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Abstract

Purpose—There is a large body of evidence supporting the efficacy of low level laser therapy 

(LLLT), more recently termed photobiomodulation (PBM), for the management of oral mucositis 

(OM) in patients undergoing radiotherapy for head and neck cancer (HNC). Recent advances in 

PBM technology, together with a better understanding of mechanisms involved, may expand the 

applications for PBM in the management of other complications associated with HNC treatment. 

This article (part 1) describes PBM mechanisms of action, dosimetry, and safety aspects and, in 

doing so, provides a basis for a companion paper (part 2) which describes the potential breadth of 

potential applications of PBM in the management of side-effects of (chemo)radiation therapy in 

patients being treated for HNC and proposes PBM parameters.

Methods—This study is a narrative non-systematic review.

Results—We review PBM mechanisms of action and dosimetric considerations. Virtually, all 

conditions modulated by PBM (e.g., ulceration, inflammation, lymphedema, pain, fibrosis, 

neurological and muscular injury) are thought to be involved in the pathogenesis of 

(chemo)radiation therapy-induced complications in patients treated for HNC. The impact of PBM 

on tumor behavior and tumor response to treatment has been insufficiently studied. In vitro studies 

assessing the effect of PBM on tumor cells report conflicting results, perhaps attributable to 

inconsistencies of PBM power and dose. Nonetheless, the biological bases for the broad clinical 

activities ascribed to PBM have also been noted to be similar to those activities and pathways 

associated with negative tumor behaviors and impeded response to treatment. While there are no 

anecdotal descriptions of poor tumor outcomes in patients treated with PBM, confirming its 

neutrality with respect to cancer responsiveness is a critical priority.

Conclusion—Based on its therapeutic effects, PBM may have utility in a broad range of oral, 

oropharyngeal, facial, and neck complications of HNC treatment. Although evidence suggests that 

PBM using LLLT is safe in HNC patients, more research is imperative and vigilance remains 

warranted to detect any potential adverse effects of PBM on cancer treatment outcomes and 

survival.
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Introduction

Nearly all patients with advanced head and neck cancer (HNC) suffer complications from 

treatment with radiation therapy (RT) or chemoradiotherapy (CRT) [1]. CRT is currently the 

standard of care with or without surgery in advanced HNC. An increased frequency and 

severity of side effects is seen, particularly when chemotherapy (CT) is combined with 

accelerated or hyperfractionated RT regimens. It is now recognized that organ preservation 

in HNC treatment is not synonymous with function preservation, and effects on quality of 

life (QoL) must be considered in cancer treatment planning and extending survival [2, 3].

RT to the head and neck, with or without CT, damages adjacent tissues within the radiation 

field despite continuing efforts to minimize these effects [1]. Furthermore, targeted therapies 

administered as single agents, and combined with RT or CRT, may generate additional 

symptoms [4–6]. Acute complications include oral mucositis (OM), pain, dysphagia, 

infections, salivary changes, dysgeusia, and dermatitis. Common chronic complications 

include hyposalivation and xerostomia, mucosal infections, mucosal atrophy, neuropathies 

including mucosal pain, dysgeusia, tooth demineralization and rampant caries, progression 

of periodontitis, soft tissue and/or bone necrosis, mucocutaneous and muscular fibrosis, 

dysphagia, trismus, lymphedema, dermatitis, and voice and speech alterations [7]. These 

complications are associated with morbidity and mortality, increased use of health care 

resources and costs, and may compromise patient adherence to cancer therapy protocols 

resulting in suboptimal outcomes.

Among the few supportive care measures available, low level laser or light therapy (LLLT) 

has shown significant promise. LLLT refers to light therapy that may stimulate tissue 

regeneration, reduce inflammation, and control pain. These treatments were originally 

referred to as “low level laser” because the light is of low intensity compared with other 

forms of medical laser treatment, which are used for ablation, cutting, and coagulation. At 

the 2014 joint North American Association for Laser Therapy (NAALT) and World 

Association for Laser Therapy (WALT) conference, photobiomodulation (PBM) was 

accepted as the preferred name with the following definition: “The therapeutic use of light 

[e.g. visible, near infrared (NIR), infrared (IR)] absorbed by endogenous chromophores, 

triggering non-thermal, non-cytotoxic, biological reactions through photochemical or 

photophysical events, leading to physiological changes” [8].

The potential utility of PBM in the management of side-effects of 

chemoradiation therapy in head and neck cancer

Although the biological mechanisms underlying the therapeutic effects of PBM have not 

been fully elucidated, studies suggest that PBM enhances wound healing [9], significantly 
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reduces inflammation, and prevents fibrosis [10–15]. Moreover, PBM reduces pain and 

improves function [16–19]. These photobiological reactions have been shown to occur in 

various tissues.

Systematic reviews have suggested efficacy of PBM for OM management in hematopoietic 

stem cell transplant (HSCT) recipients and in HNC patients [20–25]. Whereas in most 

studies, PBM is applied intra-orally on the oral mucosal tissues, studies indicate that it may 

also be administered extra-orally, with a resultant effect on structures at risk for OM 

transcutaneously, thereby enhancing the ease of delivery and possibly the efficacy of 

treatment [23, 26].

In addition, new generation PBM devices consisting of a cluster of laser or light-emitting 

diode (LED) beams, instead of a single laser point, provide exposure of larger fields. 

Monochromatic high-quality LED beams have the same properties as diode lasers with the 

same wavelength, but their light beam is less coherent. LED specifics need to be carefully 

matched to PBM using lasers when considering LED arrays.

When used with appropriate parameters, the light is able to penetrate into tissues sufficiently 

to activate cellular processes [27]. This finding suggests that extra-oral administration of 

PBM (with or without concurrent use of intra-orally administered PBM) enables the light to 

reach other anatomical structures of the head and neck at risk for RT- and CRT-induced 

complications. This may broaden the range of indications for PBM for the prevention and 

treatment of cancer treatment-induced complications.

Goals of this work

A task force consisting of an international multidisciplinary panel of clinicians and 

researchers with expertise in the area of supportive care in cancer and/or PBM clinical 

application and dosimetry was formed. The mission of this group is to aid in the design of 

PBM study protocols, identify validated outcome measures, and test the efficacy and safety 

of PBM for the management of complications related to cancer therapy.

In this paper, we review and discuss PBM mechanisms of action, dosimetry, and safety 

considerations. In a subsequent paper (part 2), we (i) identify selected oral, oropharyngeal, 

facial, and neck complications of treatment for HNC, in which PBM may have potential for 

prophylaxis and/or treatment; (ii) propose PBM parameters for prophylaxis and therapy to 

mitigate these complications based on current evidence and knowledge; and (iii) discuss 

directions of future research related to the use of PBM in HNC.

PBM mechanisms of action and therapeutic effects

The conclusion that PBM effectively modulates biological function is supported by a 

plethora of clinical and laboratory studies [17, 28]. Despite variations in instrumentation and 

dosing parameters, since its introduction in 1967, PBM has been shown to enhance wound 

repair and tissue regeneration by influencing different phases of injury resolution including 

the following: (i) the inflammatory phase, in which immune cells migrate to the site of tissue 

injury, ii) the proliferative phase, which includes stimulation of fibroblasts and macrophages 
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as well as other repair components, and iii) the remodeling phase, consisting of collagen 

deposition and rebuilding of the extracellular matrix at the wound site [29].

Although the complex biological mechanisms underlying the therapeutic effects of PBM 

have not been completely elucidated and may vary among different cell types and tissue 

states (healthy versus stressed or hypoxic), laboratory and clinical studies suggest that PBM 

significantly reduces inflammation and prevents fibrosis [10–15]. It has become increasingly 

clear that PBM’s biological effects are closely dose-related. In fact, the historical lack of 

dosing consistency has been a confounder in the comprehensive interpretation of PBM 

activity. Nonetheless, confirmatory studies have contributed to a fundamental understanding 

of PBM biology.

Current data suggest that PBM acts predominantly on cytochrome c oxidase (CcO) in the 

mitochondrial respiratory chain by facilitating electron transport resulting in an increased 

transmembrane proton gradient that drives adenosine triphosphate (ATP) production [30]. 

ATP is the universal energy source in living cells essential for all biologic reactions, and 

even a small increase in ATP levels can enhance bioavailability to power the functions of 

cellular metabolism [31]. In addition, the absorption of red or NIR light may cause a short, 

transient burst of reactive oxygen species (ROS) that is followed by an adaptive reduction in 

oxidative stress. This action, impairment of ROS production, has been shown to favorably 

mitigate radiation-induced injury and mimics the activity of molecular agents that attenuate 

tissue damage (examples include amifostine, N-acetyl cysteine, and superoxide dismutase).

Low concentrations of ROS impact many cellular processes, including activation of key 

transcription factors such as nuclear factor kappa B (NF-κB). This results in the expression 

of stimulatory and protective genes [32], which generate growth factors belonging to the 

fibroblast growth factor family, pro-inflammatory cytokines, and chemokines that are 

involved in tissue repair.

In hypoxic or otherwise stressed cells, mitochondria produce nitric oxide (mtNO), which 

binds to CcO and displaces oxygen [33]. This binding results in inhibition of cellular 

respiration, decreased ATP production, and increased oxidative stress (a state that develops 

when the levels of ROS exceed the defense mechanisms), leading to the activation of 

intracellular signaling pathways, including several transcription factors [34]. These include 

redox factor-1 (Ref-1), activator protein-1 (AP-1), NF-κB, p53, activating transcription 

factor/cAMP-response element–binding protein (ATF/CREB), hypoxia-inducible factor 

(HIF)-1, and HIF-like factor [35]. These transcription factors induce downstream production 

of both inflammatory mediators, such as tumor necrosis factor-alpha (TNF-α), interleukin 

(IL)-1 and IL-6, cyclooxygenase (COX)-2, and prostaglandin E2 (PGE-2) [34, 36, 37] and 

anti-inflammatory mediators [transforming growth factor (TGF)-beta, IL-10]. There is 

evidence suggesting that when PBM is administered with appropriate parameters to stressed 

cells, NO is dissociated from its competitive binding to CcO, ATP production is increased, 

and the balance between prooxidant and antioxidant mediators is restored, resulting in a 

reduction of oxidative stress [38]. For example, PBM has been shown to attenuate the 

production of ROS by human neutrophils [39]. Silveira et al. [40] reported that PBM 

reduced ROS in an animal model of traumatic tissue injury, whereas a study in a model of 
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acute lung inflammation found PBM to reduce the generation of TNF-α and to increase 

IL-10 [41]. In addition, NO is a potent vasodilator [42] and can increase the blood supply to 

the light illuminated tissue. PBM-mediated vascular regulation increases tissue oxygenation 

and also allows for greater traffic of immune cells, which may contribute to the promotion of 

wound repair and regeneration [34].

Moreover, PBM, when delivered appropriately, reduces pain and improves function [19, 30–

32]. In addition, in vivo studies show that PBM is neuroprotective and may benefit 

neurodegenerative diseases and neurotrauma [33, 34]. Analgesic effects are probably 

induced by additional mechanisms rather than by the increased ATP/reduced oxidative stress 

model. PBM with a relatively high power density (> 300 mW/cm2), when absorbed by 

nociceptors, has an inhibitory effect on A and C neuronal pain fibers. This slows neural 

conduction velocity, reduces amplitude of compound action potentials, and suppresses 

neurogenic inflammation [19].

Preliminary studies suggest that multiple conditions that may play a role in the pathogenesis 

of RT- and CRT-induced complications in patients treated for HNC (e.g., ulceration, 

inflammation, lymphedema, pain, fibrosis, neurological and muscular injury) may be 

modulated by PBM. For example, in an animal model of OM, it was demonstrated that PBM 

decreased COX-2 expression [43] and decreased the number of neutrophils in the 

inflammatory infiltrate [44]. Moreover, in the chronic sequelae of RT and CRT, an excessive 

fibroblastic response is hypothesized to be related to acute oxidative injury, with resulting 

cell damage, ischemia, and an ongoing inflammatory response resulting in fibrosis [45]. The 

critical difference between normal wound healing and fibrosis development appears to be, 

that in fibrosis, signaling pathways escape normal cellular regulation [46]. Reduction of 

fibrosis could be mediated by the beneficial effects of PBM on the oxidant/antioxidant 

balance [47], downregulation of TGF-β, and inhibition of excessive fibroblast proliferation 

[48].

Although most studies have demonstrated efficacy in management of both acutely and 

chronically affected tissues, not all PBM investigations have yielded positive outcomes. As 

discussed below, these divergent results may be attributed to several factors, most 

importantly dosimetry. Clearly, more investigation at the molecular, cellular, and tissue level 

is needed to fully understand the complexity of PBM function.

PBM parameters

PBM parameters have been mostly reported within the red and NIR wavelength range of 

600–1000 nm, with a power density of between 5 and 150 mW/cm2 and are typically 

applied for 30–60 s per point. The therapeutic effect is dictated by the energy density 

measured in joule per centimeter squared.

Commonly reported PBM devices include helium-neon (HeNe) gas laser, gallium–arsenide 

(GaAs), neodymium-doped yttrium aluminum garnet (Nd:YAG), gallium aluminum arsenide 

(GaAlAs), indium gallium aluminum phosphide (InGaAlP) diode lasers, non-thermal, non-

ablative carbon dioxide (CO2) lasers, LED arrays, and visible light.
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The PBM effects on the exposed tissues depend on the following: cell type, redox state of 

the cell, irradiation parameters (including wavelength, power density), and time of exposure 

[23, 49]. A biphasic dose response has been shown, which underlines that there are optimal 

irradiation and dose parameters, although these will likely vary according to underlying 

pathology (cellular layers and depth from the surface of application), mucosal surface or 

skin, and individual patient-associated factors [50]. Bearing in mind, dosage lower than the 

optimal value may have a diminished effect, while doses higher than optimal can have 

negative therapeutic outcomes [34, 49].

Thus, for PBM to be effective, the irradiation parameters, including the energy delivered, 

power density, pulse structure, delivery to the appropriate anatomical location (operator-

dependent effect), and appropriate treatment timing and repetition, need to be within the 

biostimulatory dose windows [22, 34, 49, 51, 52].

Titrating adequate doses and defining the other required PBM parameters according to 

evidence gathered in a systematic manner for each indication is a prerequisite for treatment 

success. Without standardization in beam measurement, dose calculation, and the correct 

reporting of these parameters, studies will not be reproducible, and outcomes will not be 

consistent. A common misconception is that wavelength and energy (in J) or energy density 

(J/cm2) are all that is necessary in order to replicate a successful treatment and that the 

original power, power density, and duration parameters do not matter [53, 54].

A checklist to help researchers understand and report all the necessary parameters for a 

reproducible scientific study has been developed (Table 1) [54]. PBM devices are 

manufactured depending on “class” of laser device with multiple options to control the 

above dosimetry. However, it is not uncommon to find discrepancies between the 

specifications provided by a device manufacturer and the actual performance of the device 

[55]. Therefore, device maintenance including power measurements should be carried out 

regularly during research trials and also in clinical practice.

Potential effects of PBM on tumor

The first prerequisites for any potential agent to be used to prevent cancer regimen-related 

complications are that it does not adversely affect tumor risk, tumor behavior, or tumor 

response to treatment.

Given the breadth of PBM’s biology, there exists a significant opportunity and it is 

imperative to establish its tumor-related neutrality, or even the possibility that PBM might 

provide an adjunctive therapy when used with conventional modes of anti-cancer treatment. 

As noted below, currently, there are more questions than answers. Although it seems highly 

unlikely (both teleologically and based on available data) that PBM in itself poses a 

carcinogenic threat, its potential to alter established tumor behaviors such as proliferation or 

invasion may not be trivial [56]. We do know that PBM effectively activates a sweeping 

range of pathways and mediators which have been implicated in tumor conduct. Thus, 

opportunities for pre-clinical and clinical research abound.
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Molecular biology

Significant progress has been made in the past decade in our understanding of the molecular 

biology which drives head and neck squamous cell carcinoma (SCC) and the mechanisms of 

action of PBM.

PI3K/AKT/mTOR signaling pathway

Activation of the PI3K/AKT/mTOR pathway is associated with many of the activities that 

may be associated with PBM’s favorable impact on wound healing: cell survival, migration, 

proliferation, and angiogenesis. Yet PI3K/AKT/mTOR signaling is also among commonly 

dysregulated pathways associated with cancer, including head and neck SCC [57], and its 

activation has been reported to promote the acquisition of epithelial-mesenchymal transition, 

cancer stem cell phenotypes, and cancer radioresistance [58]. Conversely, inhibition of the 

pathway has been viewed as a potential strategy to increase radiation sensitivity of tumor 

cells [59]. Recently reported data suggest that the migration of oral keratinocytes to occur 

following PBM is attributable to activation of the AKT/mTOR signaling pathway [60]. 

Consequently, the observation reported by Sperandio et al. [61] that PBM modified the 

expression of proteins related to the progression and invasion of oral cancer cell lines 

suggests that PBM activation of the AKT/mTOR signaling pathway may be undesirable. The 

lack of data from in vivo models or patients leaves open the question on the breadth of PBM 

effects on malignant cells and non-malignant tissue. For example, assuming AKT/mTOR is 

activated by PBM, would tumor tissue be affected if it was distant from the site of 

application, i.e. treating the mouth for OM in an individual being treated for a 

hypopharyngeal cancer?

TGF-β signaling pathway

TGF-β has potentially contradictory roles relative to tumor behavior [62]. While its tumor 

suppressive effects are notable in the early stages of carcinogenesis, it may promote growth 

and spread of established tumors. Through serine/threonine kinases and Smad effectors, 

TGF-β can act as a tumor suppressor by inhibiting proliferation and inducing apoptosis [63]. 

Conversely, it may be overproduced by human tumors and is associated with induction of 

epithelial-mesenchymal transition, the prelude to tumor invasiveness, angiogenesis, 

suppression of elements of immune surveillance, and recruitment of signaling pathways that 

may facilitate metastases [64]. Additionally, it appears that TGF-β1 signaling may enhance 

tumor progression by altering the surrounding stroma through Smad signaling [65]. Thus, 

the observation that PBM stimulates TGF-β/Smad signaling pathway [66] could be viewed 

as a double-edge sword depending on when and what tissue was exposed [67].

MAPK pathways

Mitogen-activated protein kinase (MAPK) pathways play a significant role in cancer [68]. 

Among the MAPK pathways, perhaps the best studied relative to cancer is the ERK 

pathway. ERK signaling is associated with a number of tumor behaviors. Of relevance to 

HNC is a correlation of its expression with increased epithelial growth factor receptor 

(EGFR) [69]. The ERK pathway also impacts vascular epithelial growth factor (VEGF) 

expression and its consequent angiogenesis. While angiogenesis may be desirable from a 
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wound healing perspective, the finding that PBM stimulates EGFR and VEGF production 

through ERK signaling may be a concern in a tumor environment [70, 71].

Heat shock proteins and microRNAs

The robust biological effects of PBM are borne out by the observations of its ability to 

stimulate a range of biological processes including upregulation of heat shock proteins 

(HSP) [72] and microRNAs [73]. Relative to the current discussion, HSP is essential for 

cancer survival and has been identified as a potential target for anti-cancer therapy.

While the number of miRNAs that are upregulated following PBM is substantial, of 

particular note is the finding that mi126 is among the list as endogenous mi126 has been 

reported to be associated with metastatic progression [74].

Molecular pathways with a potentially favorable effect

While the information above raises questions about possible undesirable effects of PBM on 

tumor progression and response to anti-cancer treatment, some observations suggest that 

PBM might favorably impact tumor behavior through its effects on vimentin expression, 

MyD88-dependent signaling, reduction in TLR-4, and downregulation of NF-κB [75]. 

Furthermore, upregulation of ATP signaling by PBM may promote apoptosis, as well as 

differentiation of tumor cells, thereby slowing tumor proliferation [30, 76].

PBM effects on tumor cell lines

The effects of PBM on cell proliferation and differentiation have been investigated in vitro 

using malignant cell lines, which have generated conflicting data across a range of different 

tumor cell lines and PBM parameters [77–81]. For example, Kreisler and coworkers reported 

proliferation of laryngeal carcinoma cells after 809 nm GaAIAs laser irradiation at energy 

densities between 1.96 and 7.84 J/cm2 [78]. Werneck and coworkers also found increased 

cell proliferation of HEp2 carcinoma cells after PBM exposure at different wavelengths (685 

and 830 nm) and doses [82]. In a study comparing PBM administered to normal osteoblasts 

and to osteosarcoma cells with a range of different wavelengths and doses, only 10 J/cm2 

from an 830 nm laser was able to enhance osteoblast proliferation, whereas energy densities 

of 1, 5, and 10 J/cm2 from a 780-nm laser decreased proliferation. Osteosarcoma cells were 

unaffected by 830 nm laser irradiation, whereas 670 nm laser had a mild proliferative effect 

[83]. An in vitro study compared the effects of different doses of PBM at various 

wavelengths on human breast carcinoma and melanoma cell lines [84]. Although certain 

doses of PBM increased breast carcinoma cell proliferation, multiple exposures had either 

no effect or showed negative dose response relationships. PBM (wavelength 660 nm) 

administered in low doses (1 J/cm2) increased in vitro proliferation and potentially increased 

invasive potential of tongue SCC cells [56]. Similarly, another in vitro study suggested that 

PBM (660 or 780 nm, 40 mW, 2.05, 3.07, or 6.15 J/cm2) may stimulate oral dysplastic and 

cancer cell lines [61].

In contrast, a decreased mitotic rate was found in gingival SCC after PBM at 805 nm and 

energy density of 4 and 20 J/cm2 [80], whereas no effect on cell proliferation or protein 

expression of osteosarcoma cells was found when PBM was administered with a wavelength 
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of 830 nm [85]. PBM (808 nm; 5.85 and 7.8 J/cm2) had an inhibitory effect on the 

proliferation of a human hepatoma cell line [86], and Sroka et al. [87] reported that 

glioblastoma/astrocytoma cells exhibited a slightly decreased mitotic rate after PBM at 805 

nm and 5–20 J/cm2. Similarly, 808-nm laser irradiation with an energy density of more than 

5 J/cm2 inhibited cell proliferation of glioblastoma cells in vitro [88]. Moreover, Al Watban 

et al. [89] observed growth inhibition of cancer cell lines at relatively high cumulative PBM 

doses. This prompted Crous and Abrahamse [90] to hypothesize that PBM may have a 

therapeutic potential in lung cancer.

Protective effects of PBM against cytotoxic therapy

There are no data to suggest that PBM may protect cancer cells against the cytotoxic effects 

of RT. On the contrary, Schartinger et al. [91] observed a pro-apoptotic effect of PBM in 

head and neck SCC cells, whereas no anti-apoptotic effects occurred that might promote 

tumor cell resistance to cancer therapy. Increased apoptosis of human osteosarcoma cells 

was also induced by the administration of NIR (810 nm, continuous wave, 20 mW/cm2, 1.5 

J/cm2) prior to NPe6-mediated photodynamic therapy as a result of increased cellular ATP 

and a higher uptake of the photosensitizer [92]. Recently, it was reported that PBM 

administered to normal human lymphoblasts and leukemia cells prior to RT, resulted in a 

differential response of normal versus malignant cells suggesting that PBM does not confer 

protection and may even sensitize cancer cells to RT-induced killing [93]. Nevertheless, in 

vivo and clinical studies are warranted before firm conclusions can be drawn.

Carcinogenic effects of PBM on normal cells

It seems unlikely that PBM has carcinogenic effects on normal cells. The non-ionizing 

wavelengths of the red and NIR spectrum used in PBM are far longer than the safety limit of 

320 nm for DNA damage [94]. No signs of malignant transformation in non-malignant 

epithelial cells and fibroblasts were observed following exposure to PBM with a wavelength 

of 660 nm, 350 mW for 15 min during 3 consecutive days [91]. In addition, no malignant 

transformation of normal breast epithelial cells was detected in an in vitro study comparing 

the effects of different doses and wavelengths of PBM during multiple exposures [84].

Data derived from in vivo and clinical studies

PBM (660 nm, 30 mW, 424 mW/cm2, 56.4 J/cm2, 133 s, 4 J), applied to chemically induced 

SCC in hamster cheek pouch tissue, increased tumor growth [95]. PBM at a dose of 150 

J/cm2 appeared safe, with only minor effects on B16F10 melanoma cell proliferation in 

vitro, and had no significant effect on tumor growth in vivo. Only a high power density (2.5 

W/cm2) combined with a very high dose of 1050 J/cm2 could induce melanoma tumor 

growth in vivo [96]. In a mouse model to study PBM effects on UV-induced skin tumors, the 

experimental mice received full body 670 nm PBM delivered twice a day at 5 J/cm2 for 37 

days, whereas controls received sham PBM [97]. No enhanced tumor growth was observed, 

whereas there was a small but significant reduction in tumor area in the PBM group, 

potentially related to a local photodynamic effect or PBM-induced antitumor immune 

activity.
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Schaffer et al. [98] observed that PBM increased the locoregional blood flow that 

contributed to better local oxygenation and hypothesized that PBM applied shortly before 

cancer treatment might enhance the effect of ionizing RT and local delivery of 

chemotherapy. A recent randomized controlled trial in which PBM was administered for 

prevention of OM during CRT in HNC patients (diagnosed with SCC of the nasopharynx, 

oropharynx, or hypopharynx) reported that at a median follow-up of 18 months (range 10–

48 months), patients treated with PBM had better locoregional disease control and improved 

progression-free or overall survival [99].

Current evidence suggests that PBM in the red or NIR spectrum, with an energy density of 

1–6 J/cm2 is safe and effective. However, as with drug-based therapies for comparable 

indications, disciplined follow-up studies in which subject cohorts large enough to represent 

the HNC tumor population with respect to gender, tobacco and alcohol use, human 

papilloma virus (HPV) status, primary stage, tumor therapy, and variations in PBM dose and 

fields are needed to definitely conclude that PBM fails to negatively impact survival and 

progression-free survival.

Discussion and concluding remarks

PBM mechanisms have not been fully elucidated, but based on its recognized therapeutic 

effects, PBM may have utility in a broad range of oral, oropharyngeal, facial, exocrine 

glands, and neck complications of HNC treatment.

Titrating adequate doses and defining the other required PBM parameters according to 

evidence gathered in a systematic way for each indication is a prerequisite for a successful 

use of this technique. Without standardization in beam measurement, dose calculation, and 

the correct reporting of these parameters, studies will not be reproducible, and outcomes will 

not be consistent.

There are no known significant adverse side effects for PBM (administered with parameters 

discussed in more detail in part 2) in HNC patients. However, the potential effect on residual 

and new dysplastic and malignant cells has not been definitively resolved. Virtually, all 

studies have focused on cell-based assays rather than conventional xenograft or orthotopic 

animal models. And the results of in vitro investigations have been largely dependent on the 

experimental design and selection of target cells.

The lack of consistent findings and/or the latitude of interpretation of the clinical 

significance of molecular biology findings hamper meaningful conclusions. Continuing 

research addressing the molecular pathways affected by PBM is necessary.

It seems unlikely that PBM has carcinogenic effects on normal cells or protects to cytotoxic 

effects of RT; there is even some evidence suggesting that PBM may enhance treatment 

response.

Studies indicate that different tumor cells have distinct responses to specific PBM 

parameters and doses. In part, these differences may be also explained by variations in the 

cellular microenvironment, since these have been shown to affect cellular signal transduction 
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pathways to PBM exposure [100]. The microenvironment of tumor cells varies among in 

vitro studies and differs significantly from that found in animal models. Moreover, this 

difference implies that the potential of PBM to enhance proliferation of tumor cells in vitro 

does not necessarily translate into harmful effects of PBM in cancer patients. However, more 

research is necessary and vigilance remains warranted to detect any potential adverse effects 

of PBM on cancer treatment outcomes and survival [101].

In the part 2 of this paper, we will identify acute and chronic complications associated with 

HNC therapy and review the literature relevant to the potential use of PBM for the 

management of these complications. PBM irradiation and dosimetric ranges, which are 

potentially effective for these complications, will be proposed. These parameters are 

intended to provide guidance for well-designed future studies.
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Table 1

Photobiomodulation (PBM) parameters to be reported in clinical studies. Adapted from [54]

Category Parameter Unit Explanation

Irradiation parameters Wavelength Nanometer (nm) Light is packets of electromagnetic energy called photons 
that sometimes behave like particles but also have a wave-
like property. Wavelength determines which chromophores 
will absorb the light. Light is visible in the 400–700-nm 
range. The energy of each photon is greater at short 
wavelengths than longer wavelengths; e.g., red light is ~2 
elektronvolt (ev) per photon and blue light is ~3 ev.

Power Watt (W) The number of photons per second. The higher the power 
the more photons emitted every second.

Beam area Centimeter squared (cm2) The surface area of the beam on the patient. Also known as 
spot size. This is not always easy to determine because laser 
beams are usually more intense in the middle then fade 
towards the edge (Gaussian distribution) so it is hard to 
define where the exact edge of the beam is without special 
instruments. Many research authors do not report this 
parameter, let alone report it correctly.

Aperture size Centimeter squared (cm2) The area of the light source tip. This is not necessarily 
identical as the beam area. The difference between the 
aperture size and beam area will be determined by the beam 
divergence and distance of the light source tip from the 
tissue.

Irradiance (power 
density, or intensity)

Watts per centimeter 
squared (W/cm2)

Power (W) ÷ beam area (cm2). More irradiance could allow 
less treatment time; however, many studies have shown that 
if the irradiance is too high, treatment can be less effective 
even if the same total dose is delivered. The treatment 
guidelines suggest the safe and effective irradiance ranges.

(Radiant) Energy Joules (J) Power (W) × time (s). More power could mean less 
treatment time; however, many studies have shown that too 
much power is less effective even if the same total energy is 
delivered. The treatment guidelines suggest the safe and 
effective energy ranges.

Time Second (s) How long each treatment is applied at each location.

Dosage (fluence or 
energy density)

Joules per centimeter 
squared (J/cm2)

Energy (J) ÷ beam area (cm2), or power (W) ÷ beam area 
(cm2) × time (s). Different outcomes can be obtained if the 
total dosage is delivered with high energy and short time or 
low energy and long time.

Operating mode Continuous wave (CW), 
pulsed

The continuity of the production of the output beam may be 
continuous or pulsed. There are several types of pulsed 
beam.

Pulse structure Second (s) The durations of the pulse being on or off.

Treatment parameters Physical relationship 
to the organ

Applicable when there is more than one way to approach the 
organ. For example, intra-oral device versus extra-oral 
device.

Timing Time of the treatment session relative to the cancer 
treatment.

Treatment schedule The frequency of treatments per day/week and the total 
number of treatments.

Anatomical location The anatomical site that was exposed to the light beam. If 
multiple locations were treated, all need to be described.
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