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Abstract

A central goal of gene expression studies coupled with drug response screens is to identify 

predictive profiles that can be exploited to stratify patients. Numerous methods have been 

proposed towards this end, most focusing on novel statistical methods and model selection 

techniques which attempt to uncover groups of genes whose expression profiles are directly and 

robustly correlated with drug response. However, biological systems process information through 

the crosstalk of multiple signaling networks, whose ultimate phenotypic consequences may only 

be determined by the combined input of relevant interacting systems. By restricting predictive 

signatures to direct gene-drug correlations, biologically meaningful interactions that may serve as 

superior predictors are ignored. Here we demonstrate that predictive signatures which incorporate 

the interaction between background gene expression patterns and individual predictive probes can 

provide superior models than those that directly relate gene expression levels to pharmacological 

response, and thus should be more widely utilized in pharmacogenetic studies.

INTRODUCTION

The NCI60 panel of cancer cell lines was developed in the late 1980s to facilitate in vitro 
assay-based drug discovery. As genomic and drug response data has accumulated on the 

individual NCI60 cell lines, they have been used in pharmacogenetic, mechanism of action, 

and pharmacological response prediction studies [1]. The vast majority of pharmacological 

response prediction studies have relied upon the correlation of a single or groups of gene 

expression microarray probes with drug response, with a focus on novel methods for feature 

selection and/or the development of novel statistical models for the generation of predictions 

e.g. [2–5 reviewed in 6]. These methods substantially improve prediction accuracy and 

robustness through statistical sophistication; however, they do not take into account a central 

biological concept, which is that no gene, or gene product, acts in isolation [7]. While it is 

probably true that a reductionist approach to many biological problems is likely to identify 

the major genetic determinants of the expression of most phenotypes, it has long been 

known that these major determinants receive and integrate input from a vast network of 
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other actors, whose combined contributions influence the ultimate activity of the major 

determinants, or, more importantly, modify the outcome driven by the major determinants 

[8]. Some important signaling examples include the numerous signaling pathways which 

converge on p53 in determination of cell cycling and apoptosis [9], the integration of insulin, 

growth factor, and mitogen signaling as well as redox status and cellular energy state on 

mTOR and its control of translation, protein synthesis and cellular growth and proliferation 

[10], or the interactions between cell cycle proteins which only produce transitions from 

state-to-state when certain combinations of agents exist at once.

In general, the first step of model generation for the prediction of drug response from large 

gene expression datasets is prioritization of genes with some minimum level of correlation 

with the response in question. However, interacting networks cannot be expected to correlate 

strongly with drug response since their influence may only be observed when the major 

determinant of drug response and the interacting network complement one another or are 

both at a synergistic state. A major problem with identifying these interaction partners 

without a priori knowledge of the partners is the extremely large number of combinations of 

possible partners in the human genome, and the fact that individual genes are unlikely to 

accurately represent the overall state of a biological network.

Multidimensional scaling and general eigendecomposition methods have been previously 

used to reveal the modular organization of genetic networks [11–13]. These statistical 

techniques have been shown to accurately summarize the gene expression state of large 

networks of functionally related genes. Therefore, eigendecomposition methods should 

capture the overall state of the major genetic networks that may act as modifying actors for 

drug response. In other contexts, eigendecomposition methods have been applied to genome-

wide association studies (GWAS) to reveal genetic background and population substructure 

among study participants that could either reflect important genetic influences on phenotypic 

variation or inherent genetic differences that could lead to false associations between 

specific genes and phenotypes [14–16]. In the case of GWAS, false positive associations are 

removed by identifying associations that can be explained by subtle background allele 

frequency differences across populations contributing to the study. For drug response 

prediction, our interest lies in identifying situations where the influence of a particular gene 

on drug response is amplified and/or dependent on the state of modifying networks extracted 

by principal component analysis, not confounded by them.

Toward this end, we have compared how well drug response can be predicted by simple 

statistical models which either directly relate probe and background networks to drug 

response or consider probe-by-background network interactions. Throughout this manuscript 

we refer to ‘probes’ as individual probes on our example Affymetrix dataset. To generalize 

this approach, the term ‘probe’ could be replaced by individual transcript expression levels 

measured through other gene expression methods. Similarly, ‘background networks’ and 

principal components are used interchangeably. Generally, ‘background networks’ could be 

represented by any data reduction method that summarizes the expression of a gene network. 

We demonstrate that probe-by-background network interactions significantly enhance drug 

response predictions, over-and-above the predictive power garnered through utilizing 

individual probes and background networks alone. It should be noted upfront that we do not 
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claim the specific approach taken herein is the optimal method for these data, or any other 

dataset. Rather, we aim to demonstrate, through simple models, that consideration of the 

broader genetic context within which a drug targets a particular gene or protein is important 

for making accurate predictions about the response to that drug.

METHODS

MAS5 normalized Affymetrix U133A+B gene expression data (39,115 probes) for the 

NCI60 was downloaded from http://discover.nci.nih.gov/ [17]. Drug response data (gi50) for 

99 FDA approved oncology drugs was downloaded from the Developmental Therapeutics 

Program website (http://dtp.nci.nih.gov/). Drug response data was filtered for the NCI60 

parental cell lines, and averaged across multiple replicates. Drugs displaying little or no 

variation (based on standard deviation of drug response across the cell lines) in response 

were filtered, resulting in a total of 85 final drugs. All statistical analyses were performed 

with the R statistical package. Heatmaps were generated using the NeatMap package [18]. 

For detailed explanations regarding the data analysis approach, see Supplemental Methods.

RESULTS

Background Gene Expression

To generate the background gene expression states we performed exploratory principal 

component analysis (PCA) on the correlation matrix of all 39,115 probes present in the 

Affymetrix U133A+B data downloaded from the NCI [17]. We chose principal component 

analysis because it optimally captures the largest amount of variance, minimizing the 

number of networks (components), and thus the number of statistical comparisons, required 

to explore the underlying structure of the dataset. It should be noted that the assumptions 

made by PCA may not be optimal for this or other datasets, however we ultimately chose 

PCA because of its variance maximizing character, and its use in other gene expression 

analysis contexts appears to produce satisfactory results even when the assumption of 

normality is violated. Other data reduction approaches, such as independent component 

analysis could be readily substitute for PCA if deemed more appropriate for the underlying 

data structure [19]. In our case, the first component alone accounted for 81.27% of the 

variance; however, it is clear that this component only explains the difference between the 

estrogen receptor positive breast cancer cell line, MCF7, and the rest of the NCI60 cell lines 

(Figure 1). Most methods for determining the number of significant components (including 

parallel analysis, scree test, acceleration factor, and Horn’s test) suggest that only the first 

component is significant, yet we know this is not the case since biological significance can 

be assigned to the other components (see Discussion). Therefore, in order to capture further 

background gene expression networks, while keeping the total number of retained 

components (and the total number of statistical tests performed) at a minimum, we chose to 

retain all components explaining at least 0.5% of the variance. 6 background networks, 

accounting for 85.86% of the variance, were retained in this manner. Figure 1 depicts the 

state of each cell line with respect to each of the retained principle components. With the 

exception of the first principal component, the retained components appear to capture 

expression states that differ between the major cancer types represented in the NCI60.
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Each of the background networks captured by the 6 principal components was used as a 

predictor of drug response in a linear regression. Figure 2A displays the adjusted R-square 

value of these regressions. Drugs in figure 2 are clustered based on the correlation of their 

gi50 values across the NCI60 cell lines. With the exception of the 4th principal component, 

few strong correlations existed between the background networks and drug response. 

Notable correlations between background networks and drug response include: 1) 

background network 1 with fulvestrant (NSC 719276) and raloxifene (NSC 747974), both of 

which are anti-estrogen agents, consistent with the relationship of background network 1 

with the MCF7 cell line; 2) background component 2 with oxaliplatin (NSC 266046) and 

nilotinib (NSC 747599), consistent with the separation of colorectal cancers and leukemias 

by background network 2; and 3) background network 4 with a range of nitrogen mustard 

alkylating agents (clustered mostly at the mid-left side of Figure 2A).

Probe by Background Predictions

To test whether probe-by-background network interactions significantly improve drug 

response predictions, we first compared the predictive power of linear regression models 

relating drug gi50 values to probes and background networks to models relating drug gi50 

values to probes, background networks, and probe-by-background interaction terms. We 

accounted for overfitting effects due to the consideration of many potential models during 

model selection and the resulting inflation of R-squared in multiple ways: 1) we ensured the 

degrees of freedom of the compared models were equal by generating models with equal 

numbers of predictors; 2) comparison of models with differing numbers of predictors are 

facilitated by only considered appropriately adjusted R-squared values; and 3) ultimately the 

significance of each probe-by-background network interaction model was confirmed by 

label-shuffling permutations. Overfitting of the models themselves is not expected given the 

use of linear models with far fewer predictors than datapoints (3 vs. 59).

We performed fifteen linear regressions with different combinations of probes and 

background networks for each drug, such that three terms, one probe and two background 

networks, were tested (i.e., all 15 combinations of 6 background networks were tested). The 

model with the greatest predictive power for each drug was chosen. To identify the most 

predictive interaction terms in models involving each probe and background combination, 

models with three predictive terms, the probe alone, the background network alone, and an 

interaction term between the probe and background network were fit to the gi50 values of 

each drug. Note that in this manner, 15 tests per probe (586,725 total tests) are performed to 

choose the best models that do not contain and interaction term for each drug, whereas 6 

tests per probe (234,690 total tests) were performed to choose the best models that include 

interaction terms, biasing us against identifying superior interaction models by chance, 

which is appropriate given that we wanted to be conservative with respect to claiming the 

existence of probe-by-background network interaction effects for any drug.

The results of these models are displayed in Figure 2B and Supplemental Table 1. The third 

row in Figure 2B contains the highest adjusted R-square value obtained per drug when a 

directly linear model is utilized while the fourth row contains the highest adjusted R-square 

value obtained when interaction models are utilized. Comparison of these two rows reveals a 
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few standout cases of very strong predictive power involving models with probe-by-

background network interaction terms vs. those without interaction terms, including 

citrovorum factor (NSC 3590), 13-cis-retinoic acid (NSC 122758) and fulvestrant (NSC 

719276). An overall trend for greater predictive power would not necessarily be expected 

since many of the analyzed drugs are not “targeted” therapies; however, despite the fact that 

we tested 2.5-fold more models without probe-by-background network interactions, the 

average adjusted R-square was significantly higher for the best models that included an 

interaction term (paired T-test p-value = 0.001, paired Mann-Whitney test p-value = 0.02). 

This observation suggests that probe-by-background network interactions are more strongly 

predictive than probes in isolation.

If the probe-by-background network interaction is fundamentally important to driving the 

improvement in predictive power, rather than marginally more powerful than background 

networks alone, we suspect that the probe selected in the interaction models, when 

considered in isolation, may be less predictive than the probe selected among models 

without interaction terms. That is, the probe that interacts with a background network may 

express much of its predictive power only in the context of the background network’s 

expression state. Thus, we compared the predictive power of the probe selected among 

models that did not include an interaction terms vs. those that included an interaction term 

(Figure 2B first and second rows respectively). Overall, this comparison revealed no 

significant difference between the predictive power of the probes in the models without the 

interaction terms vs. the models with the interaction models (paired T-test p-value = 0.12, 

paired Mann-Whitney test p-value = 0.14). However, there is a clear trend towards less 

predictive power for the probes identified in models that included interaction terms, most 

likely masked by the untargeted, generally cytotoxic, agents. When only drugs with 

improved predictive performance under the interaction model are considered, as defined by a 

10% increase in the adjusted R-squared value of the interaction vs. no interaction term 

models (marked by asterisks in Figure 2B), it is clear that the improvement in performance 

is derived from the interaction term (paired T-test p-value = 7.5·10−5, paired Mann-Whitney 

test p-value = 5.2·10−5). Finally, to confirm the significance of the probe-by-background 

interaction, we determined the significance of the interaction term by comparing the probe-

by-background model to its corresponding model with the interaction term removed. 

ANOVA revealed that 27 of the 85 models tested had significant interaction terms at a 

Bonferroni corrected threshold of 0.0006 and 51 of 85 models were significant at a threshold 

of p-value<0.05 (Supplemental Table 1). Therefore, we conclude that it is precisely the 

interaction term that contributes to the improved predictability in a subset of drugs.

Significance of Interaction Models

Although we have presented a number of steps to control for overfitting, a remaining 

concern is that inclusion of an interaction term increases the total number of independent 

features considered for model selection as compared model selection performed without 

interaction terms. Therefore, to demonstrate that these probe-by-background network 

models are truly significant predictors of drug response, rather than models that happened to 

perform well by chance alone, we determined the empirical significance of these models 

through label-shuffling permutations. We shuffled the cell line identifiers for the gene 
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expression data and background networks 1,000 times, where labels were shuffled 

identically in the gene expression data and background networks, and performed the same 

model selection procedure as described above, selecting the highest adjusted R-square value 

achieved per drug for each of the 1,000 permutations of data. These results were used to 

calculate an empirical p-value for the adjusted R-square values obtained from our analysis of 

the actual data. The corresponding empirical p-values for each drug are presented in 

Supplemental Table 1 and Figure 3. The Q-Q plot in figure 3 clearly shows the significance 

of these interaction models. While the models for the drugs at the lower left hand corner of 

the plot in Figure 3 would not be considered significant, there is a clear and large deviation 

from the expected distribution of p-values across all 85 drugs. Again, we would not expect 

all drug response predictions to improve when taking into account the state of background 

networks, as some drugs are non-selectively cytotoxic no matter what the state of the target 

cell. Regardless, over half the drugs analyzed were associated with empirical p-values less 

than 0.05. These results demonstrate the remarkable gains in drug response predictability 

achieved by accounting for the interaction between background genetic networks and 

individual drivers of drug response.

DISCUSSION

The genome is composed of numerous elements which interact in complex systems to 

propagate exogenous and endogenous signals into a biological response. Systems biology 

approaches to genomic analysis attempt to reconstruct this framework of genetic elements in 

order to derive accurate biological conclusions, rather than attempting to derive insights on 

the basis of isolated parts [20]. While the ultimate goal of systems biology is to completely 

understand this framework in order to model biological processes, systems biology concepts 

can be applied without knowing the structure of the framework a priori. Rather, by simply 

recognizing and accepting the fact that genes act within a network, we can attempt to 

uncover these interactions and utilize them to enhance biological predictions.

In our review of the various approaches used to predict drug response from the NCI60 gene 

expression data e.g. [2–5 reviewed in: 6], all methods, as far as we could tell, relied upon 

weighting, or pre-selecting, genes directly correlated with drug response in some manner. 

While these approaches produce interesting and important results, we believe they can be 

much improved by taking into account indirect relationships between genes and drugs. 

Understandably, most genome-wide analysis strategies, of any type of genomic data, tend to 

ignore interactions simply due to the fact that the enormous number of combinations of 

possible interactions leads to a statistically intractable multiple testing problems. However, 

data summarization approaches, such as multidimensional scaling or the 

eigendecomposition/principal components approach presented here, can reduce the number 

of tests into a more manageable amount. Clearly, the summarization approach taken here is 

missing an enormous number of biologically relevant background networks. We do not 

claim that the six principal components used here to represent background networks reflect 

anywhere near the number of relevant background networks operating within the human 

genome, nor do we claim that the approach taken herein is the optimal for this dataset, or 

any other dataset, rather we simply wanted to demonstrate that even a relatively simple 

approach to taking into account the interaction between major background components and 
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single gene expression levels is capable of significantly improving predictive power. One 

important caveat is that our approach may demonstrate gains in predictive power due to the 

use of an example dataset containing tumor samples of various types. That is, the PCA 

approach may extract fundamental differences between tumor types that drive or act as 

surrogates for differences in drug response, whereas global signatures predictive of drug 

response may not be present within a single tumor type. Although we believe our method is 

generally applicable, this is an important caveat to consider when applying the method to 

other datasets. Generally, this approach can be adapted to more sophisticated data 

summarization, feature selection, and model construction approaches, depending on the 

underlying structure of the data, in order to fully realize the gain in predictive power.

Another concern is the biological interpretation of the predictive models produced by our 

approach. Clearly, a list of probes correlated with drug response, and their corresponding 

genes, provide an easy foothold for biological interpretation. In our background network 

approach, we suggest that enrichment analysis can provide biological meaning to the 

background networks. For example, background networks 2 and 3 produced some models 

where the majority of the predictive power came from the probe-by-background network 

interaction term. If we take all probes correlated with background network 2 or 3, at an R-

squared threshold > 0.6, and subject those corresponding genes to biological process 

enrichment analysis, we find that background network 2 is strongly correlated with genes 

involved in cellular adhesion and motility, while background network 3 is strongly 

correlated with genes involved in pigmentation and melanocyte differentiation (results not 

shown). These direct relationships between gene expression values and network component 

values are lost as the relationship between the principal components of lesser significance 

and the gene expression data becomes more complicated, but they can be reconstructed by 

considering component loadings.

A few interesting cases arose in which very large gains in predictive power were observed 

through consideration of gene-by-background network interactions. Nelfinavir (NSC 

747167), a protease inhibitor used to treat HIV, and more recently under investigation as an 

anti-neoplastic agent [21], is predicted (best model: probe 222308_x_at x principal 

component 2) to inhibit growth of cancer cells exhibiting non-adherent growth (principal 

component 2) and over-expressing THOC1 (222308_x_at). THOC1, involved in splicing and 

nuclear export, has been shown to be important for cancer growth, especially in RAS 

dependent cells, though the exact mechanism remains unclear [22–23]. These observations 

suggest that nonadherent cells expressing THOC1 are susceptible to ER stress induced by 

nelfinavir. Additionally, our data lends some credence to the hypothesis that some 

melanomas may be susceptible to anti-estrogen treatments [24]. Our modeling predicts that 

anastrazole (NSC 719344), an aromatase inhibitor (best model: probe 219460_s_at x 

principal component 3), inhibits the growth of pigmented cancer cells (principal component 

3) with lower levels of TMEM127. Melanoma cells with low TMEM127 levels display low 

anastrazole gi50 levels as compared to all other cell lines, including melanoma cell lines 

with high TMEM127 levels. TMEM127 is a negative regulator of mTOR signaling [25] 

suggesting a subset of melanoma cells activate mTOR signaling at least partially through 

estrogen signaling and may be susceptible to anti-estrogen therapy, or combined inhibition 

of estrogen and mTOR signaling as seen in breast cancer [26].
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In conclusion, we have demonstrated the value of including genetic background effects into 

drug response prediction, rather than relying upon one-to-one relationships between 

individual probes or genes and drug response in order to identify predictive signatures of 

response. This approach would surely benefit from more sophisticated feature and model 

selection techniques, and should be explored further in order to discover even more powerful 

and robust signatures of response.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Relationship of Background Networks to NCI60 Cell Lines
The relationship between the background networks and each of the NCI60 cell lines is 

displayed as a heatmap. Each prinicipal component was normalized to a mean of zero for 

display purposes. For each component, cell lines with similar colors within the heatmap are 

associated with similar expression states of that background network. Note that principal 

component one strongly separates the ER+ MCF7 cell line from the rest of the cell lines, and 

other components tend to group cancer types together with some similarities across cancer 

types or for specific cell lines.
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Figure 2. Background Networks and Drug Response Models
A) The correlation of drug response values with the background gene expression networks is 

displayed as a heatmap or Adjusted R-squared values. The maximum observed correlation is 

0.36 between background network 4 and uracil nitrogen mustard (NSC 34462). Other strong 

correlations are observed between background network 4 and other alkylating agents. 

Weaker correlations are observed between the other components and a single agent, whereas 

most agents are not strongly correlated with any background network. B) The highest 

adjusted R-square value attained for the directly linear (Linear) and interaction model 

(Interaction) is displayed. Additionally, the R-square value for the probe, in isolation, from 

each of the most predictive models is displayed for the directly linear (Probe.Linear) and 

interaction (Probe.IntAct) model is show. Drugs showing at least a 10% improvement in 

adjusted R-square value in the interaction models are marked with an asterisk. Comparison 

of rows 3 and 4 reveals an increase in predictive power when background networks are 

utilized. Comparison of rows 1 and 2 reveals that the probes from the interaction models 

showing an improvement over the directly linear models are less predictive in isolation than 

the most predictive probe from the directly linear models (more and brighter green cells). 

Note that the significance of each color differs in Figure 2A vs. Figure 2B, as depicted by 

the different color bars.
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Figure 3. Empirical Significance of Combined Models
Empirical significance of the interaction models is displayed as a Q-Q plot. The maximum 

negative log p-value is 3.0 due to a maximum of 1,000 permutations performed. There is a 

clear deviation from the expected distribution of p-values (line of identity) across most of the 

interaction models.
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