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Gestational stress induces depressive-like and anxiety-like phenotypes through
epigenetic regulation of BDNF expression in offspring hippocampus
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ABSTRACT
Exposure to stressful life events during pregnancy exerts profound effects on neurodevelopment
and increases the risk for several neurodevelopmental disorders including major depression. The
mechanisms underlying the consequences of gestational stress are complex and remain to be
elucidated. This study investigated the effects of gestational stress on depressive-like behavior and
epigenetic modifications in young adult offspring. Gestational stress was induced by a combination
of restraint and 24-hour light disturbance to pregnant dams throughout gestation. Depressive-like
and anxiety-like behaviors of young adult offspring were examined. The expression and promoter
methylation of brain derived neurotrophic factor (BDNF) were measured using RT-qPCR, Western
blot, methylated DNA immunoprecipitation (MeDIP) and chromatin immunoprecipitation (ChIP). In
addition, the expressions of histone deacetylases (HDACs) and acetylated histone H3 lysine 14
(AcH3K14) were also analyzed. Our results show that offspring from gestational stress dams
exhibited depressive-like and anxiety-like behaviors. Biochemically, stress-offspring showed
decreased expression of BDNF, increased expression of DNMT1, HDAC1, and HDAC2, and decreased
expression of AcH3K14 in the hippocampus as compared to non-stress offspring. Data from MeDIP
and ChIP assays revealed an increased methylation as well as decreased binding of AcH3K14 on
specific BDNF promoters. Pearson analyses indicated that epigenetic changes induced by
gestational stress were correlated with depressive-like and anxiety-like behaviors. These data
suggest that gestational stress may be a suitable model for understanding the behavioral and
molecular epigenetic changes observed in patients with depression.
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Introduction

Major depression disorder is a heterogeneous disorder
with a wide spectrum of symptoms. The etiology of
major depression is complex and not well understood.
Accumulated evidence suggests that exposure to
stressful life events during pregnancy exerts profound
effects on neurodevelopment and increases the risk
for several neurodevelopmental disorders including
major depression, bipolar disorder, schizophrenia,
and autism.1-6 Recent studies suggest that epigenetic
modifications of DNA and chromatin structure
induced by environmental factors, including stress,
may contribute to the complex phenotypes of neuro-
psychiatric disorders.7-12 For example, patients with
psychosis exhibit an increase in brain DNA methyl-
transferases (DNMTs) and ten-eleven-translocation
hydroxylases (TETs),13-17 leading to downregulation

of candidate genes through promoter CpG residue
methylation/hydroxymethylation. A study of postmor-
tem hippocampus from suicide victims with child-
hood abuse history showed increased DNA
methylation on the promoter region of the glucocorti-
coid-receptor gene.18 Differential methylation from
genome-wide DNA methylation analyses suggests an
epigenetic mechanism associated with major depres-
sion disorders.19 Furthermore, hippocampal DNMT
inhibition displayed antidepressant effects in rats.20,21

Current theories regarding the pathogenesis of
symptoms present in depression have depended
largely on animal models. Because of the complex
nature of depression, various animal models have
been developed using different paradigms including
genetic engineering, brain damage, and environmental
manipulations in different genetic background
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rodents.22,23 Depressive-like rodent models can be
divided largely into 2 groups: 1) acute stress models
including the forced swim test (FST), tail suspension
test (TST) and helplessness which offer rapid pheno-
typing and tests of antidepressant action; 2) chronic
stress models including chronic mild stress models
developed by applying physical stresses over couple of
weeks and psychosocial stress models such as social
defeat which offer a platform to investigate the neuro-
plasticity associated with chronic stress and drug
actions. The molecular insights of depressive-like ani-
mal models cover a variety of systems including
adrenergic, dopaminergic, GABAergic, serotonergic,
glutamatergic, and mediators in the immune system,
such as cytokines, and neurotrophins, such as brain
derived neurotrophic factors (BDNF), and modifica-
tions of chromatin, such as histone methylation.
Diverse molecular characterizations of rodent models
have provided different capacities for exploring the
pathophysiology of depression and its new
therapeutics.24

At the present time, a significant focus in research on
major depression has been the interplay between genetic
and environmental factors. Epigenetics refers to the state
of DNA CpG methylation/demethylation and chromatin
structure, which controls gene transcription or silencing
by facilitating or blocking transcription machinery
access. The development of depression cannot be studied
only in the post-mortem brain of patients and requires
the use of animal models. In order to study epigenetic
mechanisms involved in the pathogenesis of major
depression, we measured depressive-like and anxiety-like
behaviors exhibited by young adult offspring of dams
exposed to restraint stress combined with 24-hour con-
stant light disturbance throughout gestation. Gestational
stress is a paradigm widely used for modeling psychiatric
disorders.

BDNF is a significant target gene of depression.25,26

Reduced expression of BDNF and increased promoter
methylation of BDNF-exons-iv and -ix have been
reported in the brain and blood of patients with depres-
sion.27-33

The mice we used in this study were Kunming species
mice. Kunming mice are the most widely used outbreed
colony in China. The molecular genetic profiles of the
species and the extent of genetic differentiation among
populations are still unclear. Because Kunming mice
were originated from Swiss mice, they may share a simi-
lar genetic background. These mice show: high disease
resistance, good adaptive capacity, high breeding coeffi-
cient, and good survival rate.34

In this study we analyzed: 1) if gestational stress
induces depressive-like and anxiety-like behavior in

offspring and 2) if such behavior changes are associ-
ated with epigenetic alterations of BDNF. The goal of
the present study was to increase the understanding
of epigenetic mechanisms underlying development of
depression by recapitulating interactions between
genes and the environment in animal models.

Results

Gestational stress leads to depressive-like and
anxiety-like behaviors in offspring

We measured depressive-like and anxiety-like behav-
iors in offspring born to gestational-stress dams. We
chose offspring at the age of postnatal day 40
(PND40) for all behavior and biochemical experi-
ments because the most common time of onset of
depression in humans is between the ages of 20 and
30 y old. Mice at PND40 are approximately equiva-
lent to human adolescents or young adults. Fig. 1A to
1C depict the duration of immobility, swimming and
struggling between stress and non-stress offspring.
During 5 min of a forced swimming test, immobility
behavior in the water tank was significantly increased
in gestational-stress offspring compared to non-stress
offspring (Fig. 1A). In addition, gestational-stress off-
spring displayed significant reduction in struggling
time (Fig. 1B) compared to non-stress offspring.
However, there was no marked difference in the dura-
tion of swimming between the 2 groups (Fig. 1C). We
next applied the tail suspension test, another standard
test for measuring depressive behavior in mice. As
shown in Fig. 1D, a significant increase in immobility
during the tail suspension test was observed in gesta-
tional-stress offspring compared to non-stress off-
spring during 5 min of test. Furthermore, we
examined the sucrose preference test to see if gesta-
tional stress induces anhedonic behavior in offspring.
Fig. 1E shows that gestational-stress offspring exhib-
ited a significantly reduced preference to sucrose solu-
tion compared to non-stress offspring. In terms of
total liquid intake, there was no difference between
the 2 groups (Fig. 1F). This result suggests that gesta-
tional stress induces anhedonic-like behavior in off-
spring. In addition, we used the elevated plus maze
test to measure if gestational-stress offspring devel-
oped anxiety behaviors. As shown in Fig. 1G-H, a sig-
nificant difference was detected in both the time spent
and number of entries in open arm between the 2
groups of offspring during a 10-minute test. Our data
indicate that the paradigm of a combination of
restraint and light stress can induce depressive-like
and anxiety-like behaviors in young adult offspring.
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Gestational stress decreases BDNF transcripts and
protein expression in offspring hippocampus

In order to probe possible mechanisms by which gesta-
tional stress induces depressive-like and anxiety-like
behaviors, next, we evaluated BDNF mRNA and protein
expression in the hippocampus. Mouse BDNF consists of
nine exon-driven transcripts producing at least nine
BDNF splice variants.35 Detailed mRNA analysis of

whole hippocampus revealed changes in four (BDNF-i,
-iv, -vi, and -ix) out of seven BDNF (-i, -ii, -iii, -iv, -v,
-vi, and -ix) transcripts measured (Fig. 2A). BDNF-vii
and -viii were excluded from the measurement because
of very low expression in the hippocampal region.
Immunoblot data normalized by b-actin show a marked
decrease (about 40%) in the protein level of BDNF in the
hippocampus of gestational-stress offspring compared to

Figure 2. Gestational stress changes the expression of brain-derived neurotrophic factor (BDNF) transcripts in the hippocampus of
young adult offspring. Among seven BDNF variants tested, BDNF transcripts (-i, -iv, -vi, and -ix) (A) and protein expression (B) in the hip-
pocampus of gestational-stress offspring are significantly decreased compared to the non-stress offspring. Data are presented as mean
§ SEM of 10 mice for each group. �P < 0.05 (one-way ANOVA followed by Bonferroni test vs. the corresponding value for non-stress
offspring).

Figure 1. Gestational stress induced depressive-like and anxiety-like behaviors in young adult offspring. In the forced swimming test,
immobility (A), swimming (B) and struggling (C) behaviors were analyzed during a 5-minute test. In the tail suspension test, immobility
(D) was recorded during a 5-minute test. In the sucrose consumption test, the sucrose preference (E) was calculated as percentage of
consumed sucrose solution over total liquid intake (F) for 24. h In the elevated plus maze test, percentage of open arm entries (G) and
percentage of time spent in open arms (H) were scored for a 10-minute test. Data are presented as mean§ SEM; nD 10 for each group;
�P < 0 .05 (Student t-test) vs. no-stress offspring.
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non-stress offspring (Fig. 2B). Downregulated BDNF
protein is correlated with decreased expression of indi-
vidual transcripts in gestational-stress offspring such as
BDNF-i, -iv, -vi, and -ix, but not of other variants.

Gestational stress induces increased expression of
DNMT1 and DNA methylation on BDNF promoters

We then measured DNMT1 mRNA levels in the hippo-
campus of offspring born from both non-stress and
stress dams. As shown in Fig. 3A, there is a marked
increase in the expression of DNMT1 mRNA in the ges-
tational stress offspring. Similar to mRNA, the protein
level of DNMT1 in the hippocampus of gestational-stress
offspring also significantly increased as compared to
non-stress offspring (Fig. 3B). To examine whether
decreased BDNF transcripts are due to epigenetic regula-
tion, especially promoter methylation induced by
gestational stress, we used methylated DNA immunopre-
cipitation (MeDIP) with specific 5-methylcytosine
(5mC) antibody to measure the enrichment of the most
important epigenetic mark, 5mC, on the BDNF variants

such as BDNF-i, -iv, -vi, and -ix, which are decreased by
stress in the hippocampus. As shown in Fig. 3C, high lev-
els of 5mC were found at BDNF-i, -iv, -vi, and -ix regula-
tory regions in gestational-stress offspring compared to
non-stress offspring. These findings suggest that gesta-
tional stress leads to CpG methylation on specific BDNF
promoters. Consistent with reported findings, the
enrichment of 5mC at BDNF-i, -iv, -vi, and -ix pro-
moters was negatively correlated with the levels of corre-
sponding BDNF transcripts (Fig. 4) when analyzed using
Pearson correlation, suggesting an epigenetic mechanism
by which promoter methylation may be responsible for
the downregulation of hippocampal BDNF in gesta-
tional-stress offspring. We also checked the specificity of
methylation induced by gestational stress in the same
brain region using GAPDH as a control gene. As
expected, GAPDH failed to show enrichment of 5mC in
gestational-stress offspring, indicating that CpG methyl-
ation induced by gestational stress is gene specific:
GAPDH [5mC enrichment on promoter (%)]: non-
stress, 0.036 § 0.004, n D 8; stress, 0.041 § 0.01, n D 8
(P D 0.9, Student t-test).

Figure 3. Gestational stress significantly increases expression of DNMT1 mRNA (A) and protein (B) in the hippocampus of gestational-
stress offspring. The representative immunoblots show a major band of approximately 190 kDa for DNMT1. All values are means § SEM
of 8 mice for each group. � P < 0.05 (Student t-test) vs. the corresponding control values. (C) Gestational stress significantly increases
the levels of 5-methylcytosine (5mC) on promoter regions (-i, -iv, -vi and -ix) in the hippocampus of offspring compared to non-stress
offspring. Data are presented as mean § SEM of 10 mice for each group. � P < 0.05 (one-way ANOVA followed by Bonferroni test vs.
the corresponding values for non-stress offspring).
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Gestational stress changes the expression of histone
deacetylases in offspring hippocampus

Chromatin modification is an important epigenetic
mechanism in regulating transcription. To probe
whether gestational stress leads to chromatin modifica-
tions that consequently affect BDNF expression, we mea-
sured the expression of histone deacetylases (HDAC),
especially HDAC1, HDAC2, and HDAC3 in the hippo-
campus, because these enzymes are key components in
gene regulation. As shown in Fig. 5, the data from both
RT-qPCR and immunoblotting show that the mRNA
and protein expression levels of HDAC1 and HDAC2
but not HDAC3 increased significantly in stress offspring
as compared to non-stress offspring. This suggests that
deacetylation occurs on histone H3 tails, which may be
associated with downregulation of BDNF.

Gestational stress decreases levels of Acetyl Histone
H3 Lysine 14 (AcH3K14) and its binding on BDNF
promoters in offspring hippocampus

The significant decrease of BDNF-i, -iv, -vi, and -xi
expression and increased HDACs observed in the hippo-
campus of gestational-stress offspring prompted us to
investigate whether the downregulation of BDNF and

depressive-like behavior phenotypes are also the conse-
quence of post-translational histone modification. We
first measured the protein level of AcH3K14 with specific
antibody. As shown in Fig. 6, significant decrease in
AcH3K14 expression was observed in the hippocampus
of gestational-stress offspring compared to non-stress
offspring. To examine if such a decrease is involved in
regulating BDNF expression, we assayed and compared
the levels of AcH3K14 at BDNF-i, -iv, -vi, and -xi pro-
moter regions in whole hippocampus using chromatin
immunoprecipitation (ChIP). As shown in Fig. 7, a
strong (more than 40%) decrease in AcH3K14 occurred
at BDNF-i, -iv -vi, and -xi promoters in gestational-stress
offspring compared to non-stress offspring.

Correlation

To examine potential relationships among the protein lev-
els of BDNF, HDAC1, HDAC2, and AcH3K14 and the
behavioral data such as immobility (forced swim test),
sucrose preference and percentage of time spent in open
arm, we performed Pearson correlation analyses. As shown
in Table 1, there is a significant negative correlation
between levels of BDNF and HDAC1 (rD -0.44, PD0.05),
indicating that decreased BDNF was associated with

Figure 4. The enrichment of 5mC (promoter methylation) on exons of BDNF-i (A), -iv (B), -vi (C), and -ix (D) is negatively correlated with
the corresponding transcripts by Pearson correlation analysis.
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increased HDAC1. In addition, the level of BDNFwas pos-
itively correlated with sucrose preference (r D 0.65,
P D 0.03) while levels of HDAC1 and HDAC2 demon-
strated a significant inverse correlationwith sucrose prefer-
ence (r D ¡0.64, P D 0.003 and r D ¡0.45, P D 0.05).
However, no significant correlations were found among
biochemical measurements with immobility and percent-
age of time spent in open arm observed in this study. The
data imply an important role for BDNF, HDAC1, and
HDAC2 in regulatingmotivational behavior.

Discussion

The goal of this study was to determine whether gesta-
tional stress induces depressive-like and anxiety-like
behavior phenotypes in young adult offspring and
whether such behavioral deficits are accompanied by dif-
ferences in the expression of epigenetic-related bio-
markers as previously found in the brains of patients
with depression.25,27-33,36 To reach this goal, we stressed
pregnant dams with a combination of stressors: restraint
stress with 24-h constant light disturbance throughout
the gestational period. Light disturbance has been

reported to induce anxiety-like and depressive-like
responses in both rodents and humans.37 To test the
consequence of such stress on young adult offspring, we
used standard paradigms widely used for animal models
of human psychiatric disorders, i.e., forced swim test, tail

Figure 5. Gestational stress induces alteration of hippocampal HDACs expression in offspring. (A) The mRNA of HDAC1 and HDAC2 but
not HDAC3 are significantly increased in the hippocampus of gestational-stress offspring as compared to non-stress offspring. (B) Immu-
noblot data normalized by b-actin protein levels show a marked increase in the protein levels of HDAC1 and HDAC2 but not HDAC3 in
the hippocampus of gestational-stress mice compared to non-stress offspring. Data are presented as mean § SEM of 10 mice for each
group. �P < 0.05 (one-way ANOVA followed by Bonferroni test vs. the corresponding values for non-stress offspring).

Figure 6. Immunoblot analysis shows a decrease in the protein
level of AcH3K14 in the hippocampus of gestational-stress off-
spring. Data are presented as mean § SEM of 10 mice for each
group. � P < 0.05 (Student t-test) vs. non-stress offspring.
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suspension test, sucrose preference test and elevated plus
maze. We found that exposure to the stressors above
during gestation lead to depressive-like and anxiety-like
behavior phenotypes in young adult offspring mice
including increased immobility, decreased struggling,
reduced sucrose preference and decreased percentage of
time and number of entries in open arms. The behavior
abnormalities observed in multiple paradigms suggest
depressive and anxiety traits in young adult offspring
born to gestational-stress dams, offering a valid model
for depression and anxiety studies.

In an attempt to reveal molecular mechanisms of the
behavioral abnormalities observed in gestational-stress
offspring, we focused on epigenetic regulation of BDNF
expression, especially in the hippocampal region. Post-
mortem and animal studies found that insufficient
BDNF leads to hippocampal shrinking, decreased LTP
expression and downregulated learning and memory
abilities and may be responsible for depressive pheno-
types.36-41 Taken together, it suggests that the hippocam-
pus is sensitive to gestational stress and is an important
brain region in the pathophysiology of depression.
BDNF has multiple important roles in brain develop-
ment including supporting the survival and differentia-
tion of selected neuronal populations, modulating
dendritic growth, regulating synaptic transmission, and
plasticity.36 Substantial evidence suggests that this neuro-
trophin also plays important roles in psychiatric

disorders and is one of the primary targets of major
depression.36 Since reduced brain BDNF is associated
with the pathogenesis of depression,25,27-33,36 it is consid-
ered a candidate gene for this mental illness.

Our data show that gestational stress induces a signifi-
cant decrease of BDNF protein expression in the hippo-
campus of offspring. Because total BDNF level is
contributed from various individual transcripts, the
decreased BDNF induced by the gestational-stress para-
digm in the present study can be considered the result of
downregulation of specific transcripts, such as BDNF-i,
-iv, -vi, and -ix. This finding suggests that in the hippo-
campus, BDNF-i, -iv, -vi, and -ix transcripts are sensitive
to environmental stress. In addition, the other BDNF
variants measured, including -ii, -iii, and -v, failed to
show changes in both stress and non-stress offspring,
suggesting that these splice variants may be stable and
do not respond to the stressors used in this study. It has
been reported that unpredictable stress differentially reg-
ulates the expression of BDNF splice variants in hippo-
campal subfields and impacts their function.42 Repeated
administration of antidepressant to rat induces differen-
tial expressions of BDNF in different hippocampal sub-
regions.43 These findings suggest that the components of
hippocampus function differently in response to stres-
sors. In present study, we focused on BDNF expression
in whole hippocampus. However, further studies are nec-
essary to investigate the expressions of BDNF transcripts

Figure 7. Gestational stress causes decrease of AcH3K14 binding to BDNF exons (-i, -iv, -vi and -ix) in the hippocampus compared to
non-stress offspring. Data are presented as mean § SEM of 10 mice for each group. � P < 0.05 (One-way ANOVA followed by Bonferroni
test vs. corresponding values for non-stress offspring for ChIP assay). IP: immunoprecipitation.

Table 1. Correlation analysis for selected biological and behavioral measures.

HDAC1 Level HDAC2 Level AcH3 Level FST Immobility Sucrose Preference % of Time in Open Arm

BDNF Level r D ¡0.44
P D 0.05

r D ¡0.21
P D 0.37

r D 0.22
P D 0.35

r D ¡0.09
P D 0.68

r D 0.65
P D 0.003

r D 0.38
PD0.09

HDAC1 Level r D 0.31
P D 0.19

r D ¡0.26
P D 0.27

r D ¡0.03
P D 0.90

r D ¡0.64
P D 0.003

r D ¡0.14
P D 0.57

HDAC2 Level r D ¡0.27
p D .25

r D 0.26
p D 0.25

r D ¡0.45
p D 0.05

r D ¡0.36
p D 0.12

AcH3 Level r D ¡0.42
p D .07

r D 0.43
p D 0.06

r D 0.07
p D 0.77
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in different subregions of hippocampus under gesta-
tional-stress conditions in the future.

Recent studies show that different segregation of
BDNF transcripts may provide a particular mechanism
for the modulation of BDNF availability and function in
specific hippocampal subfields during development or in
response to environmental stimuli.37-39 In the present
explorative study, we focused on the expression pattern
of different BDNF transcripts in whole hippocampus
under gestational-stress conditions. It is necessary to
investigate expressions of BDNF transcripts in the differ-
ent hippocampal regions to gain insight into their func-
tion in coping with environmental stressors.

To establish whether the downregulation of BDNF
transcripts observed in gestational-stress offspring may
be related to altered epigenetic mechanisms, we mea-
sured the expression of DNMT1 in the hippocampus of
offspring at PND40. DNMT1 is a key epigenetic bio-
marker that affects DNA transcription by modification
of CpG at promoter regions. Our results show that gesta-
tional stress induces overexpression of DNMT1 in the
hippocampus of offspring. To establish in detail whether
the altered expression of DNMT1 is expected to result in
enrichment of CpG methylation at different regulatory
regions of BDNF, we then measured levels of 5mC, a
CpG methylation marker using MeDIP assay. As
expected, there was significant methylation (high levels
of 5mC) found on the promoters of BDNF-i, -iv, -vi, and
-xi in gestational-stress offspring. Such increased pro-
moter methylation is inversely correlated with the corre-
sponding splice variants’ expression (Fig. 4), suggesting a
DNA hypermethylation mechanism involved in
decreased BDNF expression induced by gestational
stress. BDNF gene structures are species-dependent.
However, some homology in BDNF structure between
humans and rodents is identified. For example, exon-i
and exon-iv in human BDNF are identical to those in
mice.42 Regarding proximal promoter activity, the begin-
ning exon of a gene is generally considered to be impor-
tant for transcription.43,44 It has been shown that CpG
methylation on exon-iv is involved in the regulation of
the BDNF gene under pathological conditions.45–48 The
findings from the present study may provide a clue and
reference for human studies. Our data thus support the
neurotrophic hypothesis of major depression.

Epigenetic regulation of gene transcription consists
primarily of chromatin structure and function, including
histone and DNA modifications such as cytosine methyl-
ation/demethylation. Histone tail modifications include
acetylation, methylation, ubiquitination, phosphoryla-
tion, sumoylation, ribosylation, and citrullination.
Among them, histone tail acetylation by histone acetyl-
transferases and deacetylation by histone deacetylases

(HDACs) have received much attention because the for-
mer leads to opened chromatin facilitating gene tran-
scription; the latter yields condensed chromatin causing
transcription repression.49-51

Importantly, histone tail modification is associated with
the pathophysiology of several psychiatric disorders
including major depression.52 For instance, increased
expression of HDAC2 was found in patients with major
depression.53 Administered HDAC inhibitors such as val-
proate and MS-275 corrected depressive-like behaviors in
rodent models.52 We measured the expression of HDAC1,
HDAC2, and HDAC3 in the hippocampus to determine
whether gestational stress induced post-translational mod-
ifications of chromatin remodeling and contributed to the
epigenetic regulation of BDNF alteration detected in off-
spring. We found that the expression of HDAC1 and
HDAC2 but not HDAC3 is elevated in the hippocampus
of gestational-stress offspring, indicating that alteration of
chromatin architecture at BDNF promoter regions may
occur from gestational stress. Elevated HDAC1 and
HDAC2 imply a decrease of histone H3 deacetylation. His-
tone H3 acetylation, especially at lyine-14 facilitates tran-
scriptional activation 54 by loosening DNA-histone
interactions and allowing transcriptional machinery to
bind and facilitate gene expression. We observed that
reduction in AcH3K14 mediates a lower binding on selec-
tive BDNF promoters in stress offspring. This provides evi-
dence that reduced BDNF expression induced by
gestational stress in the hippocampus is the result of com-
prehensive epigenetic dysfunction characterized by
increased promoter methylation and altered histone H3
modification. Because DNMT1 associated with HDAC1 in
a large molecular complex uses the deacetylase as a sub-
strate for DNA methylation,55 the lower histone acetyla-
tion promotes higher DNA methylation, resulting in
decreased gene expression. This notion is supported by an
observed inverse correlation between levels of BDNF and
HDAC1 in the present study.

It is not surprising that the level of BDNF positively and
specifically correlates with sucrose preference behavior
because as an essential molecular substrate in hippocam-
pus, BDNF can regulate motivational behaviors.56 We also
observed an inverse correlation between levels of HDAC1
and HDAC2 with sucrose preference. This effect of
HDACs on behaviormay be indirect, possibly through reg-
ulating the expression of BDNF or other related genes. Fur-
ther experiments are needed to support this observation.

In conclusion, the mechanisms underlying the inter-
play between gene and environment are combinatorial
with histone and DNA modifications presenting the
diversity of epigenetic landscapes and contributing to
complicated behavioral phenotypes induced by gesta-
tional stress. The results from the present study support
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the concept that young adult offspring born to gesta-
tional-stress dams has construct face validity and phar-
macologic utility as an experimental model of
depression. The gestational-stress model could be used
both to predict the course of depressive-like behavioral
pathology and also to investigate epigenetic mechanisms
of depression and develop more effective treatments.

Materials and methods

Animals and gestation stress procedures

All animal experiments were performed in accordance
with the Institutional Animal Care and Use Guidelines
of Chongqing Medical University. Pregnant mice
(Kunming species) were individually housed with food
and water ad libitum. Control dams were left undis-
turbed throughout gestation with a 12-h light-dark cycle.
The gestational-stress dams were housed in a separate
room with fluorescent ceiling lights. The stress procedure
consisted of restraining the pregnant dam in a transpar-
ent tube (12 cm £ 3 cm) for 30minutes three times per
day from the fifth day of pregnancy until delivery,9 and
24-h constant light throughout gestation. After weaning
(postnatal day 20), male mice were selected for the study
and housed four-to-five per cage, separately by condi-
tion. At postnatal day (PND) 40, the following experi-
ments were performed.

Forced swimming test

As described by Porsolt et al,57 in the pre-test session,
mice were placed individually in a clear container
20 cm diameter, 50 cm height) that contained water
(25�C § 1�C) to a depth of 25 cm and forced to
swim for 5 minutes. The water was replaced for each
mouse. In the test-session, mice were placed back
into the container for 5 minutes. Immobility was
noted if the mouse remained floating without climb-
ing. Struggling was defined as the mouse making vig-
orous movements. Swimming was defined as
horizontal movement throughout the container with
vigorous motion.

Tail suspension test

The experiment was carried out according to the method
described by Steru et al.58 The mice were individually
suspended by the tail taped on a stand above floor. The
duration of the test was 6 minutes. Immobility was
defined as the mouse remaining completely motionless.

Sucrose preference test

The test was carried out at PND40. As previously
described,57,59 mice were given a free choice between two
identical bottles, one with 1% sucrose solution and
another with water for 24-h. The consumption of water
and sucrose solution was estimated simultaneously in
control and experimental groups by weighing the bottles.
The sucrose preference was defined as a percentage of
consumed sucrose solution of the total liquid intake.

Elevated plus-maze test

To examine the anxiety behavior of gestational-stress off-
spring, the elevated plus-maze was performed in similar
way as described by Rodgers et al.60 Briefly, it consisted
of two open and two closed arms (all arms: 30 cm £
5 cm) and was made of Plexiglas. The open arms were
surrounded by 4 mm-high edges. The closed arms had
transparent 14.5 cm high Plexiglas walls at the sides and
end. The floor was made of black Plexiglas and elevated
to a height of 50 cm above the floor. At the start of each
test, mice were placed individually on the central plat-
form and their behavior monitored by video camera for
10 min. The number of entries for each arm and the
time spent in each arm were recorded and analyzed. The
percentage of open arm entries (open arm entries x 100/
total arm entries) and percentage of time spent in open
arm (time spent in open arm x 100/time spent in open
and closed arms) were used as indices of anxiety.

Quantitative real-time polymerase chain reaction

Quantitative real-time polymerase chain reaction was
performed using SYBR®Premix Ex TaqTMII (TaKaRa
RR820A). Total RNA from the hippocampus was iso-
lated using TRIzol reagent (Life Technologies, Grand
Island, New York) and was further purified using the
QIAGEN RNeasy kit (Qiagen, Valencia, California).
cDNA synthesis was performed using PrimeScriptTM
RT reagent Kit(TaKaRa RRO37A). The primer sequen-
ces for the genes analyzed are summarized in Table S1 in
Supplement 1. Each sample was run in duplicate and
repeated twice. For normalizing mRNA expression, two
housekeeping genes (b-actin and GAPDH) were chosen
as the internal control.

Western blot analysis

Total protein from hippocampus, extracted using RIPA
lysis buffer and quantified by Enhanced BCA Protein
Assay Kit (Beyotime P0010S), was separated by SDS-
PAGE and transferred to PVDF membrane. After being
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blocked in TBS buffer containing 0.05% Tween-20 and 5%
skim milk, the membranes were incubated overnight at
4�C with the following primary antibodies: anti-DNMT1
(Imagenex; 1:1000), anti-HDAC1, anti-HDAC2, anti-
HDAC3 (Santa Cruz Biotechnology; 1:500), anti-BDNF
(Santa Cruz Biotechnology; 1:500), anti-acetyl-histone H3
(lys14) (AcH3K14) antibody (Millipore, Billerica, MA 1:
2000). After incubation with the corresponding secondary
antibody, the immunoreactive signals were visualized by
ECL Plus Western Blotting Detection System and quanti-
tated using Quantity One software. The levels of these pro-
teins in the stress offspring vs. non-stress offspring were
normalized by b-actin protein levels. In order to estimate
background caused by non-specific binding of secondary
antibody, a secondary control without the primary anti-
body was performed.

Methylated dna immunoprecipitation

BDNF promoter methylation was assessed using Methyl-
ated DNA Immunoprecipitation [MeDIP kit (Diage-
node, Denville, New Jersey)], followed by quantitative
real-time polymerase chain reaction. The procedures for
sample treatment and immunoprecipitation are
described in the kit instruction manuals. The percentage
of methylated vs. unmethylated promoter was calculated
using the following equation: % (meDNA IP/total input)
D 2(Ct[10% input] ¡ Ct [meDNA-IP] ¡3.32) £100%.

Chromatin immunoprecipitation assay

ChIP assay was performed using commercially available
kits (Millipore, Billerica, MA), as reported (9, 14).
Approximately 10 mg of hippocampal tissue was used
for this procedure. Briefly, tissue was treated with form-
aldehyde to crosslink acetylated histone 3 with the target
genomic DNAs. After being washed with cold PBS con-
taining protease inhibitors, slices were homogenized in
SDS lysis buffer. To obtain consistent chromatin frag-
mentation, the lysates were sonicated by a Sonic Dis-
membrator, Model 500 (Fisher Scientific). An aliquot (1-
2%) of the sonicated lysate without antibody (Input) was
used to quantitate the total amount of DNA present in
different sample extracts before immunoprecipitation.
Immunoprecipitation was carried out using ChIP grade
anti-acetyl-histone H3 (lys14) (AcH3K14) antibody
(Millipore, Billerica, MA). The antibody concentration
used was that suggested by the manufacturer. In prelimi-
nary experiments, it was empirically established that in a
given amount of tissue extract, the amount of BDNF pro-
moters precipitated by the antibody failed to increase
when the antibody concentration was increased by 10-
fold. At the end of the ChIP procedure, the protein/DNA

cross-linked nucleosomal chromatin complex immuno-
precipitated by AcH3 was reverse cross-linked. Samples
were then treated with proteinase-K. Protein-free DNA
was extracted in phenol/chloroform and precipitated
and washed in ethanol. This extract was used for detec-
tion and quantification of BDNF.

Statistical analysis

Results are expressed as mean § SEM. Experimental dif-
ferences were assessed by Student t-test, one-way
ANOVA followed by Bonferroni post-hoc comparisons,
and Pearson correlation analysis using Predictive Analyt-
ics Software v.18 (SPSS, Inc., Chicago, Illinois). The crite-
rion for significance was P < 0.05, 2-tailed.
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