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Complete characterization of the stability
of cluster synchronization in complex
dynamical networks

Francesco Sorrentino,1* Louis M. Pecora,2 Aaron M. Hagerstrom,3,4 Thomas E. Murphy,3,4,5 Rajarshi Roy3,4,6
Synchronization is an important and prevalent phenomenon in natural and engineered systems. In many dynamical
networks, the coupling is balanced or adjusted to admit global synchronization, a condition called Laplacian
coupling. Many networks exhibit incomplete synchronization, where two or more clusters of synchronization
persist, and computational group theory has recently proved to be valuable in discovering these cluster states
based on the topology of the network. In the important case of Laplacian coupling, additional synchronization
patterns can exist that would not be predicted from the group theory analysis alone. Understanding how and
when clusters form, merge, and persist is essential for understanding collective dynamics, synchronization, and
failure mechanisms of complex networks such as electric power grids, distributed control networks, and auton-
omous swarming vehicles. We describe a method to find and analyze all of the possible cluster synchronization
patterns in a Laplacian-coupled network, by applying methods of computational group theory to dynamically
equivalent networks. We present a general technique to evaluate the stability of each of the dynamically valid
cluster synchronization patterns. Our results are validated in an optoelectronic experiment on a five-node network
that confirms the synchronization patterns predicted by the theory.
INTRODUCTION

Synchronization of oscillators in large networks has been an inter-
esting problem for many years. It is a phenomenon that shows up
in many natural and man-made systems (1–3). Global synchronization
is a particular type of synchronization in which the oscillators all fol-
low the same trajectory in state space. A network where this is desirable
would be generators in a power grid, as well as some control networks
and swarming autonomous vehicles. Although global synchronization
has a well-developed theory (4–6), a more recently studied, more
complex phenomenon we will call cluster synchronization (CS) has
attracted considerable attention (7–16). In CS, the network evolves
into subsets of oscillators in which members of the same cluster are
synchronized to the same trajectory, but members of different clusters
are not. Such synchronized clusters may show up in swarms of animals,
where the network is the simple visual link to one’s neighbors, or
swarms of unmanned autonomous vehicles that are connected by a
local communication network. Clusters may also show up in power
grids, where they would be a sign of a problem, that is, loss of global
synchronization.

Given the increase in man-made networks and the growing use
of network theory to describe natural systems (for example, food webs,
neuronal and genetic networks), it is important to develop a basic ap-
proach to determine what cluster structures are possible in a given
network. Here, we show what methods can be employed to do this
using the concept of oscillators coupled through connection to other
(not necessarily all) oscillators in the network. We extend these methods
to the currently unsolved problem of finding clusters in networks of
oscillators that have a self-coupling to balance incoming signals from
other oscillators, often called Laplacian coupling (more on this below).
This allows synchronization clusters to be found that elude other
methods of finding cluster patterns. We show how to use and extend
symmetry methods to find all possible clusters in such networks of
Laplacian-coupled oscillators. First, we show how network symmetries
can lead to CS. Then, we show how we can go beyond this to analyze
CS resulting from Laplacian coupling.

In the Symmetries and Clusters in Networks section, we review the
concepts of symmetries and clusters in networks of coupled oscillators.
In the Analyzing CS Patterns section, we discuss methods to uncover
all of the possible CS patterns in a given network. Our main results are
contained in the Stability Analysis and Experimental Validation section,
where we present a stability analysis that applies to any CS pattern.
We also present an elecro-optic experiment that confirms the pat-
terns of synchronization predicted by the theory before presenting
our conclusions.
SYMMETRIES AND CLUSTERS IN NETWORKS

Figure 1A shows a four-oscillator or four-node network, where the
oscillators are identical, as are the couplings between them, which are
bidirectional, meaning that signals flow in both directions to the
oscillators by the same amount and influence on the connected oscil-
lators. This network has a total of six symmetries. We show two. In
Fig. 1B, we show the result of a reflection [shown in Fig. 1A]
interchanging nodes 1 and 2. The structure of the network remains
the same. In Fig. 1C, we show a rotation of the network by 120°, which
also leaves the network indistinguishable from the original in Fig. 1A.
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These symmetries are manifest in the symmetries of a matrix that de-
scribes the network, the adjacency matrix. This matrix, denoted by A, is
set so that Aij = 1 if i and j nodes are connected and Aij = 0 otherwise.
For the network in Fig. 1A, the adjacency matrix A is

A ¼
0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0

0
BB@

1
CCA ð1Þ

The adjacency matrix plays a crucial role in modeling the dynam-
ics of many networks of identical nodes because it provides the cou-
pling between the oscillators at each node. We will write the dynamics
of the networks as follows

:
x i ¼ FðxiÞ þ s∑

j
AijHðxjÞ ð2Þ

i = 1,…,N, where xi is the vector of dynamical variables for the ith
oscillator,

:
x i is the time derivative of the ith node’s variables, N is

the number of oscillators (nodes), F is the vector field of each node
(governing each oscillator’s isolated dynamics), and H is a coupling
function for each link in the network of each oscillator to another.
Several papers (8, 11, 12, 15, 17–20) have used Eq. 2 to model the
dynamics of a network.

Network symmetry applied to the adjacency matrix leaves it un-
changed. We recall that symmetries of an object (a network in this case)
form a mathematical groupG. Any element in this group, for example g,
is represented in the space of network nodes as a permutation matrix,
for example Rg. The invariance of A under the action of the symmetry
immediately implies RgA = ARg; A commutes with all group actions,
and the equations of motion for nodes that are mapped into each other
are the same. For example, in the network in Fig. 1A, nodes 1, 2, and 3
have the same equations of motion, so if they are started from the
Sorrentino et al. Sci. Adv. 2016; 2 : e1501737 22 April 2016
same initial conditions, they will remain synchronized indefinitely. Node
4 cannot be permuted into any of the other nodes, and it will not syn-
chronize with the others; hence, we color it differently in Fig. 1B and
Fig. 1C. This is the intimate relationship between symmetry and dy-
namics in networks. We see that it immediately separates the network
into two clusters: 1,2,3 and 4.

Many of the recent studies of CS are on particular networks that
are known or engineered to exhibit cluster synchrony. However, as
we have shown above, group theory provides a general approach to
finding clusters in arbitrary networks. Steps toward more general
approaches using group theory to analyze CS began with the work of
Golubitsky and Stewart (21) and Golubitsky et al. (22), where network
symmetries are known and can be shown to support CS. Recently,
computational methods have been used to study simple symmetric
networks, and an approach has been developed that relates the sym-
metries with the emergence of the CS states (23). Finally, we showed
that such approaches can be applied to more complex networks with
hundreds of oscillators using computational group theory (24).

An alternative description of the network dynamics is the following
in the case of Laplacian coupling

_x i ¼ FðxiÞ þ s∑
j
Aij½HðxjÞ �HðxiÞ� ð3Þ

where the coupling from oscillator j to oscillator i is given by the
difference between the output functions H(xj) and H(xi). Several
papers (2, 5, 7, 10, 20, 23, 25) have used Eq. 3 to model the dynam-
ics of a network. Equation 3 can be rewritten as follows

_x i ¼ FðxiÞ þ s∑
j
LijHðxjÞ ð4Þ

which has the same structure as Eq. 2, but now the adjacency matrix
has been replaced by the Laplacian matrix, L = {Lij}, Lij = Aij − dij Sj Aij ,
where dij is the Kronecker delta. By construction, then, the sums of the
rows of the matrix L are equal to zero, that is, the inputs to the ith node
are balanced by the diagonal self-coupling.

Golubitsky and colleagues (26) have shown in their work that, for
networks that have balanced coupling (all nodes receive the same cu-
mulative input weights, accounting for adjacent nodes and self-coupling,
an example of which is Eq. 4), CS can emerge in many patterns that
are not directly the result of symmetries. An example of this is global
synchronization, which is not a result of symmetries in the network.

In general, the patterns of cluster synchrony that can be observed
in a network are not unique (27, 28); hence, an important problem is
that of determining the parameter ranges for stability and multistabil-
ity for the observed patterns. Although it is known that the stability of
the global synchronization state for an arbitrary network can be char-
acterized by using the master stability function formalism (5), a cor-
responding analysis that applies to the CS patterns that may emerge in
a network is not available. Here, we address this problem by providing
necessary and sufficient conditions for stability of each CS pattern
under very general assumptions. Our analysis applies to systems for
which the functions describing the individual dynamics (possibly
chaotic) and the interactions between the systems are arbitrary, whether
the network is described by an adjacency matrix (Eq. 2) or by a
Laplacian matrix (Eq. 4), both of which are used to model network
interactions.
A B

C D

Fig. 1. Examplesof symmetries innetworks. (A) A networkof four identical
oscillators coupled through three identical links. (B) The same network after a
reflection operation. (C) The same network after a rotation operation. (D) An
11-node network showing three clusters (blue, green, and white).
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In what follows, we show how to find all of the CS patterns that
may emerge in a given network topology, described either by an
adjacency matrix or by a Laplacian matrix and how to evaluate
the stability of each allowed pattern. We demonstrate all the above
phenomena in an optoelectronic experiment on a five-node network
that displays all of the possible CS patterns predicted by the theory.
ANALYZING CS PATTERNS

Here, we attempt to address the following problem: Given a network
structure (either in terms of an adjacencymatrix in Eq. 2 or of a Laplacian
matrix in Eq. 4), can we find all of the CS patterns that are allowed? For
simplicity, we will proceed under the assumption that the network dy-
namics are described by Eq. 4, but all of our results include the simpler
case that the dynamics are described by Eq. 2. Indeed, as we will see, the
case of the Laplacian matrix is, in general, more complex to deal with
than that of the adjacencymatrix. So, we consider themost difficult case.

First, we note that a symmetry of the adjacency matrix is also a
symmetry of the corresponding Laplacian matrix and vice versa (24).
Suppose G is a group of permutations of the nodes of the network
that leaves the coupling matrix L invariant. Then, for each g ∈ G,
we have a permutation matrix Rg that operates on the set of all node
vectors x = (x1,…,xN)

T. Because RgL = LRg, this means d(Rgxi)/dt =
F(Rgxi) + Sj LijH(Rgxj ), that is, the symmetry operation leaves the
equations of motion unchanged. Hence, the subset of nodes permuted
among each other by the group will remain synchronized if started in
a synchronized state. We will refer to these subsets of nodes as
clusters. The synchronized states for each cluster are flow-invariant.
Sorrentino et al. Sci. Adv. 2016; 2 : e1501737 22 April 2016
An approach to the construction of all allowed CS patterns in a
network has been proposed by Kamei and Cock (29). Although the
method presented in their work (29) is general, because it applies to
any network topology, it is computationally expensive. Here, we argue
that, for the case of symmetric networks, a faster approach can often be
followed that takes advantage of computational group theory, which
is quite efficient. At each step, we show the results of this method ap-
plied to a particular case.

We first decompose the symmetry group G into subgroupsHi; i =
1,…,n, each of which acts only on some subset of clusters (often only
one) but not on any of the others (30, 31). For this reason, we will
refer to these subgroups as cluster groups, and the original group is
a direct product of all cluster groups G = H1×…×Hn. We further
decompose each cluster group Hi into all of its possible subgroups,
which will give us a natural set of symmetry-breaking paths. These
subgroups provide the full range of possible symmetry clusters, from
the original full symmetry clusters to subclusters to the trivial case
where each node is in its own cluster, that is, no symmetries. Whereas
for the case of the adjacency matrix, this allows one to find all of the
possible CS patterns, in the case of the Laplacian matrix, these patterns
are certainly valid, but there may be other valid patterns that are not
predicted by the computational group theory analysis. Extra steps are
thus required to find these additional patterns.

We examine a particular case, a five-node network (Fig. 2), with
adjacency matrix

A ¼

0 1 0 1 1
1 0 1 0 1
0 1 0 1 1
1 0 1 0 1
1 1 1 1 0

0
BBBB@

1
CCCCA ð5Þ

and Laplacian matrix

L ¼

�3 1 0 1 1
1 �3 1 0 1
0 1 �3 1 1
1 0 1 �3 1
1 1 1 1 �4

0
BBBB@

1
CCCCA ð6Þ

Figure 2 shows all the allowed patterns, where nodes belonging to the
same cluster are colored the same.

Cluster patterns A1 to A5 in Fig. 2 can be found by performing an
analysis of the group G and all of its subgroups. These are all the
patterns that may emerge for the adjacency matrix (Eq. 5) and the
only patterns that may emerge by symmetry for the Laplacian matrix
(Eq. 6). The orbits of the original symmetry group are {1,2,3,4} and {5}
by itself and are associated with two cluster groups: H1, which per-
mutes the first, and H2, which is only the identity for the second
single-node cluster. Other patterns (A2 to A5) are possible based on
subgroups of the original group. These are the results of symmetry-
breaking bifurcations.

Now, we create new potential clusters by first choosing a set of
cluster groups (Hi) and/or their subgroups (one for each cluster group).
Together, these determine a subgroup G′ of the original group G. Sec-
ond, we combine or merge some of these clusters as candidates for new
x1  x2  x3  x4  x5

A5

x1 =  x3 x2 = x4 x1 =  x3 =  x5 x2 =  x4 = x5

A4

x1 =  x3 = x5, x2 = x4 x2 =  x4 = x5, x1 = x3

A3

x1 =  x3, x2 = x4

x1 =  x4, x2 = x3x1 =  x2, x3 = x4

A2

x1 =  x2 = x3 = x4 x1 =  x2 =  x3 = x4 = x5

A1

L4

L3

L1

Fig. 2. Patterns of clusters in a five-node network. Left: All possible
patterns displayedwhen the network connectivity is given by the adjacency
matrix (Eq. 5). Right: Additional patterns displayed when the network
connectivity is given by the Laplacian matrix (Eq. 6).
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synchronized clusters (it is our choice which to try). Because we are
merging clusters or subclusters from different original symmetry
clusters, the resulting CS patterns will not be the result of symmetries
but may be dynamically valid when the coupling is Laplacian. Third,
we can set those dynamical variables xi equal to others in the merged
cluster and see whether their equations of motion are the same (guar-
anteeing flow invariance). However, examining equations of motion
for large networks by eye can become prohibitive.

There is a more direct way of doing the third step above, using
the power and efficiency of group theory and computational dis-
crete algebra tools (32, 33). Examining the coupling term in Eq. 4, when
clusters are synchronized, the diagonal feedback term [H(xi)] of a
node will cancel the coupling terms of nodes from the same merged
cluster. Hence, in the synchronized state, the dynamics behave as
though nodes from the same merged cluster are not connected. We
therefore form a dynamically equivalent coupling matrix, which is the
original Laplacian matrix with off-diagonal components between nodes
from merged clusters set to 0 and the diagonal values then set to the
negative of the new row sums. We then perform the cluster group
decompositions and subgroup constructions on the new, dynamically
equivalent Laplacian (note that if the original Laplacian matrix is sym-
metric, so are the dynamically equivalent matrices obtained through this
construction). If some set of subgroups of this new coupling matrix
has symmetries yielding clusters that are our merged clusters, then their
dynamics are flow-invariant in the synchronized state and cluster
merging is possible. In this case, we call the new clusters Laplacian
clusters. All the above can be automated in software. Hence, in Laplac-
ian networks, even when a CS pattern is not the direct result of a
symmetry of the original coupling matrix, it is the result of a sym-
metry of a dynamically equivalent coupling matrix. This is particularly
relevant in terms of computational complexity. Although the problem
of finding all of the symmetry operations of a given matrix has not
been proven to be polynomial, efficient discrete algebra routines have
been developed that make these computations possible, even for very
large networks [for example, the Internet at the autonomous system
level, for which N = 22,332; see the work by MacArthur et al. (31)].
This is in contrast with the method proposed by Kamei and Cock (29),
which is not based on evaluation of the symmetries, and has been
shown to become inefficient even for networks of moderate size (for
example, N = 15).

To conclude, when the network is described by an adjacency
matrix, a full characterization of all the dynamically valid patterns
can be obtained by taking advantage of available computational discrete
algebra tools (32, 33). These output the cluster groups H1,H2,…,Hn

and a decomposition of each cluster group Hi into all of its possible
subgroups, which provides a natural set of symmetry-breaking paths.
As discussed above, available computational group theory routines per-
form these tasks very efficiently when compared to other possible
methods [for example, (29)]. For the case of the adjacency matrix,
our approach is always better than the state of the art. When the
coupling is in Laplacian form, all of the (symmetry-related) CS patterns
of the associated adjacency matrix are maintained. Moreover, it is pos-
sible for some of the cluster groups H1,H2,…,Hn and some of their
subgroups to merge to form new dynamically valid clusters. To find all
of the dynamically valid mergings, it can be helpful to use the clusters
and subclusters provided by the symmetry analysis as the building
blocks of our algorithm. If the number of these different clusters and
subclusters is equal to m, the number of tests that need to be performed
Sorrentino et al. Sci. Adv. 2016; 2 : e1501737 22 April 2016
(for pairs, triplets, and so on) is upper-bounded by Bm, the m-th Bell
number (34); hence, it grows combinatorially with m. For all the net-
works that do not display many symmetries, that is, for which m << N,
our approach based on computational group theory will be much
faster than the one presented by Kamei and Cock (29). Hence, it is
generally a good idea to run a preliminary analysis of the symmetries
of the network to assess whether m << N and choose the most conve-
nient approach based on this outcome. It should be noted that there is
no need to test mergings between subgroups of the same group, which
reduces the complexity of the calculations. In general, finding all of the
dynamically valid patterns for Laplacian networks may be substantially
harder than for networks described by a symmetric adjacency matrix.
Similar limitations were observed in the method by Kamei and Cock (29).
STABILITY ANALYSIS AND EXPERIMENTAL VALIDATION

Stability of CS has been investigated for phase oscillators (23) and Stuart-
Landau oscillators (35) and for lattices of coupled systems (27, 28). How-
ever, a general approach to analyzing stability and multistability of CS
patterns in arbitrary networks has not been developed. In (24), we studied
a particular CS pattern corresponding to a minimum number of
clusters (that is, maximal symmetry) for the case that the connectivity
of the network is in the form of an adjacency matrix.

We now develop variational equations for the merged-cluster system
so we can calculate the stability of each one of the allowed CS patterns.
Although a number of papers (23, 26–28, 35–37) have dealt with CS in
networks, only Nicosia et al. (23) and Poel et al. (35) have considered
the problem of stability for particular dynamics of the individual
systems. Belykh et al. (27), Belykh et al. (28), and Belykh and Hasler
(37) have emphasized that for arbitrary systems, this is a difficult prob-
lem. To analyze stability, we start with the subgroup G′ of the original
group that generated the clusters that we want to merge. It is formed by a
direct product of the subgroups that we choose to use in our merged
system. Using Cm to represent each cluster of nodes, m = 1,…,K, where
K = number of clusters in G′, we have the variational equation of Eq. 2

d _xðtÞ
�
∑
M

m¼1
EðmÞ⊗DF

�
smðtÞ

�
þ s ∑

M

m¼1

�
LEðmÞ

�
⊗DH

�
smðtÞ

��
dxðtÞ

ð7Þ

where the Nn-dimensional vector x(t) = [x1(t)
T,x2(t)

T,…,xN(t)
T ]T , L =

the Laplacian-coupling matrix, and E(m) is an N-dimensional diagonal
indicator matrix for each cluster such that EðmÞ

ii is equal to 1 if i ∈ Cm

and is equal to 0; otherwise, i = 1,…,N. Note that we must use the
original Laplacian matrix and not the dynamically equivalent one,
which is used only for detecting synchronization flow invariance.

As we showed in (24), we can first block-diagonalize the coupling
matrix L using the irreducible representations (IRRs) of G′, which
yields the transformed coupling matrix L′ for A3 of Fig. 2

L′ ¼

�4 � ffiffiffi
2

p ffiffiffi
2

p
0 0

� ffiffiffi
2

p �3 �2 0 0ffiffiffi
2

p �2 �3 0 0
0 0 0 �3 0
0 0 0 0 �3

0
BBBB@

1
CCCCA ð8Þ
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The upper left block represents the variations on the synchroniza-
tion manifold. It is 3 × 3 because there are three different trajectories
in A3 (three clusters). The lower right block represents the variations in
the transverse manifold. These are the perturbations that take the sys-
tem out of synchrony, so it is these whose stability we want to calculate.
Suppose we merge the center node (5) with nodes 1 and 3 to form the
first merged state shown in L3. Geometrically, what must happen is that
the dimension of the synchronizationmanifold must decrease by 1 (from
3 to 2) and the transverse manifold must increase by 1 (from 2 to 3).

To obtain the new coordinates on the synchronization manifold,
we note that basis vectors of a cluster on the synchronization manifold
have a 1 in the position of each node that belongs to the cluster. For
example, in A3, the cluster (1,3) will have a (unit) vector of the form
(1,0,1,0,0) and (5) will have the (unit) vector of the form (0,0,0,0,1). The
merged cluster (1,3,5) will have the synchronization manifold vector,
which is their sum, (1,0,1,0,1). The transformation of this new syn-
chronization vector to the IRR coordinates of L′ provides the new syn-
chronization direction, and its orthogonal complement provides the
new transverse direction. We use these two new vectors to transform
the 2 × 2 subblock associated with the (1,3) and (5) clusters in the 3 ×
3 synchronization block to reduce the 3 × 3 synchronization manifold
and increase the transverse manifold. This results in the final varia-
tional equation for the L3 case

⋅h ¼ ∑
M

m¼1
½JðmÞ⊗DFðsmÞ þ sL″JðmÞ⊗DHðsmÞ�h

where we have linearized about the new synchronized merged cluster
states {s1,…,sm}, h is the vector of variations of all nodes transformed
to the merged coordinates as above, DF and DH are the Jacobians of
the nodes’ vector field and coupling function, respectively, J(m) are the
transformed E(m), and

L″ ¼

�3
ffiffiffi
6

p
0 0 0ffiffiffi

6
p �2 0 0 0
0 0 �5 0 0
0 0 0 �3 0
0 0 0 0 �3

0
BBBB@

1
CCCCA ð9Þ

In Eq. 9, the new synchronization block (in the upper left-hand corner)
represents the new clusters (1,3,5) and (2,4), and the new transverse
direction is associated with the new diagonal value −5. Obviously,
Sorrentino et al. Sci. Adv. 2016; 2 : e1501737 22 April 2016
this can be generalized to more complex cluster mergings. An example
of cluster merging is shown geometrically in Fig. 3. We note that
this method can be used to analyze the stability of any dynamically
valid CS pattern for which knowledge of the block-diagonalized
matrix L″ is available, and it applies whether the connectivity is given
by an adjacency matrix or by a Laplacian matrix. The generalization of
the above procedure simply uses the synchronization vectors for all the
new clusters as the rows of a matrix for which all other components are
zero. An application of a singular value decomposition then gives a
basis for the synchronization block (the original synchronization vec-
tors) and a basis for the orthogonal complement that represents all
the transverse directions. In some cases, the latter can be simplified
by a block diagonalization when all members of the block are in the
same merged cluster. This makes it possible to automate this block
diagonalization to evaluate stability of all the CS patterns that can
emerge in a given network topology.

We show symmetry breaking and the existence of Laplacian
clusters using the experimental system described in detail in (24, 38)
and also in Methods and Materials herein. The dynamics of the sys-
tem is modeled by a map according to

xtþ1
i ¼ ½bIðxti Þ þ s∑jLijIðxtj Þ þ d�mod 2p ð10Þ

where s is the coupling strength, which we will vary. Equation 10 is a
map version of Eq. 2 and can show fixed-point, periodic, or chaotic
dynamics depending on the values of the parameters. Here, d = 0.525,
b = 1.45p (which guarantees chaotic behavior), and s was decreased
from p to 0. The dynamics of Eq. 10 describe the experiment, which
uses a spatial light modulator (SLM) and laser system to display the
behavior of the nodes of the five-node system shown in Fig. 2.

Figure 4 shows the experimental synchronization error for each
synchronization pattern shown in Fig. 2 as a function of s. The phases
xi were not reinitialized when s was updated. The synchronization
error for each pattern is computed as <|xi(t) – xcli (t)|> , where the sym-
bol <•> indicates an average both in time and over the nodes i in a
x
5

x
1
, x

3

2 4

New synchronization

manifold (plane)

Fig. 3. Reduction of the dimension of the three-dimensional synchro-
nization manifold. This shows schematically how the merging of clusters
(1,3) and (5) produces a new synchronization direction in the (1,3) and (5)
plane of the synchronization manifold along with a new transverse direc-
tion orthogonal to the new synchronization direction.
0 π π 3π π
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L4

A3

L3

A2

A1

L1

σ
Fig. 4. The figure shows the experimental synchronization error for
each synchronization pattern as a function of the parameter s for a
five-node experimental system modeled after Fig. 2. Underneath the
top portion, we plot the results of our stability analysis applied to each one
of the CS patterns, where a colored dot labels the values of s for which the
corresponding pattern is stable.
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cluster and the clusters in a pattern. xcli is the average state for the nodes
in the cluster to which node i belongs. In the lower panel of Fig. 4, we
plot the results of our stability analysis for each one of the CS patterns,
where a colored dot labels the values of s for which the corresponding
pattern is stable. In particular, a CS pattern was indicated to be stable
when (i) all the numerically computed maximum Lyapunov exponents
corresponding to the transverse blocks were found to be negative and
(ii) the synchronous pattern was asymptotically valid, that is, the CS
pattern was observed after integrating its equations for a long time.
The equations that were used to run these stability calculations are
shown in Table 1.

In general, when two or more clusters merge into one, there are two
independent effects on stability, as can be seen from the structure of
the block-diagonalized matrix L″: the first one is that the dimension of
the synchronization block decreases, which determines the motion in
the synchronization manifold; the second one is that new transverse
Sorrentino et al. Sci. Adv. 2016; 2 : e1501737 22 April 2016
blocks appear, with the other (preexisting) transverse blocks remaining
the same. As a consequence, because each one of these transverse blocks
needs to be individually tested for stability, we expect that as the num-
ber of transverse blocks increases, the range of stability will decrease. This
is confirmed by our experimental results plotted in Fig. 4, showing that
the s range of stability becomes smaller for CS patterns that are char-
acterized by higher symmetry. Exceptions to this rule are possible because
the motion in the synchronization manifold (on which the transverse
Lyapunov exponents depend) may also affect stability in ways that can-
not be predicted by the analysis of the transverse blocks only.

Figure 5 shows the dynamics on the synchronization manifold for
the symmetry pattern A3 and the two merged patterns L3 and L1. In
each transition A3→ L3→ L1, the dimension of the synchronization
manifold decreases by 1 (from 3 to 2 to 1) and the transverse manifold
increases by 1 (from 2 to 3 to 4). Figure 6 shows three snapshots of the
experimental dynamics for each one of the patterns A3, L3, and L1.
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Table 1. Equations used to evaluate the stability of all the allowed CS patterns for the system described by Eq. 10 and coupling matrix (Eq. 6).
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Fig. 5. Experimental phase space plots with lines connecting successive iterates. (A) Three clusters (A3). (B) Two clusters (L3). (C) One cluster (L1).
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The parameter values were (i) b = 2.2p, s = 0.9p; (ii) b = 0.5874p, s =
0.486p; and (iii) b = 2.2p, s = 0.5p. Videos (movies S1 and S2) of the
synchronization manifolds and patterns of Fig. 6 are available in the
Supplementary Materials.
CONCLUSION

We have studied the emergence of CS in networks of coupled oscilla-
tors. First, we show how to obtain all of the possible dynamically valid
CS patterns for an arbitrary network topology. The methods we
illustrated above are general and will apply to nodes with any type
of dynamics (ordinary differential equations, maps, etc.). This method
also extends to directed networks, weighted networks, and labeled
nodes (to represent different dynamics on each node), all of which
are handled by a software package (33). An important point is that
these techniques work for any subgroups of the cluster groups, which
include the trivial subgroups (24) (only the identity in each). Hence,
we can approach merging as a “bottom up” process and analyze any
arbitrary merging of nodes into a cluster to determine whether the
dynamics allow a synchronized state and whether they are stable in
some parameter range. This means that all possible clusters can be ana-
lyzed using our approach. We note that combining clusters as a “top
down” approach would provide clusters that most likely are not from
symmetries, whereas bottom up would be a process that would include
clusters easily obtained from symmetries, although it would be useful
for cases where one has particular clusters in mind to analyze.

Our main result is a technique to evaluate stability of all the dynam-
ically valid CS patterns for both networks for which the connectivity is
given by an adjacency matrix and by a Laplacian matrix. We predict
that the range of stability typically becomes smaller for CS patterns that
are characterized by higher symmetry, which is confirmed in our ex-
perimental system.
MATERIALS AND METHODS

Experimental design
The system uses an SLM and a camera in a feedback configuration.
The camera has a focal plane array (FPA) of 320 × 256 pixels and an
area of 8 × 6.4 mm2. The SLM has a resolution of 512 × 512 pixels and
an active area of 7.68 × 7.68 mm2. A light-emitting diode with a
Sorrentino et al. Sci. Adv. 2016; 2 : e1501737 22 April 2016
wavelength of 1550 nm is used to illuminate the modulator. The light
passes through a polarizing beam splitter and a quarter-wave plate
(QWP), so that circularly polarized light is incident on the SLM. The
SLM imparts a programmable spatially varying phase shift x between
the two polarization components of the reflected light. The reflected
light passes through the QWP and polarizer and is imaged onto a 256 ×
256–pixel square region of the camera’s FPA. The relationship between
the phase shift x applied by the SLM and the normalized intensity
I recorded by the camera is I(x) = (1 – cos x)/2.

Each oscillator corresponds to a square patch of 16 × 16 pixels on
the SLM, which is imaged onto an 8 × 8–pixel region of the camera’s
FPA. Using a computer, the phase shift of the ith region, xi, is iteratively
updated on the basis of the intensity measured by the camera according to
Eq. 10, where s is the coupling strength, which we will vary from p to 0.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/4/e1501737/DC1
movie S1. Video of light intensity dynamics of node areas for the five-node network analyzed
in the text, displayed in Fig. 2, and whose equations are shown in Table 1 for different values
of parameters b and s as shown in Fig. 6.
movie S2. Video rotating the view of state space trajectories of the synchronized node clusters
for the five-node network analyzed in the text, displayed in Fig. 2, and whose equations are
shown in Table 1 for different values of parameters b and s as shown in Fig. 5.
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