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Filling-enforced quantum band insulators in
spin-orbit coupled crystals

Hoi Chun Po,1 Haruki Watanabe,2 Michael P. Zaletel,3 Ashvin Vishwanath1,4*
Anearly triumphof quantummechanicswas the explanationofmetallic and insulatingbehavior basedon the fillingof
electronic bands. A complementary, classical picture of insulators depicts electrons as occupying localized and
symmetric Wannier orbitals that resemble atomic orbitals. We report the theoretical discovery of band insulators for
which electron filling forbids such an atomic description.We refer to themas filling-enforcedquantumband insulators
(feQBIs) because their wave functions are associated with an essential degree of quantum entanglement. Like
topological insulators, which also do not admit an atomic description, feQBIs need spin-orbit coupling for their
realization. However, they do not necessarily support gapless surface states. Instead, the band topology is reflected in
the insulating behavior at an unconventional filling. We present tight binding models of feQBIs and show that they
only occur in certain nonsymmorphic, body-centered cubic crystals.
INTRODUCTION

Consider a system of noninteracting electrons. When does a band in-
sulator arise? There are two approaches to answering this question. The
first approach is a position-space description inwhich the immobility of
electrons is rationalized by localizing them either to atoms or bonding
orbitals, corresponding to ionic and covalent compounds. The second
approach emphasizes the quantummechanical wave nature of electrons
and analyzes the situation from a momentum-space perspective, in
which the insulating behavior arises when all states below a band gap
are filled.

The two pictures do not have to agree, as exemplified by the exis-
tence of Chern insulators (1, 2) and topological insulators (TIs) (3, 4).
Nonetheless, it is generally believed that by tuning parameters in the
Hamiltonian while preserving symmetries, any nontrivial band insula-
tor can be deformed into a reference atomic insulator (AI) through an
intervening phase transition (3).

Here, we argue that the aforementioned common belief concerning
band insulators does not necessarily hold in the presence of time reversal
(TR) and certain space group (SG) symmetries. We establish theoreti-
cally that in systems with spin-orbit coupling (SOC), there are filling-
enforced quantum band insulators (feQBIs) realized at electron fillings
n forwhichno referenceAIwith the same symmetries can exist. Existence
of feQBIs can be exposed by analyzing the possible insulator fillings in
position- and momentum-space.
RESULTS

Atomic versus band insulators
First, consider the position-space approach. We could imagine localiz-
ing electrons at specific points in space, corresponding to the limiting
case of an AI. To ensure TR symmetry, the total spin per point has to be
integer, and hence, we must localize electrons in pairs. The points must
also form an SG-symmetric lattice. Note that in a symmetric “valence
bond” state, the electron positions can be smoothly deformed to the
center of mass of each valence bond, which reduces to the above
point-like picture (Supplementary Materials). The electron fillings
consistent with an AI can then be determined by analyzing the possible
number of lattice points in such lattices. For any SG, this can be inferred
from the tabulated crystallographic information known as “Wyckoff
positions” (5) (Supplementary Materials). In particular, for each SG,
there is a minimum filling nAImin for which AIs become possible.

The second approach is to consider band structures in momentum
space. The minimal filling for forming a band insulator, nBandmin , is the
smallest number of connected bands isolatable from all other bands.
This can be analyzed using the momentum-space representations of
the SG (6). While Kramers degeneracy ensures nBandmin is even, further
band degeneracies can be forced by the SG, raising theminimum filling
nBandmin to be greater than 2. In particular, the class of free electron pro-
blems contains AIs, and hence for any SG nBandmin ≤nAImin. Do n

AI
min and n

Band
min

always agree? Here, we answer this question in the negative: There exist
SGs for which TR-symmetric band insulators can appear at a filling
smaller than that required for anyAI, provided that SOC is nonnegligible.
A band insulator realized at such “subatomic” filling is necessarily
nonatomic, and hence the name feQBI.While feQBIs may seem super-
ficially similar to Mott insulators, which also appear at nonatomic
filling, they do not require interactions.

Before turning to examples of feQBIs, we emphasize their quantum
nature. If electrons behaved classically, like the atomic cores, they
would be forced to occupy well-defined positions in space. In this pic-
ture, systems with nonatomic fillings cannot respect all symmetries.
Thanks to quantum interference, however, electrons can evade such
dilemma by remaining insulating despite being delocalized (Fig. 1, A
to C).

Example of an feQBI
We now provide an explicit example of feQBIs, which was found by a
systematic study of all 230 SGs. An interesting observation is that for
almost all SGs, one can see from their Wyckoff positions that the num-
ber of sites required to forman SG-symmetric lattice is always an integer
multiple of theminimumnumber, implyingnAI∈nAIminℕ. However, there
are four exceptions: SG Nos. 199, 214, 220, and 230 (Table 1). We term
such SGs as “Wyckoff-mismatched.”
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The simplest of the fourWyckoff-mismatched SGs isNo. 199, which
allows forAIswhenever n ∈ 4ℕ except for n = 4, givingnAImin ¼ 8. Yet, we
discovered that feQBI is indeed possible at n = 4 (Supplementary
Materials), that is, nBandmin ¼ 4 < nAImin ¼ 8. For concreteness, we
construct below a simple feQBI tight-binding model. Consider the
SG-symmetric lattice generated by the point r

→1 ¼ ð1=8; 1; 1=4Þ, which
takes the hyperkagome structure with six sites in each primitive unit cell
(Fig. 1D).We consider an s-orbital on each site and denote the electron
operators by f ls†

x
→ , where x

→
and l respectively label the unit cells and the

sites within, and s = ↑, ↓ corresponds to up and down spin quantized
along the crystalline z axis. Note that the choice of the site label l is not
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unique, and our convention is discussed in the Supplementary
Materials.

The SG-symmetric tight-binding Hamiltonian can be constructed
by applying all the symmetries in the SG to a single term h0, that is

H ¼ ∑
g∈SG

ĝ h0ĝ
�1; h0 ¼ f 4s

0†
x
→

�
t ds 0s þ ilðszÞs 0s

�
f 1s
x
→ þ h:c: ð1Þ

where “h.c.”denotesHermitian conjugate, repeated indices are summed
over, and the sum over g ∈ SG includes all terms generated under SG
symmetries. Note that l is a SOC term, and H is TR-symmetric when
the parameters t and l are real. h0 corresponds to a nearest-neighbor
hopping term; for simplicity, we have not included all the symmetry-
allowed terms. A detailed tabulation of the various terms in the
Hamiltonian is provided in table S5.

As shown in Fig. 1E, when l/t= 1/4, the system is a band insulator at
filling n ¼ 4 < 8 ¼ nAImin. This simple observation alone establishes the
existence of feQBIs.

Before proceeding, we note the following points. Without SOC
(l = 0), the system at n = 4 is semimetallic (Fig. 1F). This is in fact the
manifestation of a more general result: No feQBI is allowed when
spin-rotation invariance is restored (7). The lower four bands are also
completely flat because Eq. 1 describes a nearest-neighbor tight-
bindingmodel defined on the frustrated hyperkagome lattice. In con-
trast to the flat bands of the kagome lattice, for example, here they
cannot correspond to localized, SG symmetric orbitals because of the
non-atomic filling.
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Fig. 1. Filling-enforced quantum band insulators. (A to C) Schematic band diagrams. Starting from a “primitive motif,” one can generate a crystal by
repeating it according to the SG symmetries. Depending on the nature of the material, the motif can correspond to atoms, molecules, or bonding orbitals.
Band theory accounts for how the electronic levels evolvewhen the number ofmotifsN is varied from1 to∞, duringwhich the single-particle electronicwave
functionynðx→Þevolves from localized to delocalized. (A) In a strict AI, the set of filled bands, as indicated by the Fermi energy EF, has a natural correspondence
to the filled electronic level of a singlemotif and therefore admits an equally valid classical, localized representation. (B) For a general band insulator (including
all previously knownquantumband insulators), a set of electronic levels are fully filled in the single-motif limit, although the filled bands do not have a simple
correspondencewith them. (C) feQBIs are crystals inwhich no symmetry-respecting choice ofmotif will have fully filled local energy levels, but nonetheless, a
band insulator ismadepossible by quantummechanical interferenceof the electronwaves. (D) Nearest-neighbor hyperkagome lattice considered in Eq. 1 for
SG No. 199. Blue spheres correspond to sites assigned to the displayed conventional cubic unit cell, which has twice the volume of a primitive unit cell.
Transparent spheres represent sites in adjacent cells. (E and F) Example band structures for the tight-binding model in Eq. 1 with filling n = 4. The lattice
constant is set to 1. With spin-orbit coupling in (E), the system is insulating and forms an feQBI. When spin-orbit coupling is switched off in (F), the lowest four
bands are completely flat and touch the upper bands at k

→ ¼ ð0; 0; 2pÞ, rendering the system semimetallic.
Table 1. feQBIs in the four Wyckoff-mismatched SGs. “Wyckoff multi-
plicities” denotes the number of lattice points per primitive unit cell re-
quired to form an SG symmetric lattice corresponding to one of the
Wyckoff positions. nAI and nBand respectively denote the electron fillings
consistent with atomic and band insulators, and their discrepancy
corresponds to feQBIs.
Space group
 Wyckoff multiplicities (5)
 nAI
 nBand
No. 199 (I 213)
 4, 6, 12
 4ℕ\{4}
 4ℕ
No. 214 (I 4132)
 4, 4, 6, 6, 8, 12, 12, 12, 24
 4ℕ\{4}
 4ℕ
No. 220 (I �4 3d)
 6, 6, 8, 12, 24
 4ℕ\{4, 8, 20}
 4ℕ\{4}
No. 230 (I a �3 d)
 8, 8, 12, 12, 16, 24, 24, 48
 8ℕ\{8}
 8ℕ
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Entanglement spectrum of the “spin-orbital
entanglement cut”
In the following,we argue that the quantummechanical nature of feQBIs
can be diagnosed through quantum entanglement, the defining feature
of quantum mechanics. Imagine dividing the system in position space
into two halves and grouping the degrees of freedom intoA andĀ. One
can resolve the ground state wave function into a tensor product of basis

states on A and Ā as Yj i ¼ ∑
a
e�Ea=2jAai⊗j�Aai. The coefficients Ea in

this expansion are termed the entanglement spectrum. A simple product
state ofwell-localizedorbitals, as for a strictAI,will onlyhave a single finite
Ea, indicating the absence of entanglement. In contrast, for quantumband
insulators, a symmetric, localized AI picture is forbidden, and the entangle-
ment spectrummust lookqualitativelydifferent toencode the irremovability
of quantum entanglement. Indeed, it is known that the entanglement
spectrum of a TI is gapless, reflecting the irremovable entanglement.

The irremovability of entanglement ismore subtle for feQBIs, which
are protected by body-centered cubic, nonsymmorphic SG symmetries
that will be broken at any naïve spatial cut. Hence, we need a new ap-
proach to probe their irremovable entanglement. To this end, we devise
a novel “spin-orbital entanglement cut” (SE cut) that preserves all sym-
metries and differentiates unequivocally AIs from feQBIs. More con-
cretely, we let subsystem A = ⇑ be the collection of spin “up”
electrons (Fig. 2A), chosen in a way to respect both TR and SG symme-
tries (Supplementary Materials).

For free fermion problems, the entanglement spectrum {Ea} is
constructible from the single-particle version {ea} (8–11). In particular,
the SE cut respects translation invariance, and hence, the “entanglement

bands” eSE
k
→ are defined on the entire three-dimensional (3D) Brillouin

zone. Generally, eSE
k
→ inherits symmetry representations from the

physical bands, although TR is now realized as a unitary, particle-hole
like symmetry on the entanglement spectrum. For an AI, the spin-
orbital entanglement gap about the “entanglement Fermi level” eF =
0 can be deformed to infinity. However, as shown in Fig. 2B, for the
n = 4 feQBI in SGNo. 199, SG and TR symmetries together force an en-
tanglement band to cross eF between (p, p, p) and − (p, p, p) (Supplemen-
tary Materials). This translates into a symmetry-protected gaplessness
of the entanglement Hamiltonian and implies that the feQBI has ir-
removable spin-orbital entanglement.
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DISCUSSION

Considering that we have focused on SG No. 199 to illustrate the exis-
tence and novelty of feQBIs, it is natural to ask if feQBIs can exist in
systems with other SG symmetries. We have performed a comprehen-
sive study, and the results will be presented elsewhere (7). Here, we note
that when the system has spin-rotation invariance, nBandmin ¼ nAImin for all
SGs; however, with SOC nBandmin ¼ nAImin for all but the four Wyckoff-
mismatched SGs: Nos. 199, 214, 220, and 230. These four SGs admit
feQBIs at nBandmin = 4, 4, 8, and 8, respectively. It appears that feQBI arises
from the interplay betweenWyckoff-mismatch and the spin-1/2 nature
of electrons. Understanding this link is an interesting problem we leave
for future investigation.

What are the physical manifestations of an feQBI? TIs, for example,
have protected surface states. We note that whereas protected surface
states may occur in feQBIs, they are not necessary. For example, the
feQBI model in Eq. 1 with l/t = 1/4 and filling n = 4 happens to also
be a strong TI and, therefore, has gapless surface states. However, other
feQBI examples can be shown to have trivial strong and weak indices.
Because the Wyckoff-mismatched SGs all have SG symmetries that are
broken by the existence of any surface, the existence of gapless surface
states is not mandated by the topological bulk, as explicitly demon-
strated in the SupplementaryMaterials. Therefore, finding physical bulk
signatures of feQBIs is an important open question. As suggested by the
irremovable spin-orbital entanglement demonstrated here, feQBIs may
also show interesting signatures in probes such as spin- and angle-
resolved photoemission spectroscopy. Understanding the physical
manifestation of feQBIs in various spin-resolved probes is therefore
an important direction for future investigations.

We further remark that feQBIs can be distinguished from Mott in-
sulators at the same filling—the latter will necessarily feature local mo-
ment physics at intermediate temperature scales, having either a
symmetry-breaking ground state or exotic excitations at low energies.
In contrast, feQBIs can arise even in weakly correlated systems where
such signatures will be absent.

Recently, various studies on the interplay between nonsymmorphic
symmetries and topological phases of noninteracting electrons have
emerged (12–15).We note here that feQBI is intrinsically different from
the topological nonsymmorphic crystalline phases already studied in
the literature. In particular, several studies (12–14) investigate bulk band
topology by the stability of the surface gapless modes, whereas Varjas
et al.’s study (15) focuses on the quantized magnetoelectric response of
a system with a single glide plane symmetry. In contrast, the nontrivial
nature of feQBIs is established using the full set of SG and TR symme-
tries, instead of studying the consequences of a single nonsymmorphic
symmetry operation (13–15) or the surface symmetries (12). Most im-
portantly, feQBIs are signaled by the electron filling, which has no an-
alog in these previous works. An interesting open question is to identify
the topological invariants classifying feQBIs within the K-theory
framework (16).

We close by discussing possible material realizations. As indicated
here, one should consider a system with significant SOC in SG No.
199 or 214 with n = 4 (disregarding core electrons tightly bounded to
atoms) or in SGNo. 220 or 230with n = 8. In addition, the energy bands
relevant near the Fermi energy should contain the correct symmetry
representations needed (Supplementary Materials). Here, we point
out that the celebrated spin-liquid candidate (17) Na4Ir3O8 features sig-
nificant SOC and crystallizes in SG No. 213 with a hyperkagome struc-
ture (18), the simple-cubic versionof theWyckoff-mismatchedSGNo. 214.
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Fig. 2. SE cut and entanglement spectrum. (A) Schematic of the SE
cut in which the occupancy of one spin species (say ⇓) is traced over.

(B) Example SE cut spectrum for the feQBI model of SG No. 199. As detailed
in the Supplementary Materials, the entanglement band structure
inherits little group representations from the physical bands, and TR
symmetry is realized in a “particle-hole” manner. These together force
an unavoidable gaplessness about eF (dashed line).
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Its hole-doped cousin Na3Ir3O8 (19) comes even closer to providing
the required ingredients. In its synthesized form, the iridium atoms
sit at the symmetric-lattice generated by (1/8, y, y + 1/4) with the
parameter y = −0.113 (19). By changing the parameter to y = 0 (and
altering the other atom positions; see the Supplementary Materials),
the symmetry can be increased from SGNo. 213 to 214 and the electron
filling is effectively n = 4, giving rise to an feQBI in certain parameter
regions. Although the above scenario relies on a hypothetical structure of
Na3Ir3O8, it illustrates the setting for which feQBIs can be realized. An
important future direction is to identify realistic material realizations.
MATERIALS AND METHODS

Irremovable spin-orbital entanglement of feQBI in SG
No. 199
The entanglement spectrum is determined from the single-particle en-
tanglement Hamiltonian hSE = log(C−1 − 1) (8–11), where Cij ¼
〈Y f †i fj

�� ��Y〉 is the correlation matrix and i and j are restricted to degrees
of freedom in A = ⇑. Note that C is nothing but the projector onto oc-
cupied bands further projected ontoA. In contrast to a spatial cut, which
introduces a boundary, hSE behaves like a local Hamiltonian through-

out the entire bulk. eSE
k
→ therefore inherits symmetry representations

from the physical bands. In particular, at momenta (p, p, p) and
−(p, p, p), the four bands split into a pair of 3D and 1D symmetry rep-
resentations. In addition, TR is realized as a unitary, particle-hole like
symmetry on the entanglementHamiltonian, which forces an entangle-
ment band to cross eF = 0 along (p, p, p) to −(p, p, p) (Supplementary
Materials).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/4/e1501782/DC1
Electron filling in AIs
Symmetries of SG No. 199
feQBI tight-binding examples
Hypothetical structure for spin-orbit coupled hyperkagome material Na3Ir3O8

Discussions on the SE cut
Fig. S1. Reproduction of Fig. 1D with different viewing conditions and extra annotation.
Fig. S2. Energy and entanglement band structure for an alternative feQBI example for SG
No. 199.
Fig. S3. Plot of band gap for the hyperkagome model in eq. S3 at filling n = 4.
Fig. S4. Plot of surface band structure against the surface crystal momentum k

→

jj for the model
in eq. S3.
Table S1. List of symmetry elements for SG No. 199.
Table S2. Spin-quantization axes corresponding to the SG symmetric spin texture.
Table S3. Symmetry eigenvalues of the irreducible little group representations at high-
symmetry momenta.
Table S4. Transformation of tight-binding sites under the symmetry elements.
Table S5. A full list of terms in the feQBI tight-binding example given in the text.
Table S6. Terms in an alternative eight-band feQBI tight-binding example.
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Table S7. Measured structure of Na3Ir3O8 by Takayama et al. (19).
Table S8. “Symmetry-enriched” hypothetical structure of Na3Ir3O8 in SG No. 214.
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