 jobs are all ready to run with 

same priority value, the estimation execution time is: job-a (15 minutes), job-b (18 minutes), 

job-c (50 minutes) and job-d (60 minutes). If two free instances are available, job-a and job-

b will start first, and this will cost less time than any other combination of 2 jobs to run first. 

As a result, a job dependency graph can be generated. This can help a user to decide the total 

number of instances.

D is a depth-first-search tree, according to job dependency. We first build an entire tree, and 

denote each node as slow and fast to represent processing time of a job. Then we remove all 

fast nodes, and connect all slow nodes via the hierarchy. Figure-3 presents an example of 

how D is generated.

Based on D, we first calculate the total number of nodes on each level and get the maximum 

number among all levels. We can then get an estimated number of maximum processes that 

can run at once. The average number of machines can be derived from a level in D, which 

has the maximum total execution time and maximum single running time in the selected 

level. If Ti|i=1,2,3…m is processing time of m jobs in a chosen level, average number of 

instances then can be calculate by:
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More machines can be booted with the benefit of decreased execution time at the expense of 

increased cost.

Once n is set, if there are x paths in D, we group x paths into y groups, where y equals x/n, 

and Ty is max time to run all jobs in group y. Tduplicate is the duplicate time among each 

groups. Finally, the estimation time to process all jobs in the cloud is

According to TA, type of instance and the number of nodes, the expense E is easy to 

calculate as

A small amount of data transfer and data storage fee also occurs, but it is considerably less 

than the cost of renting EC2 machine.

The tradeoff between number of instances booted and cost is one of the most important 

considerations to make. For example, consider a layout where there are many fast jobs that 

can run simultaneously, and they are all depending on a single slow job. In this scenario, we 

should cautiously select the number of machines to reduce the idle time of instances, as this 

is payment for non-processing time.

Different types and numbers of instances lead to different TA, which incurs several pairs of 

(E,TA). Based on budget and expectant time, users can decide if JIST cloud mode is 

applicable.

3. Case study and Results

Our test experiment is a multi-subject diffusion tensor imaging (DTI) project [10]. DTI is a 

method to non-invasively measure water diffusion in the human brain using magnetic 

resonance imaging (MRI). In this example, three different subjects are in the layout. The 

layout is used to fit tensors to the acquired data using four different tensor fitting routines 

(Figure-4). The input data size is 256*256*65*D, where D is the number of directions at 

which different gradients are applied and readout. In this case, there are 34. Table-2 

illustrates the experiment top-down structure. Level means the job hierarchy and 

dependency.

The final Job dependency DFS tree D is shown in Figure-5. In summary, the total number of 

level-2 in D is larger than level-1, so the maximum number of processes that are running at 

the same time in our experiment is 12. Moreover, they are all slow jobs, so we should 
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consider applying multiple instances rather than a single instance. In our experiments, in 

order to control variable, we apply the same Amazon instance family (namely M3), the 

processors of which is High Frequency Intel Xeon E5-2670 v2 (Ivy Bridge) Processors.

3.1 Case 1: Same total number of instance n, different Amazon instance type A

As a brute force approach, for each instance type, we all apply maximum number of 

instances 12. Table-3 presents the result of actual total running time of each option with total 

cpu time in cloud and expense. Total Cpu time in cloud is the time using only a single 

process to execute entire jobs in one virtual machine, which is also regarded as run layout in 

local workstation. Figure 6 visually shows the performance of JIST cloud mode compared 

with total cpu time.

The result shows the estimation time TA is reasonable with 90% precision. It illustrates that 

Medium instances can accomplish processing the project for a low cost (a bit more than 

Large instances’), but approximately with double the needed time over other instances type 

because of lack of memory allocation. The result also demonstrates ×Large's memory is big 

enough for our experiment with a total experiment time of 4 hrs 10 mins. The time does not 

dramatically decrease even when we apply a more expensive type instance (e.g., 2×Large). 

However, the total expense of 2×Large is much more than the other 3 instance types. Note 

that the expense of Medium is even more than Large instances. Running 12 jobs at the same 

time is hard for a normal local station, while running 12 jobs with 12 available instances is 

easy to accomplish. Figure 7 depicts these 12 jobs running all at the same time.

3.2 Case 2: Same instance type (large), different number of machines n

Due to job top-down structure, for one subject, 4 tensor fitting methods can run 

simultaneously. We use it to compute avg(n) equals 1.68 which means an average of 2 

instances can be applied for a subject. Thus, we should apply 6 instances in total for entire 

project. Table 4 demonstrates that 12 large machines just save 16 minutes (4%) more than 6 

large machines, which is because of the structure of the project.

Before tensor fitting, at most 6 machines will be used, so basically 6 machines will be idled 

when we apply 12 machines. While when we perform tensor fitting, 12 machines can save 

partially parallel time. When using 12 machines, 12 tensor fitting algorithm are run at the 

same time. While when 6 machines are ordered, owing to JIST scheduler, CAMINO-WL 

and CAMINO-LLMSE are completed first, and job CAMINO-NL and Single tensor 

Estimation are then run. In this case, total number of 6 large instances should be ordered 

since it saves 40% expense and just need 16 more minutes to complete the entire jobs.

4. Conclusion

This paper has presented a system to enable automatic deployment of a JIST to the Amazon 

AWS cloud. Each processes of user’s project are processed in separate nodes in Amazon 

AWS. Mounting Amazon S3 storage to all EC2 is automatically accomplished for efficient 

I/O and data transfer in cloud environment. Our cost/benefit analysis can help users to 

decide grid size and configuration relative to local computation. A performance prediction 

scheme to accurately predict computing resource is found in [14], stricter cost estimation 
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could be applied to current work. EC2 limit performance compared with conventional HPC 

platform has also introduced in [11]. So our future work is to maintain JIST cloud version 

and exploit cloud-based JIST to run very large parallel processes with efficient use of EC2 

machines.
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Figure 1. 
Workflow framework.
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Figure 2. 
(a) JIST preferences panel (b) JIST Cloud Dashboard
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Figure 3. 
Job dependency DFS tree generation
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Figure 4. 
Multi-slice DTI test layout.
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Figure 5. 
Job dependency DFS tree for multi-slice DTI experiment
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Figure 6. 
JIST cloud running time performance with different instance type
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Figure 7. 
Maximum 12 jobs are running at once
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Table-2

Multi-slice DTI experiment layout top-down structure (one subject).

Job Id Description Dependent node Time estimation

T1 Extract b values and gradient table Fast

T2 Make a scheme file T1 Fast

T3 Registration T1 Slow, 1.25 hrs/subject

T4 Tensor fitting-CAMINO-WL T3 Slow, 15 mins/subject

T5 CAMINO-WL DTI contrast T4 Fast

T6 CAMINO-WL DTI Color encode map T4 Fast

T7 Tensor fitting- CAMINO-NL T3 Slow, 2.5 hrs/subject

T8 CAMINO-NL DTI contrast T7 Fast

T9 CAMINO-NL Color encode map T7 Fast

T10 CAMINO-LLMSE T3 Slow, 15 mins/subject

T11 CAMINO-LLMSE DTI contrast T10 Fast

T12 CAMINO-LLMSE encode map T10 Fast

T13 Single tensor estimation T3 Slow, 1.25 hrs/subject

T14 Single tensor estimation DTI contrast T13 Fast

T15 Single tensor estimation color encode map T13 Fast
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