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Chewing tobacco is a common practice in certain socio-economic sections of southern Asia, particularly in the Indian
subcontinent and has been well associated with head and neck squamous cell carcinoma. The molecular mechanisms of
chewing tobacco which leads to malignancy remains unclear. In large majority of studies, short-term exposure to
tobacco has been evaluated. From a biological perspective, however, long-term (chronic) exposure to tobacco mimics
the pathogenesis of oral cancer more closely. We developed a cell line model to investigate the chronic effects of
chewing tobacco. Chronic exposure to tobacco resulted in higher cellular proliferation and invasive ability of the
normal oral keratinocytes (OKF6/TERT1). We carried out quantitative proteomic analysis of OKF6/TERT1 cells chronically
treated with chewing tobacco compared to the untreated cells. We identified a total of 3,636 proteins among which
expression of 408 proteins were found to be significantly altered. Among the overexpressed proteins, stearoyl-CoA
desaturase (SCD) was found to be 2.6-fold overexpressed in the tobacco treated cells. Silencing/inhibition of SCD using
its specific siRNA or inhibitor led to a decrease in cellular proliferation, invasion and colony forming ability of not only
the tobacco treated cells but also in a panel of head and neck cancer cell lines. These findings suggest that chronic
exposure to chewing tobacco induced carcinogenesis in non-malignant oral epithelial cells and SCD plays an essential
role in this process. The current study provides evidence that SCD can act as a potential therapeutic target in head and
neck squamous cell carcinoma, especially in patients who are users of tobacco.

Introduction

Consumption of tobacco continues to be one of the major
established etiological factors in the pathogenesis of head and
neck squamous cell carcinoma (HNSCC).1,2 According to the
report published by the WHO, every year approximately 6 mil-
lion people worldwide are killed due to tobacco consumption.3

Tobacco is mainly consumed worldwide in the form of manufac-
tured cigarettes and even smoked as ‘bidis’, cigars and water-
pipes.4 Another form in which tobacco is consumed includes
smokeless or chewing tobacco. India houses the highest number
of chewing tobacco users, which accounts for 80% of global
tobacco chewers. In India, more than 50% of oral cancer cases
are estimated due to use of chewing tobacco.4

Chewing tobacco is associated with the development of can-
cers of the oral cavity, esophagus, stomach and pancreas.5,6

In the year 2007, the International Agency for Research on Can-
cer (IARC) classified chewing tobacco as a human carcinogen.7

Chewing tobacco contains several compounds including
tobacco-specific N-nitrosamines (TSNA), N’-nitrosonornicotine
(NNN), and 4(methylnitrosamino)-1-(3-pyridyl)-1-butanone
(NNK) which are shown to be carcinogenic.8,9 Though several
studies have shown the association between chewing tobacco and
cancer, the underlying cellular and molecular dynamics that lead
to cancer development and metastasis is not well characterized. It
is intuitive to consider that the mechanisms of action of
chewing tobacco to be similar to that of cigarette smoke. How-
ever, it has been reported that there are significant differences in
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pro-carcinogenic and carcinogenic agents present in chewing
tobacco because of which the mode of action might vary signifi-
cantly.8,10 Current studies have demonstrated the acute effects of
chewing tobacco in cells. A study by Wang Y et al., demonstrated
the proliferation of normal human epidermal keratinocytes
induced by chewing tobacco extract when treated for 3 d11 Stud-
ies by other groups have shown that treatment of AMOL-III cells
(established from a leukoplakia patient), with chewing tobacco

for 48h induced alterations in genes involved in key biological
processes such as cell cycle regulation, cell-cell adhesion and
DNA methylation.12,13 Validation of these genes on oral pre-
malignant lesions (OPLs) and oral squamous cell carcinoma
(OSCC) tissues showed similar pattern of expression. The same
group also reported activation of nuclear factor-kB (NF-kB) and
signal transducer and activator of transcription 3 (STAT3) path-
ways in chewing tobacco induced oral carcinogenesis.14,15 It is
known that carcinogenic effect of chewing tobacco in oral cancer
is through chronic exposure and not by acute exposure. Though
these studies have identified few of the molecules by which chew-
ing tobacco may exert its effects, but till date, there has been no
study on the chronic effects of chewing tobacco in oral keratino-
cytes even though chewing tobacco is one of the primary risk fac-
tors for head and neck cancers.

Figure 1. Chronic exposure to chewing tobacco increases proliferation
and invasive property of oral keratinocytes. (A) Growth curve for OKF6/
TERT1 and OKF6/TERT1-Tobacco cells. OKF6/TERT1-Tobacco cells
showed higher proliferation rate than the parental cells. (B) Invasion
assay: OKF6/TERT1 chronically treated with chewing tobacco acquired
invasive ability. (C) OKF6/TERT1 chronically treated with chewing
tobacco showed an increase in Bcl-xL/Bax ratio.

Figure 2. Workflow employed to identify the proteins differentially
expressed in response to chewing tobacco. Proteins from OKF6/TERT1
and OKF6/TERT1-Tobacco cells were isolated and quantified. Equal
amount of proteins from each condition was subjected to in-solution
trypsin digestion. Peptides from OKF6/TERT1 cells were labeled with
iTRAQ reagents 114 and 115 and those from OKF6/TERT1-Tobacco cells
were labeled with 116 and 117 iTRAQ labels. The samples were pooled
and subjected to SCX fractionation, followed by mass spectrometry-
based proteomic analysis.
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In this study, we chronically treated normal oral keratinocytes
(OKF6/TERT1) with chewing tobacco to model tobacco chewing
effects. We found that chronic exposure to chewing tobacco led to
increased cellular proliferation and induced invasive ability in the
non-invasive oral keratinocytes. To understand the molecular
mechanisms of the insult imparted by chewing tobacco, we studied
the proteomic profile of the OKF6/TERT1 cells chronically
exposed to chewing tobacco compared to untreated cells. Quantita-
tive mass spectrometry-based proteomic analysis resulted in the
identification of 408 proteins, which were differentially expressed
in the cells chronically exposed to chewing tobacco. The dysregu-
lated proteins included overexpression of proteins involved in the
stimulation of cell growth and cell cycle regulation.

Tumor cells exhibit high cellular proliferation rate than the
normal cells. This process requires the formation of new mem-
branes which in turn requires the synthesis of lipids/fatty acids to
maintain membrane fluidity.16 Saturated fatty acids produced as
a result of glycolysis are converted to monounsaturated fatty
acids, which serve as the components of cell membrane. The ratio
of saturated to monounsaturated fatty acids is tightly regulated in
cells. Any imbalance in this ratio affects a wide range of cellular
functions leading to either uncontrolled cellular proliferation or
cellular senescence and death.17 Stearoy-CoA desaturase (SCD),
a delta-9-desaturase, plays a central role in the de novo synthesis
of monounsaturated fatty acids from saturated fatty acids. The
preferred substrates of SCD include palmitic and stearic acids,
which are converted to palmitoleate and oleate, respectively.18 In
the absence of SCD, palmitic acid accumulates in the cells, which
is toxic to mitochondria and endoplasmic reticulum and induces
apoptosis.19,20 Literature evidence suggests SCD as a potential
target to block cellular proliferation and invasion in cancer.21-23

However, the role of SCD in HNSCC remains unexplored. In
this study, SCD was 2.6-fold overexpressed in cells chronically
treated with tobacco and we have assessed the potential of SCD
as a novel therapeutic target in head and neck cancer.

Results

Chronic exposure to chewing tobacco increases proliferation
and invasive property of oral keratinocytes

Non-neoplastic oral keratinocytes, OKF6/TERT1, were
treated at varying concentrations of chewing tobacco extract rang-
ing from 0–10% to determine the optimum concentration for
chronic treatment (data not shown). The highest concentration
with which the cells could be treated chronically was 1%. Cells
treated at higher concentrations of chewing tobacco (>1 %)
underwent apoptosis/necrosis within days of treatment (data not
shown). After 3 months of chronic treatment, we observed a
change in the invasive property of the oral keratinocytes. The
non-invasive cells exhibited signs of invasion (data not shown).
The chronic treatment was continued for a total of 6 months
before the daughter cells (OKF6/TERT1 cells chronically treated
with chewing tobacco, hence forth referred to as OKF6/TERT1-
Tobacco) were assessed for proliferation and invasion ability. We
observed a significant increase in cellular proliferation of the

tobacco treated cells compared to the untreated cells (Fig. 1A).
In vitro invasion assay using Matrigel showed that the non-inva-
sive OKF6/TERT1 cells had acquired invasive property upon
chronic tobacco treatment and more that 80% of the cells had
invaded the Matrigel coated PET membrane (Fig. 1B).

Chewing tobacco induces the expression of survival proteins
It is established that in the presence of genotypic insult, cancer

cells escape cell death by regulating the expression of anti-apopto-
tic and pro-apoptotic genes.24 As the chewing tobacco treated
cells showed enhanced cellular proliferation and invasion com-
pared to the normal oral keratinocytes, we next examined the
expression of BCl-2 family proteins in response to chewing
tobacco. Western blot analysis showed an increase in expression
of both BCl-xL and BCl-2 along with decreased expression of
Bax in the OKF6/TERT1-Tobacco cells compared to the paren-
tal cells (Fig. 1C).

Table 1. Partial list of molecules differentially expressed in OKF6/TERT1 cells
chronically treated with chewing tobacco compared to untreated cells.

Gene
symbol Description

Tobacco treated/
untreated

(fold change)

Associated
biological
processes

ERH Enhancer of
rudimentary
homolog

7.1 Cell cycle
progression53

ERGIC3 ERGIC and golgi 3 3.8 Regulation of cell
growth54

MKI67 Marker of proliferation
Ki-67

2.8 Cell cycle control55

TIMP1 TIMP metallopeptidase
inhibitor 1

2.7 Cell growth and/or
maintenance56

SCD Stearoyl-CoA desaturase 2.6 Fatty acid
metabolism18

CCAR1 cell division cycle and
apoptosis regulator 1

2.6 Regulation of cell
proliferation57

FLNB Filamin B, b 2.0 Cell proliferation38

EPS8 Epidermal growth factor
receptor pathway
substrate 8

2.0 Cell communication;
Signal
transduction58

S100A14 S100 calcium binding
protein A14

1.9 Chemotaxis59

HSPA5 Heat shock 70kDa
protein 5

1.6 Regulation of
apoptotic
process60

ENO1 Enolase 1 0.5 Regulation of cell
growth61

TAGLN2 Transgelin 2 0.5 Tumor suppressor62

PLIN3 Perilipin 3 0.5 Transport63

KIF13A Kinesin family member
13A

0.5 Cell growth and/or
maintenance64

CDH13 Cadherin 13 0.4 Regulation of cell
proliferation65

PKM pyruvate kinase, muscle 0.4 programmed
cell death66

S100A11 S100 calcium binding
protein A11

0.3 Tumor suppressor67

TENM2 Teneurin transmembrane
protein 2

0.3 Cell adhesion68

PDCD4 Programmed cell death 4 0.3 Tumor suppressor40

GSN Gelsolin 0.3 Apoptotic process69
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Chronic exposure to chewing tobacco alters the cellular
proteome

Once we established that chronic exposure of chewing tobacco
induces cellular transformation or leads to progression toward onco-
genicity, we sought to study the molecular changes in the tobacco
treated cells. We studied the alteration in the cellular proteome of
OKF6/TERT1 and OKF6/TERT1-Tobacco cells using isobaric
tags for relative and absolute quantitation (iTRAQ)-based quantita-
tive proteomic analysis. The experimental workflow followed is
shown in Figure 2. LC-MS/MS analysis led to the identification of
3,636 proteins among which 174 proteins were overexpressed and

234 proteins were downregulated in
the tobacco treated cells compared
to the untreated cells (fold change
cut-off �1.5). The complete list of
proteins and their corresponding
peptides with their iTRAQ ratios,
m/z values and charge state is pro-
vided in Supplementary Tables S1
and S2. A partial list of differentially
regulated proteins is provided in
Table 1.

Chronic exposure to chewing
tobacco leads to increased
expression of SCD in oral
keratinocytes

Our proteomics data revealed
that SCD was upregulated 2.6-fold
in cells chronically treated with
chewing tobacco compared to the
parental cells. A representative
MS/MS spectrum is shown in Fig-
ure 3A. In agreement with mass
spectrometry data, Western blot
analysis revealed a significant
increase in the expression of SCD
in OKF6/TERT1-Tobacco cells
compared to the parental OKF6/
TERT1 cells (Fig. 3B). We evalu-
ated the expression profile of SCD
in a panel of HNSCC cell lines,
JHU-O22, JHU-O28, JHU-O29,
CAL27 and Fadu. As evident from
Figure 3C, all HNSCC cell lines
showed an increased expression of
SCD compared to normal oral ker-
atinocytes, OKF6/TERT1.

Inhibition of SCD decreases
cellular proliferation

Having observed that SCD was
overexpressed both in HNSCC cell
lines and OKF6/TERT1-Tobacco
cells, we examined the role of SCD
in cellular proliferation. Cellular

proliferation for the panel of HNSCC cell lines and OKF6/
TERT1-Tobacco cells were studied after silencing endogenous
expression of SCD using its specific siRNA. Western blot analysis
post-transfection with SCD siRNA revealed a successful knock-
down of SCD in OKF6/TERT1-Tobacco and HNSCC cell lines
(Fig. 3C). We observed a decrease in cellular proliferation of the
HNSCC cell lines and also in the OKF6/TERT1-Tobacco cells
upon siRNA mediated silencing of SCD (Fig. 4A-E). To deter-
mine whether inhibition of SCD had any effect on cell survival,
the OKF6/TERT1-Tobacco and HNSCC cells were treated with
CAY10566, a specific inhibitor of SCD25 and cell proliferation

Figure 3. Chronic exposure to chewing tobacco leads to increased expression of SCD in oral keratinocytes.
(A) Representative MS/MS spectra of SCD. (B) Western blot analysis showed overexpression of SCD in OKF6/
TERT1-Tobacco cells compared to OKF6/TERT1 cells. (C) OKF6/TERT1-Tobacco and a panel of HNSCC cell lines
were transfected with SCD siRNA and Western blot was performed 48h post transfection using anti-SCD anti-
body. b-actin was used as a loading control.
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assay was performed. Our results
indicated that both the OKF6/
TERT1-Tobacco cells and the
panel of HNSCC cell lines
showed a decrease in cell viabil-
ity in presence of the inhibitor
(Data not shown).

Inhibition of SCD reduces
the colony formation ability of
oral keratinocytes chronically
exposed to chewing tobacco

Colony formation assay is
often performed to understand
the oncogenic potential or infi-
nite growth potential of cells.26

Having observed that SCD plays
an essential role in cellular prolif-
eration, we next studied the
effect of SCD ablation in the
colony forming ability of the
cells. HNSCC cell lines, includ-
ing the OKF6/TERT1-Tobacco
cells showed a decrease in their
colony forming ability in the
presence of SCD inhibitor,
CAY10566 (Fig. 5A-B). Using
an alternative strategy to suppress
the expression of SCD in the
HNSCC cell lines, we silenced
SCD expression using its specific
siRNA. In agreement to the
results of SCD inhibitor,
CAY10566, over the colony for-
mation ability of the HNSCC
cell lines, siRNA-mediated
silencing of SCD in HNSCC
cell lines resulted in a significant
decrease in the colony formation
ability of the cells (Fig. 5C-D).
It is to be noted that, the OKF6/TERT1-Tobacco and JHU-O28
cells did not form discrete colonies. However, a significant decrease
in cell population was observed both in the presence of SCD
siRNA and CAY10566. Taken together, our results indicate that
SCD plays an essential role in the early cellular changes induced
by chewing tobacco that lead to malignancy.

Inhibition of SCD reduces the invasive property of cells
exposed to chewing tobacco

Decreased colony formation potential is often associated with
loss of invasion capabilities in cancer cells.27 Since invasion is a
critical property for metastasis of tumor cells, we further investi-
gated the in vitro invasive capabilities of the HNSCC cells using
Matrigel coated transwell chambers. Silencing of SCD using
siRNA in OKF6/TERT1-Tobacco and a panel of HNSCC cell
lines decreased the invasive property of the cells (Fig. 6A-B). In

concordance with the siRNA results, inhibition of SCD with its
inhibitor, CAY10566, resulted in a significant decrease in the inva-
sive property of both the HNSCC and OKF6/TERT1-Tobacco
cells (Fig. 6C-D). Taken together, these results indicate that silenc-
ing of SCD decreases the invasive properties of HNSCC cells.

Discussion

Earlier studies have indicated that chronic exposure to ciga-
rette smoke provides a better model in vitro than acute exposure
to cigarette smoke.28 Number of cellular models have been devel-
oped and employed to understand the mechanisms of cellular
transformation from normal to tumorigenic phenotype in
response to chronic exposure to cigarette smoke.28-32 All the
above studies have shown that chronic cigarette smoke exposure/

Figure 4. Inhibition of SCD decreases cellular proliferation. Silencing of SCD led to a decrease in cell prolifera-
tion of (A) OKF6/TERT1-Tobacco, (B) JHU-O22, (C) JHU-O29, (D) CAL27 and (E) Fadu cells.
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treatment induces selection of clones that have incorporated the
molecular level changes necessary for cancer progression and
resistance to apoptosis.

Smokeless tobacco or chewing tobacco is a known risk factor
in the development of oral cancer. Although the tumor inducing
property of chewing tobacco was proven in the year 1964, the
molecular events that lead to tumor growth and progression
upon its consumption are not known.33 It is important to under-
stand the molecular mechanisms and pathobiology of oral cancer
resulting from chewing tobacco as it differs significantly from cig-
arette smoking because of differences in composition. Chewing
tobacco contains several compounds such as nicotine, tobacco-

specific N-nitrosamines and poly-
cyclic aromatic hydrocarbons
which are known to be carcino-
genic. As mentioned earlier
tobacco demonstrates its carcino-
genic effect through long-term
(chronic) exposure and not acute.
The goal of this study was to
understand the total effects of
chewing tobacco and not its indi-
vidual components in inducing
cellular transformation of normal
oral keratinocytes upon chronic
exposure. Toward this end, we
developed a cellular model that
mimics the in vivo system of
chronic habit of chewing tobacco.

We demonstrate that chronic
exposure to chewing tobacco
induces molecular changes in a
cellular system that is a pre-requi-
site for progression to malignancy.
This is evident by the increased
cellular proliferation and invasion
ability of the tobacco treated cells.
Apoptotic signaling by Bax and
Bak can be sequestered by Bcl-xL,
leading to cellular survival.34 Our
results indicated an increase in the
expression of Bcl-xL and Bcl-2 in
the chewing tobacco treated cells
compared to the parental cells.
Bcl-2 has been shown to be over-
expressed in chewing tobacco-
induced oral cancer.35 In addi-
tion, Bcl-xL has been found to be
upregulated in other cancers and
is considered to be a marker for
increased tumorigenesis.36 An
increase in the Bcl-xL/Bax ratio
provides resistance to DNA dam-
age and aids in survival of cancer
cells.34 The increase in the Bcl-xL/
Bax ratio in the tobacco treated

cells probably leads to an increase in cellular survival due to selec-
tive pressure of the tumor microenvironment which enables
them to acquire oncogenic property. This was supported by mass
spectrometry-based analysis of the cell line pair (OKF6/TERT1-
Parental and OKF6/TERT1-Tobacco). A wide array of proteins
known to play an essential role in increased cellular proliferation
were found to be overexpressed in the cells chronically treated
with tobacco. These proteins included TIMP metallopeptidase
inhibitor 1 (TIMP1) (2.7-fold), the antigen identified by mono-
clonal antibody Ki-67 (MKI67) (2.8-fold) and filamin B
(FLNB) (2.0-fold).37-39 These observations provide a possible
explanation for enhanced cellular proliferation in the tobacco

Figure 5. Inhibition of SCD reduces the colony formation ability of oral keratinocytes chronically exposed to
chewing tobacco and HNSCC cells. (A) Colony formation ability of the OKF6/TERT1-Tobacco and HNSCC cells
were decreased after inhibition of SCD activity using CAY10566 (10 mM). (B) A graphical representation of
the same. (C) siRNA-mediated silencing of SCD resulted in decreased colony forming ability of OKF6/TERT1-
Tobacco and HNSCC cells. (D) A graphical representation of the same.
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treated cells. We also observed a
decrease/loss of expression of
multiple tumor suppressor
genes. This includes, pro-
grammed cell death protein 4
(PDCD4) (0.3-fold) and S100
calcium binding protein A2
(S100A2) (0.4-fold).40,41

Our proteomics data also
showed an increased expression
of proteins such as epidermal
growth factor receptor pathway
substrate 8 (EPS8) (2.0-fold),
S100 calcium binding protein
A14 (S100A14) (1.9-fold) and
heat shock 70kDa protein 5
(HSPA5) (1.6-fold), which are
known to be aberrantly
expressed in head and neck can-
cer.42-44 This data supports our
hypothesis that chronic exposure
to chewing tobacco induces
malignancy and potentiates the
induction of head and neck car-
cinoma. Apart from the known
proteins in literature, we also
identified few novel proteins
(enhancer of rudimentary
homolog (ERH) (7.1-fold) and
teneurin transmembrane protein
2 (TENM2) (0.3-fold), whose
role in HNSCC remains to be
elucidated, which is beyond the
scope of this manuscript.

Our observation that SCD is
overexpressed in HNSCC is
supported by studies in other
cancer types.17,21,45 SCD is
known to induce epithelial to
mesenchymal transition and
cancer progression.46 SCD
mediates its effects through activation of various signaling events
such as activation of PI3K/AKT pathway, Wnt/b-catenin and
through the activation of MAP kinases (MAPK1/3).45-47 Here,
we show a direct effect of chewing tobacco on normal oral cells
and provide evidence that increased expression of SCD in pres-
ence of chewing tobacco leads to oncogenic transformation of
oral cells. We further demonstrate that inhibition of SCD results
in loss of oncogenic and metastatic potential of head and neck
cancer cells. Taken together, our results indicate that SCD plays
an essential role in HNSCC progression and can serve as a poten-
tial therapeutic target in head and neck cancer. Our current study
does not rule out the role of other proteins in the progression of
HNSCC. In addition, the precise mechanisms of how SCD acts
as a therapeutic agent in HNSCC have not yet been clearly
defined. However, a detailed understanding of the role of SCD

in HNSCC progression is needed and requires both in vivo and
in vitromodels. In this study, we report the linkage of overexpres-
sion of SCD to chewing tobacco mediated oncogenic transforma-
tion in oral cells that has not been previously reported.

Materials and Methods

Preparation of chewing tobacco extract
Chewing tobacco was procured from local supplier. 10 g of

tobacco was finely powdered and homogenized in 100 ml of 1X
phosphate buffer saline (PBS). The mixture was stirred at 37�C
for 24h, followed by centrifugation at 2000 g for 15 min. The
supernatant was collected and sterilized using 0.22 mm filter.12

This was considered as 100% extract of chewing tobacco. The

Figure 6. Inhibition of SCD reduces the invasive property of cells exposed to chewing tobacco. (A) OKF6/
TERT1-Tobacco and HNSCC cells were transfected with SCD specific siRNA and control siRNA. Silencing of SCD
led to a decrease in the invasive property of the cells. (B) A graphical representation of the same. (C) Treatment
of OKF6/TERT1-Tobacco and HNSCC cells with SCD inhibitor, CAY10566 (10 mM) for 48h resulted in a decrease
in the invasive ability of the cells. (D) A graphical representation of the same.
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chewing tobacco extract was aliquoted and stored at ¡80�C until
further use.

Cell culture
Normal human oral keratinocytes, OKF6/TERT1, were a

generous gift from Dr. James Rheinwald (Brigham and Women’s
Hospital, Boston, MA). OKF6/TERT1 were cultured and main-
tained in keratinocyte serum free medium (KSFM) supple-
mented with bovine pituitary extract (25 mg/ml), epidermal
growth factor (EGF) (0.2 ng/ml), 1% penicillin/streptomycin
and CaCl2 (0.4 mM). Fadu and CAL27 cells were procured
from American Type Culture Collection (ATCC, Manassas,
VA). JHU-O22, JHU-O28, JHU-O29 and Fadu cells were
grown in RPMI media supplemented with 10% fetal bovine
serum (FBS) and 1% penicillin/streptomycin mixture. CAL27
cells were grown and maintained in DMEM containing 10%
FBS and 1% penicillin/streptomycin. All cells were grown at
37�C in a humidified 5% CO2 incubator.

Treatment of OKF6/TERT1 cells with chewing tobacco
OKF6/TERT1 cells were chronically treated with chewing

tobacco extract at 1% concentration for 6 months. Henceforth,
OKF6/TERT1 cells chronically treated with chewing tobacco
extract will be termed as “OKF6/TERT1-Tobacco” and the
parental cells will be referred to as “OKF6/TERT1.” Both these
cells were grown at 37�C in a humidified 5% CO2 incubator.

siRNA transfection
ON-TARGETplus SMARTpool control siRNA (catalog # D-

001810–10–05, Invitrogen, Carlsbad, CA) and SCD siRNA
(catalog # L-005061–00–0005, Invitrogen, Carlsbad, CA) were
purchased from Dharmacon (Lafayette, CO). Cells were tran-
siently transfected with scrambled or SCD siRNA using Lipofect-
amine RNAiMAX reagent (catalog # 13778075, Invitrogen,
Carlsbad, CA) as described previously.30

Cell proliferation assays
OKF6/TERT1-Tobacco cells and HNSCC cell lines were

seeded at a density of 12 £103 cells per well in 12-well plates.
The cells were transfected with either SCD siRNA or control
siRNA. The cellular proliferation was monitored for 3 d post-
transfection where the cells were counted using trypan blue exclu-
sion method. All assays were carried out in triplicate.

Sample preparation
OKF6/TERT1 and OKF6/TERT1-Tobacco cells were grown

to 80% confluence. The cells were starved for 12h. Then, the
cells were washed with 1X PBS and harvested in 1X ice-cold
PBS. Cells were lysed in 0.5% SDS buffer followed by sonication
(Branson Sonifier, Danbury, CT) and centrifugation. The cleared
supernatant was used for protein estimation using the bicincho-
ninic acid assay (BCA).48

In-solution digestion and iTRAQ labeling
In-solution trypsin digestion and iTRAQ labeling of samples

from both conditions was carried out as described previously.49

Equal amounts of cell lysate (200 mg) from both OKF6/TERT1
and OKF6/TERT1-Tobacco cells were reduced with (tris(2-car-
boxyethyl) phosphine (TCEP)) at 60�C for 1h. This was followed
by alkylation with cysteine blocking reagent, methyl methanethio-
sulfonate (MMTS) for 10 min at room temperature. The samples
were then subjected to trypsin digestion at 37�C for 12–16 h using
sequencing grade trypsin (catalog # V5111, Promega, Madison,
WI) at enzyme to substrate ratio of 1:20. Following trypsin diges-
tion, the peptides were labeled with iTRAQ reagents as follows,
peptides from OKF6/TERT1 cells were labeled with reagents con-
taining the reporter ions of m/Z 114 and 115 and those from
OKF6/TERT1-Tobacco cells were labeled with reagents contain-
ing reporter ions of m/Z 116 and 117. The samples from both
the conditions were pooled and subjected to fractionation.

Strong cation exchange chromatography (SCX)
SCX fractionation of the iTRAQ labeled peptides was per-

formed as described previously.50 Pooled sample was diluted to
1ml with solvent A (10mM KH2PO4, 25% (v/v) ACN, pH 2.7).
The pH of sample was adjusted to 2.7 using ortho-phosphoric
acid. The peptides were loaded on PolySULFOETHYL A col-
umn (PolyLC, Columbia, MD) (5 mm, 200A

�
, 200£2.1mm)

using an Agilent 1290 Infinity series HPLC system (Agilent
Technologies, Santa Clara, CA). Peptides were fractionated using
a 50 min gradient from 0% to 40% solvent B (350 mM KCl in
solvent A). A total of 96 fractions were collected and further
pooled into 23 fractions based on chromatographic peaks. The
pooled fractions were dried and desalted using C18 StageTips
and stored at ¡20�C till further analysis.

LC-MS/MS analysis
LTQ-Orbitrap Velos mass spectrometer (Thermo Fischer Sci-

entific, Bermen, Germany) interfaced with Proxeon Easy nLC
system (Thermo Scientific, Bremen, Germany) was used for
proteomic analysis. Enrichment of the peptides was carried on a
trap column (75 mm£ 2cm) packed in-house using C18 material
(Magic C18AQ, 5 um, 100A, Michrom Biosciences Inc.) with a
flow rate of 3 ml/min using solvent A (0.1% formic acid) and
resolved on an analytical column (75 mm £ 10 cm, Magic
C18AQ, 3 mm, 100A, Michrom Biosciences Inc.) at a flow rate
of 350 nL/min using a linear gradient of 7- 30% solvent B (95%
acetonitrile, 0.1% formic acid) over 70 min. MS and MS/MS
scans were acquired with a mass resolution of 60,000 and 15,000
at 400 m/z using the Orbitrap mass analyzer. Precursor MS scan
was set to m/z 350–1,800. In each duty cycle 20 most intense
monoisotopic precursors were selected for MS/MS fragmentation
using higher-energy collision dissociation (HCD) mode at 41%
normalized collision energy. Isolation width was set to 1.9 m/z.
Singly charged and unassigned charge precursor ions were
rejected. Dynamic exclusion setting was enabled and acquired
ions were excluded for 45s. The automatic gain control for full
MS and MS/MS were set to 1 £ 106 and 5 £ 104 ions, respec-
tively. The maximum ion injection time was set to 100 ms for
MS and 250 ms for MS/MS scans. The lock mass
option was enabled using polydimethylcyclosiloxane ions (m/z,
445.120025) for internal calibration.
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Data analysis
The raw data obtained was searched using Sequest and Mascot

(version 2.2.0, Matrix Science, London, UK) search algorithms
through Proteome Discoverer (version 1.4.0.288, Thermo Scien-
tific, Bremen, Germany) suite against NCBI RefSeq human pro-
tein database (version 65 containing 34,453 protein sequences
and known contaminants). The search parameters included tryp-
sin as proteolytic enzyme with 1 missed cleavage and oxidation
of methionine as variable modification. The static modifications
included alkylation (methylthio) at cysteine and iTRAQ modifi-
cation at N-terminus of the peptide and lysine. Mass tolerances
of precursor and fragment ions were set to 20 ppm and 0.1 Da,
respectively. False discovery rate of 1% was considered to report
identification. The average of reporter ion intensities from tech-
nical replicates was used for iTRAQ quantitation. Quantitation
of identified peptide was normalized on protein median.

Western blotting
Cells were grown to 80% confluence and the proteins were

harvested in RIPA lysis buffer (10 mM Tris pH 7.4, 150 mM
NaCl, 5 mM EDTA, 1% Triton-X-100, 0.1% SDS containing
protease and phosphatase inhibitor cocktails) and sonicated.
Western blot analysis was carried out as described previously.30

Briefly, 30 mg of the cell lysate was resolved by SDS-PAGE and
transferred onto nitrocellulose membrane. The membrane was
blocked with 5% non-fat dry milk in PBS-T and incubated over-
night with monoclonal mouse anti-SCD antibody (catalog #
ab19862, Abcam, Cambridge, MA). Anti-mouse IgG bound to
the HRP conjugate was used as a secondary antibody. Proteins
on the membrane were visualized using enhanced chemilumines-
cence detection kit as per manufacturer’s instructions. b-Actin
was used as loading control for all Western blots.

Cell invasion assays
Invasion assay was performed in a transwell system (BD Bio-

sciences, San Jose, CA) with Matrigel coated filters and cellular
invasion was evaluated after 48h. Briefly, invasiveness of the cells
was assayed in the membrane invasion culture system using poly-
ethylene terephthalate (PET) membrane (8-mm pore size) (Cata-
log # 353097, BD Biosciences, San Jose, CA) in the upper
compartment of a transwell coated with Matrigel (Catalog #
354234, BD Biosciences, San Jose, CA). The cells were seeded at
2.0 £ 104 cells in 500 ml of media on the Matrigel-coated PET
membrane in the upper compartment. The lower compartment
was filled with complete growth media and the plates were incu-
bated at 37�C for 48 h. At the end of the incubation time, the
upper surface of the membrane was wiped with a cotton-tip
applicator to remove nonmigratory cells. Cells that migrated to
bottom side of membrane were fixed and stained using 4% meth-
ylene blue. Each measurement was performed in duplicate. All
experiments were repeated thrice.

Colony formation assays
OKF6/TERT1-Tobacco and the HNSCC cell lines were

transfected with either SCD siRNA or control siRNA. Post-
transfection 3£103 cells were seeded into 6-well plates with

complete media. Cell colonies were allowed to grow for 10–
14 days, before the colonies were fixed with methanol and
stained with 4% methylene blue. The number of colonies per
well was counted. Similarly, colony formation ability of the
OKF6/TERT1-Tobacco and HNSCC cells was monitored in
presence of SCD inhibitor, CAY10566 (3-[4-(2-chloro-5-fluoro-
phenoxy)-1-piperidinyl]-6-(5-methyl-1,3,4-oxadiazol-2-yl)-pyri-
dazine) (Catalog # CAY10566, Cayman Chemicals Ann Arbor,
USA). All experiments were performed in triplicate.

Data availability
The mass spectrometry data files generated in this study can

be accessed freely available at ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org) via the PRIDE
public data repository.51 The data can be downloaded using data-
set identifier PXD001554. Alternatively, the peptides and their
associated MS/MS spectra can be downloaded from Human Pro-
teinpedia at http://www.humanproteinpedia.org/data_display?
exp_idD00804.52
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