Skip to main content
. Author manuscript; available in PMC: 2017 Apr 26.
Published in final edited form as: ACS Nano. 2016 Apr 8;10(4):3918–3935. doi: 10.1021/acsnano.6b01401

Table 1.

X-ray scintillators for cancer therapy

Nanosystem Size PS Attachment Strategy X-ray doses Biological Experiment Ref.
SrAl2O4:Eu2+ 80 nm MC540 Pore loading 0.5 Gy U87MG xenograft (it.) 101
LaF3:Tb3+ 15 nm MTCP Covalent binding 120 keV N/A 80
LaF3:Tb 3–45 nm RB Covalent binding 2–10 keV N/A 82
LaF3:Tb 3–45 nm RB Covalent binding N/A Tumor model (it.) 83
LaF3:Ce3+ 2 μm PPIX Physical loading 3 Gy PC3 cells 73
CeF3 7–11 nm VP Physical loading 6 Gy, 8 keV or 6 MeV Panc-1 104
Tb2O3 10 nm porphyrin Covalent binding N/A N/A 86
Y2O3 12 nm psoralen Covalent binding 2 Gy, 160 or 320 kVp PC3 cells 97
ZnS:Cu,Co 4 nm TBrRh123 Covalent binding 2 Gy PC3 cells 109
APTES N/A PPIX Coating 8 Gy PC3 cells 110
LiYF4:Ce3+ 34 nm ZnO Coating 8 Gy HeLa cells 102
Gd2O2S:Tb 20 μm Photofrin II Co-location 120keV, 20 mAs human glioblastoma cells 84
SiC/SiOx NWs 20 nm porphyrin Covalent binding 2 Gy, 6 MV A549 cells 111
ZnO/SiO2 98 nm ZnO Coating 200 kVp, 2 Gy LNCaP and Du145 cells 107
GdEuC12 micelle 4.6 nm Hyp Physical loading 400 mA HeLa cells 87
Cu-Cy 50–100 nm self No PS 5 Gy MCF-7 xenograft (it.) 73

it. = intratumoral injection, N/A = not available