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Abstract

These studies examined the influence of 2,5-hexanedione (2,5-HD) intoxication on expression of 

neuronal nitric oxide synthase (nNOS) in the brainstem nuclei in Zucker Diabetic Fatty (ZDF) vs. 

lean control (LC) rats. Functional neuropathic changes were also investigated following axonal 

damage and impaired axonal transport induced by the treatment. Animals were intoxicated by i.p. 

injection of 2,5-HD plus unilateral administration of 2,5-HD over the sciatic nerve. The 

mechanical thresholds and withdrawal latencies to heat and cold stimuli on the foot were measured 

at baseline and after intoxication. The medulla sections were examined by nNOS 

immunohistochemistry and NADPH-diaphorase histochemistry at the end of the treatments. The 

mechanical thresholds and withdrawal latencies were significantly decreased while nNOS 

immunostained neurons and NADPH-diaphorase positive cells were selectively reduced in the 

gracile nucleus at baseline in ZDF vs. LC rats. NADPH-diaphorase reactivity and nNOS positive 

neurons were increased in the ipsilateral gracile nucleus in LC rats following 2,5-HD intoxication, 

but its up-regulation was attenuated in ZDF rats. These results suggest that diabetic and chemical 

intoxication-induced nNOS expression is selectively reduced in the gracile nucleus in ZDF rats. 

Impaired axonal damage-induced nNOS expression in the gracile nucleus is involved in 

neuropathic pathophysiology in type II diabetic rats.
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1. Introduction

Unremitting pain and reduced temperature and vibration thresholds are observed in patients 

with diabetic neuropathy (Dyck, et al., 1993), and in rats with streptozotocin-induced type I 

diabetes (Wuarin-Bierman, et al., 1987). Recent studies showed that pain and pressure 

thresholds are decreased in Zucker Diabetic Fatty (ZDF) rats, a type II diabetic model 

(Rong, Ma, 2011; Russell, et al., 2008; Zhuang, et al., 1997). Several studies demonstrated 

that systemic administration of 2,5-hexanedione (2,5-HD) causes neurofilamentous axonal 

swellings and damages, which prevent proximal-to-distal transport of neurofilaments and 

other substances, resulting in profound neuropathic changes including hyperalgesia and limb 

paralysis (Anthony, et al., 1983; LoPachin, et al., 1994). However, the neural pathways and 

neurotransmissions responsible for the increased susceptibility of the sensory neurons to 

non-noxious and noxious stimuli in diabetic and chemical neuropathies are poorly 

understood.

Nitric oxide (NO) is one of the most important messenger molecules produced in many cell 

types, including neurons in the brain (Bredt, Snyder, 1992; Moncada, Higgs, 1991). Several 

studies have shown that the nitric oxide (NO)-cGMP pathway plays an inhibitory role in 

nociceptive modulation, which contributes to analgesic mechanisms (Duarte, Lorenzetti, 

Ferreira, 1990; Kumar, et al., 1993). Recent studies show that impaired NO production is 

involved in human diabetic neuropathy (Kilo, et al., 2000) and is associated with 

hyperalgesia in diabetic rats (Sessa, et al., 1993). nNOS catalyses the transformation of 

arginine to NO in neurons, and nNOS is also a highly regulated enzyme (Dinerman, 

Lowenstein, Snyder, 1990; Sessa, et al., 1993). Recent studies have demonstrated that nNOS 

is an inducible enzyme, which is up-regulated by lesion of nerves, abnormal mechanical 

forces, and other various factors (Amin, et al., 1995; Dinerman, Lowenstein, Snyder, 1990; 

Ma, et al., 2000; Sessa, et al., 1993). nNOS expression in the gracile nucleus is markedly 

increased in rats with sciatic axotomy and accompanied by an increased number of cells 

showing expression of NADPH diaphorase (NADPHd) reactivity, a marker of nNOS (Ma, et 

al., 2000).

The gracile nucleus receives ascending input from the sciatic nerve, which has the longest 

axons in the body (Leem, et al., 1994; Ueyama, et al., 1994). Recent experiments have 

suggested that the gracile nucleus is an integration center for visceral and somatic 

information flowing into the thalamus, which possesses functions for sensory and pain 

processing in the dorsal column pathway (Al-Chaer, et al., 1996; Al-Chaer, et al., 1997). The 

afferent sensory fibers in the sciatic nerve originate from the skin or muscle, and synapse 

directly on dorsal horn neurons, or on dorsal horn interneurons in the spinal cord, which 

ascends to the gracile nucleus (Leem, et al., 1994; Ueyama, et al., 1994). Previous studies 

have demonstrated that neuropeptide Y and substance P immunoreactivities increase in the 
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gracile nucleus after sciatic nerve damage or transection (Noguchi, K., et al., 1995; Ohara, et 

al., 1994; Zhang, et al., 1993).

The purpose of the present study was to determine the influence of 2,5-HD intoxication, 

which induces axonal damage and impaired axonal transport, on nNOS expression in the 

brainstem and on functional neuropathic changes in ZDF rats compared to normal lean 

control (LC) rats. Baseline and 2,5-HD intoxication-induced nNOS expressions in the 

brainstem nuclei were examined by using nNOS immunohistochemistry and NADPHd 

histochemistry, a marker of nNOS activity. Functional neuropathic changes were examined 

by measuring the mechanical tolerance threshold of the foot using Von Frey Filaments and 

by testing the withdrawal latencies of the foot in response to heat and cold stimuli.

2. Results

2.1. Functional neuropathic changes

The blood glucose levels, body weights, mechanical tolerance threshold of the foot, and 

withdrawal latencies to application of heat or cold stimuli were measured in seven ZDF rats 

compared to seven age matched LC rats. Blood glucose level was markedly elevated (P< 

0.001, n=7 /group) in ZDF rats (459.6±35.2 mg/dl, M±SE) vs. LC rats (105.7±12.7). 

However, the body weights were of minimal variation, 468.0±8.0 g in ZDF rats vs. 

422.7±11.1 in LC rats.

The withdrawal latencies to heat and cold stimuli and mechanical tolerance threshold of the 

foot in ZDF and LC rats were continually observed for three days, and the averaged values 

served as baseline control (Fig. 1). The mechanical tolerance thresholds of foot were 

significantly decreased (P< 0.01, n=7) in ZDF vs. LC rats (Fig. 1, top). The withdrawal 

latencies to heat stimuli were markedly reduced in ZDF rats compared to LC rats, as shown 

in figure 1, bottom (P<0.001, n=7). The withdrawal latencies to cold stimuli of ZDF rats 

were considerably reduced (P<0.001, n=7). ZDF rats were almost two times as sensitive to 

heat and cold temperatures compared to LC rats. There were no detectable differences in 

mechanical tolerance threshold and withdrawal latencies between the left and right foot in 

both ZDF and LC rats at baseline levels.

2.2. Responses of functional neuropathic changes to 2,5-HD intoxication

Changes in mechanical tolerance threshold and withdrawal latencies of the foot in response 

to 2,5-HD treatments were examined in ZDF and LC rats (n = 5-6). Figure 2 shows the time 

intervals of the changes in mechanical tolerance threshold and withdrawal latencies to heat 

and cold stimuli in ZDF compared to LC rats following 2,5-HD intoxication. The 

withdrawal latencies to heat and cold stimuli were consistently reduced in both the left and 

right foot of ZDF and LC rats after 2,5-HD intoxication compared to their control values (P 

< 0.05, Fig. 2, top and middle panels). The mechanical tolerance thresholds were 

significantly decreased in both feet following treatment with 2,5-HD (P < 0.01, Fig. 2, 

bottom). There were no differences between LC and ZDF rats on the withdrawal latencies to 

mechanical, heat, and cold stimuli after 2,5-HD intoxication. Administration of 2,5-HD on 

unilateral sciatic nerve plus systemic intoxication tended to further decrease the withdrawal 
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latencies to heat and cold stimuli on the ipsilateral side of the foot, although the differences 

failed short of statistical significance, as shown in figure 2, top and middle. There was no 

detectable difference of the mechanical tolerance thresholds between control and treated 

sides of the foot following unilateral treatment with 2,5-HD, as shown in figure 2, bottom.

ANOVA analysis revealed significant differences in withdrawal latencies to heat and cold 

stimuli on both feet at 3, 6, and 14 days after 2,5-HD treatments in ZDF and LC rats 

compared to control values (P < 0.05), as well as mechanical tolerance thresholds over these 

days (P < 0.01). The significant decrease of the withdrawal latencies and mechanical 

tolerance threshold of the foot occurred at 3 days after injection (P < 0.05). The maximum 

responses to 2,5-HD were at 6 days and maintained at 14 days after treatments (Fig. 2).

2.3. NADPHd staining

LC and ZDF rats at baseline level were stained and compared with groups of ZDF rats and 

six LC rats with 2,5-HD intoxication (n = 6/group). Figures 3 shows the rostral part of 

medulla sections containing variable NADPHd reactivity as evidenced by the color density 

of the cells from a baseline LC rat and a ZDF rat at baseline level compared to a LC rat and 

a ZDF rat treated with 2,5-HD. The gracile nucleus of LC rats exhibited a moderately dense 

NADPHd staining of medium-sized neurons and nerve fiber network (Fig. 3 A), which were 

high than the staining in a ZDF rat at baseline level (Fig. 3C vs. 3A). Fourteen days after 

2,5-HD intoxication, an increase in NADPHd-stained neurons and axons were recognized on 

the rostral regions of the gracile nucleus in a LC rat (Fig 3 B vs. A). The increase was 

pronounced on the ipsilateral side of the gracile nucleus compared to the contralateral side 

(Fig. 3B, pointed by an arrow). In a 2,5-HD treated ZDF rat, moderate increases in 

NADPHd-positive cells existed in the gracile nucleus (Fig. 3D). Such changes were not 

apparent in the gracile nucleus of non-treated control rats nor in other nuclei of the medulla.

The average number of NADPHd positive neurons (200 × 200 μm) were significantly 

reduced in both sides of the gracile nucleus in ZDF rats compared to LC rats at baseline 

level (Fig. 4, top). Following 2,5-HD intoxication in LC rats, the number of NADPHd 

positive neurons were markedly increased in the rostral region of the ipsilateral side of the 

gracile nucleus. The number of neurons stained with NADPHd tended to increase in the 

contralateral sides of the gracile nucleus, although the change fell short of statistical 

significance. Following 2,5-HD intoxication in ZDF rats, the number of NADPHd positive 

neurons were moderately increased in the ipsilateral side of the gracile nucleus. The number 

of neurons stained with NADPHd in the ipsilateral gracile nucleus was significantly higher 

in LC rats when compared to those in ZDF rats induced by 2,5-HD intoxication, as shown in 

figure 4, top panel. The number of NADPHd positive cells in the ipsilateral gracile nucleus 

was significantly higher in both LC and ZDF rats than those induced in the contralateral 

sides (P<0.05).

The baseline levels of NADPHd positive neurons were less (about 50-60 %) in the caudal 

region of the gracile nucleus than those in the rostral gracile nucleus in both ZDF and LC 

rats. In the caudal region of the gracile nucleus following 2,5-HD intoxication in LC rats (n 

= 5), the number of NADPHd positive cells (200 × 200 μm) in the ipsilateral side was 7.3 

± 0.7 S.E.M., which was significantly increased compared with baseline value in the same 
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side (3.7 ± 0.5, P < 0.01) and contralateral side (4.7 ± 1.0, P < 0.05). In ZDF rats with 2,5-

HD intoxication (n = 5), the number of NADPHd positive neurons on the ipsilateral side 

gracile nucleus was 5.7 ± 0.5, which failed to show statistical different changes compared to 

baseline value in the same side (4.1 ± 0.6) and contralateral side (4.7 ± 0.9). 2,5-HD 

intoxication induced a marginal high level of NADPHd positive neurons in the caudal region 

of ipsilateral gracile nucleus in LC rats compared to ZDF rats (P = 0.09).

2.4. nNOS immunohistochemistry

The medulla sections of ZDF and LC rats at baseline level were stained with nNOS 

immunoreactivity and compared with the rats with 2,5-HD intoxication (n = 5-6). Figure 5 

shows that neurons in the gracile nucleus contain variable nNOS immunoreactivity 

evidenced by the color density of the cells from a LC rat and a ZDF rat (A and C) compared 

to the rats treated with 2,5-HD (B and D). As shown in figure 5A, nNOS immunostained 

cells were recognized in the gracile nucleus in a LC rat, which were higher than those 

stained cells of the same area in a ZDF rat (Fig. 5C). 2,5-HD intoxication in a LC rat caused 

higher increases in nNOS immunostained neurons in the ipsilateral gracile nucleus 

compared to the moderate increases in a ZDF rat, as shown in figure 5 B and D, pointed by 

arrows).

The number of nNOS positive neurons (200 × 200 μm) in the rostral regions of the gracile 

nucleus was significantly less in ZDF rats than those in LC rats, as shown in figure 4, bottom 

panel. After 2,5-HD intoxication in LC rats (n = 5), the number of nNOS immunoreactive 

cells was markedly increased in the rostral region of the ipsilateral gracile nucleus compared 

to baseline value (Fig. 4, bottom). In LC rats with 2,5-HD intoxication, the number of 

nNOS-positive cells was significantly higher in the rostral region of ipsilateral gracile 

nucleus than those in baseline rats. Following 2,5-HD intoxication in ZDF rats, the nNOS 

positive neurons in the contralateral sides of the gracile nucleus suggested a significant 

elevation compared to control value (P < 0.05). However, the numbers of nNOS positive 

neurons in the ipsilateral gracile nucleus were marginally less in ZDF rats than those in the 

same side of LC rats with 2,5-HD treatment (P < 0.07). The number of nNOS positive 

neurons in the ipsilateral gracile nucleus was marginally less than those in the contralateral 

gracile nucleus in both LC rats (P < 0.09) and ZDF rats (P < 0.06).

In the caudal region of the gracile nucleus of LC rats with 2,5-HD intoxication (n = 5), the 

number of nNOS positive cells was significantly increased in the ipsilateral side (5.8 ± 0.2) 

and contralateral gracile nucleus (4.9 ± 0.5) compared to baseline value (3.5 ± 0.3), which 

was less (about 50%) than those in the rostral gracile nucleus. The 2,5-HD intoxication 

failed to show detectable changes of nNOS reactivity between the ipsilateral side and 

contralateral region in LC rats. 2,5-HD intoxication in ZDF rats caused an increase in nNOS 

immunoreactive neurons in the caudal region of the ipsilateral gracile nucleus (5.9 ± 0.8) 

compared to control rats (3.7 ± 0.2). In the contralateral side of the gracile nucleus, the 

number of nNOS-positive cells in control ZDF rats (4.3 ± 0.3) was similar to the rats treated 

with 2,5-HD (4.4 ± 0.6).
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3. Discussion

We examined the expression of nNOS and NADPHd in the brainstem nuclei in ZDF 

compared to LC rats at baseline level, and determined the responses of nNOS expression and 

NADPHd reactivity in the nuclei to 2,5-HD intoxication in the rats. The functional 

neuropathic changes were tested by measurements of mechanical tolerance thresholds and 

withdrawal latencies in the rats. The major new findings of this study are: 1) nNOS and 

NADPHd positive cells in the gracile nucleus were decreased in ZDF rats associated with a 

reduction of mechanical thresholds and withdrawal latencies; 2) NADPHd reactivity and 

nNOS positive neurons were significantly increased in the ipsilateral side and moderately 

elevated in the contralateral side of the gracile nucleus by 2,5-HD intoxication in LC rats; 3) 

2,5-HD intoxication induced expressions of nNOS and NADPHd reactivity in the ipsilateral 

gracile nucleus were impaired in ZDF rats; and 4) Withdrawal latencies and mechanical 

threshold were consistently decreased by 2,5-HD intoxication in both LC and ZDF rats. The 

present study is the first evidence showing that ZDF rats possesses a consistent impairment 

of nNOS expression and NADPHd reactivity in the gracile nucleus at both baseline level and 

with 2,5-HD intoxication. 2,5-HD intoxication induces a considerable upregulation of nNOS 

and NAPDHd expression in the gracile nucleus in LC rats; however, the levels of 2,5-HD 

intoxication-induced elevation of nNOS expression and NADPHd reactivity are attenuated 

in ZDF rats. The differences of nNOS expression and NADPHd reactivity in ZDF and LC 

rats were evident in the gracile nucleus, a central site receiving ascending input from 

primary sciatic sensory afferent fibers in the brainstem, but not evident in other brainstem 

regions. The mechanical tolerance thresholds and withdrawal latencies were consistently 

reduced in ZDF rats and in the rats with 2,5-HD intoxication. The results suggest that the 

gracile nucleus in the medulla is a selective site, in which nNOS expression and NADPHd 

reactivity are upregulated by 2,5-HD-induced sciatic neuropathy and downregulated in ZDF 

neuropathic rats. The levels of nNOS expression in the gracile nucleus, associated with 

hyperalgesia and somatosensive hypersensitivity in both diabetic and chemical neuropathies, 

demonstrate that NO levels in the nucleus participate in the pathophysiological processes of 

neuropathies. Impaired nNOS-NO generation in the gracile nucleus plays a role in the 

pathophysiological processes of type II diabetic neuropathy and chemical neuropathy in 

ZDF rats.

With regard to the potential role of 2,5-HD-induced transganglionic upregulation of nNOS 

expression in the gracile nucleus, it has been demonstrated that 2,5-HD is an axonal 

neurotoxin that prevents the normal proximal-to-distal transport of neurofilaments, resulting 

in the formation of neurofilamentous axonal swellings (Anthony, et al., 1983; LoPachin, et 

al., 1994; Spencer, et al., 1979). The gracile nucleus receives ascending input from primary 

afferent fibers of the sciatic nerve, which has the longest axons in the body (Leem, et al., 

1994; Ueyama, et al., 1994). Electrophysiological mapping studies and anterograde axonal 

tracing techniques have provided evidence for the somatotopic organization of the gracile 

nucleus in various mammals including the cat, rat, raccoon, sheep, and opossum (Cliffer, 

Hasegawa, Willis, 1992; Leem, et al., 1994; McComas, 1963; Ueyama, et al., 1994). Earlier 

investigators have demonstrated that transection injury of the sciatic nerve causes dystrophic 

central terminals in the ipsilateral gracile nucleus (Wessels, Feirabend, Marani, 1991). 
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Neuropeptide Y has been shown to be upregulated in the ipsilateral gracile nucleus 

following unilateral transection injury of the sciatic nerve in rats (Zhang, et al., 1993). Our 

previous studies have demonstrated that nNOS immunoreactivity and NADPHd reactivity 

are increased in the gracile nucleus by sciatic axotomy in rats, suggesting that sciatic injury 

induces transganglionic or transsynaptic nNOS expression in the gracile nucleus (Ma, et al., 

2000). Present studies show that nNOS positive neurons in the ipsilateral gracile nucleus 

were increased by unilateral administration of 2,5-HD on the sciatic nerve in both ZDF and 

LC rats. These results are consistent with our previous studies, and other investigators 

reported that nNOS expression is induced in the parent neurons following damage of the 

peripheral nerve (Ma, et al., 2000; Wu, et al., 1994). The results of the present study suggest 

that impairment of proximal-to-distal transport of neurofilaments and other substances, 

which results from axonal damage/swellings on peripheral nerve, causes upregulation of 

nNOS expression in the central sensory nucleus. The data also agree with the previous 

studies, which suggest that lesion–induced transganglionic and/or transsynaptic expression 

of an endogenous substance or pathological changes is predominately in the ipsilateral 

gracile nucleus.

Previous studies have shown that nociceptive pressure thresholds were significantly 

decreased in diabetic animal models vs. normal control groups (Dyck, et al., 1993; Vinik, et 

al., 1992; Wuarin-Bierman, et al., 1987). The ZDF rat, a type II diabetic rat model, begins to 

develop hyperglycemia at approximately 7 weeks of age (Kava, Greenwood, Johnson, 1990; 

Peterson, 1995). Changes in nerve conduction velocity and some morphological changes of 

the ZDF rat resemble human diabetic neuropathy (Otto, et al., 2011). The results of the 

present study suggest that mechanical thresholds and withdrawal latencies to heat or cold 

stimuli are consistently decreased in both ZDF rats and chemical neuropathies induced by 

2,5-HD intoxication. The data also demonstrates that hyperalgesia and hypersensitivity to 

temperature and pressure presented in chemical neuropathies in LC rats are similar with 

neuropathies developed in ZDF rats. However, baseline levels of nNOS expression in the 

gracile nucleus and the withdrawal latencies were reduced in ZDF compared to LC rats. It 

appears that the mechanism for an upregulation of nNOS expression in the gracile nucleus in 

response to damage of sciatic nerve is impaired in ZDF rats at baseline level. Consistently, 

the level of upregulation of nNOS expression in the ipsilateral gracile nucleus following 

sciatic nerve intoxication with 2,5-HD is also attenuated in ZDF rats compared to LC rats. 

Our results agree with these previous studies reporting that the gracile nucleus is an 

important site in somatosensory regulation through interaction of peripheral somatosensory 

information with central pathways, and further suggest that upregulation of nNOS 

expression in the gracile nucleus is impaired in both chemical intoxication and diabetic 

neuropathy in ZDF rats. A decrease in nNOS-NO production in the gracile nucleus is a 

probable pathophysiological processes of diabetic and chemical neuropathies involved in 

change of sensory functions in ZDF rats.

An increasing body of evidence shows that activation of the NO-cGMP pathway is the 

common denominator for the mode of analgesics which block hyperalgesia. L-arginine NO 

activates the non-opioid analgesic system in the brain (Kumar, et al., 1993) and also causes 

peripheral analgesics which inhibit hyperalgesia directly (Duarte, Lorenzetti, Ferreira, 1990; 

Kumar, et al., 1993). Sasaki et al., 1998, have reported that nNOS expression is decreased in 
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DRG neurons, and is closely associated with decreased paw withdrawal threshold in both L-

NAME-treated and diabetic rats. The results of the present study show that nNOS in the 

gracile nucleus is reduced in ZDF neuropathic rats at baseline level. A chemical neuropathy-

induced up-regulation of nNOS in the nucleus is also impaired in ZDF rats. A number of 

recent studies have suggested that the gracile nucleus plays an important role in somatic and 

visceral pain processing (Al-Chaer, et al., 1996; Al-Chaer, et al., 1997). Our results show 

that there are no differences between LC and ZDF rats on withdrawal latencies to 

mechanical, heat, and cold stimuli after 2,5-HD intoxication. One reason is that the chemical 

neuropathic model is too strong to reflect the difference between LC and ZDF rats since the 

withdrawal latencies to mechanical, heat, and cold stimuli were markedly decreased by 2,5-

HD treatments compared to control values in both LC and ZDF rats. In addition, NO may 

also contribute to neuroprotection or cell damage (Gross, Wolin, 1995; Lipton, et al., 1993), 

and NO promotes the survival of DRG neurons (Thippeswamy, Morris, 1997). These studies 

cannot exclude the neuroprotective mechanism of NO in the gracile nucleus during 2,5-HD 

intoxication. A more sophisticated approach would be required to address these issues. 

Despite these limitations, our results from chemical and diabetic neuropathies, consistently 

suggest that damage of the sciatic nerve leads to an increase in nNOS expression in the 

gracile nucleus, and its upregulation is attenuated in ZDF rats. The results suggest that 

modified nNOS-NO generation in the gracile nucleus is the common pathophysiological 

processes of type II diabetic neuropathy and chemical neuropathy.

In conclusion, expression of nNOS and NADPHd reactivity in the gracile nucleus was 

decreased in ZDF rats, accompanied by a reduction of mechanical thresholds and 

withdrawal latencies on the hind foot. 2,5-HD intoxication induced an upregulation of nNOS 

expression and NADPHd reactivity in the gracile nucleus in LC rats, associated with 

hyperalgesia and hypersensitivity to temperature and pressure on foot. The 2,5-HD 

intoxication-induced upregulation of nNOS expression and NADPHd reactivity in the 

gracile nucleus was attenuated in ZDF rats, and functional neuropathic changes was further 

worsened on the treated side. The results suggest that impaired axonal transport, resulting 

from axonal damage on peripheral nerve, causes upregulation of nNOS expression in the 

gracile nucleus; and axonal damage-induced nNOS expression in the gracile nucleus is 

consistently attenuated in ZDF rats both at baseline level and in chemical intoxication. 

Reduction of nNOS-NO generation in the gracile nucleus is involved in the 

pathophysiological changes of neuropathies in Type II diabetes and in 2,5-HD intoxication 

in ZDF rats.

4. Methods and materials

4.1. Animal preparation

These experiments were performed using inbred male Zucker diabetic fatty (ZDF 

Gmi™fa/fa) rats (4 months) and age-matched lean, non-diabetic (ZDF Gmi™ +/+ or +/fa) 

control rats (Genetic Models, Inc., Indianapolis) (Peterson, 1995; Rong, Ma, 2011). The 

protocol was approved by the Animal Care and Use Committee of the Los Angeles 

Biomedical Research Institute at Harbor-UCLA Medical Center, and was in accord with 

AAALAC and NIH guidelines. The animals were maintained on a 12-h light-dark cycle in 
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temperature and humidity controlled rooms. Food (Purina 5008 rat chow) and water were 

available ad libitum.

4.2. Measurements of Mechanical, Thermal, and Cold Hyperalgesia

Experiments were conducted to determine the foot withdrawal responses to mechanical, 

heat, and cold stimuli of ZDF diabetic rats compared to LC rats. Mechanical stimuli tests 

were performed by the application of Von Frey filaments from a Semmes-Weinstein Von 

Frey Anesthesiometer Kit as previously described (Hargreaves, et al., 1988; Rong, Ma, 

2011; Zhuang, et al., 1997). Different diameters, ranging from 1.65g to 6.65g, of the Von 

Frey filaments were applied, starting from the weakest, in ascending order to the dorsal 

surface of the rat’s hind paw. A single gram of stimulus consisted of 6-8 applications of a 

von Frey filament within a 2-3 sec period on each hind paw. The mechanical threshold was 

expressed in grams, which was the amount of stimuli applied to the rat’s hind paw to induce 

a 50 % response of foot withdrawal. Withdrawal latencies of the hind foot were tested using 

a brass tool maintained at 4°C and 52°C to determine the withdrawal latencies to cold and 

heat stimuli, respectively. The brass tool was applied to the dorsal surface of the hind foot 

once in each trial, for five trials (Hargreaves, et al., 1988; Kim, Chung, 1992; Rong, Ma, 

2011). The withdrawal latencies were expressed in seconds, which was the length of time for 

the rat to withdraw its hind foot in reaction to the stimulation.

4.3. Intoxication with 2,5-HD and Experimental Protocol

The rats were anesthetized by an intraperitoneal injection of ketamine (100 mg/kg) and 

xylazine (13 mg/kg). The neurotoxicity of 2,5-HD in rats were performed by systemic 

injection plus local administration of the compound to induce intoxication on the sciatic 

nerve and conducted the same as previously described (Al-Chaer, et al., 1997; LoPachin, et 

al., 1994). Briefly, animals were treated by a single dose injection of 2,5-HD (400 mg/kg, 

i.p.) to produce systemic intoxication. Then, the region of the left gluteus was exposed and 

the sciatic nerve was identified under an operation microscope. The nerve was carefully 

isolated and placed under a plastic paper, and 10 μl of 2,5-HD (diluted 1:1 with Ringer’s 

solution) was injected and spread over the left side of the sciatic nerve about 2.0 cm length 

by using a 50 μl microsyringe three times at 10 minutes each during 30 minutes. The 

incision was closed, and the rats were allowed to recover for 24-48 h. The withdrawal 

latencies and mechanical tolerance thresholds of the foot were measured before and 3, 6, and 

14 days after the treatment. At the end of the experiment, rats were perfused with 4% 

paraformaldehyde under anesthesia with sodium pentobarbital (50 mg/kg, i.p.). Sections of 

rat medulla tissue were examined by immunolabeling with polyclonal antibodies directed 

against nNOS and by NADPH diaphorase (NADPHd) histochemistry.

4.4. Histological Method

Fourteen days after intoxication, the rats were anesthetized with sodium pentobarbital (50 

mg/kg, i.p.). The chest cavity was opened, and a cannula was implanted into the ascending 

aorta via the left ventricle, and the right atrium was cut. Perfusion was performed using 

100-150 ml of 0.9% NaCl, then 4% paraformaldehyde in sodium phosphate buffer for 45 

minutes (Ma, et al., 1997; Ma, et al., 2000). The brain was rapidly removed and postfixed 

with 4% paraformaldehyde in 0.1 M phosphate buffer at 4 °C overnight and then placed in 
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30% sucrose for 24 hours. The lower brainstem was cut coronally at 30 μm thickness on a 

cryostat (−18 °C). According to the topography of the important nuclei located along the 

rostrocaudal axis, the medulla oblongata was conventionally divided and cut into quadrants 

as previously described (Kuo, et al., 1994; Ma, et al., 1997; Ma, et al., 2000). The 1st and 

2nd quadrant belong to the caudal region of the gracile nucleus, while the 3rd and 4th 

quadrant belong to the rostral region of the gracile nucleus. The cross sections containing the 

four quadrants were compared in immunohistochemistry and NADPHd histochemistry.

4.5. nNOS immunohistochemistry

The tissue sections were incubated in 0.1M phosphate-buffered saline (PBS) for 15 min, 3% 

normal goat serum for 1 hour, and 0.05% Triton X-100, 0.1M PBS in heparin containing 

1:800 dilution of a rabbit polyclonal nNOS (Transduction Laboratories, Lexington, KY) 

overnight at 4° C (Ma, et al., 2000). The antigen-antibody complex was visualized using the 

DAB method as described by the manufacturer (Zymed Laboratories Inc., South San 

Francisco, CA) using Streptavidin-Biotin Amplification. The sections were then 

counterstained with hematoxylin and mounted on poly-L-lysine coated slides for 

examination using a microscope.

4.6. NADPH-diaphorase histochemistry

The cross sections of the medulla were also examined by NADPHd histochemistry. 

NADPHd staining was performed by incubating slide-mounted tissue sections in 0.1 M Tris 

HCl (pH 8.0), 0.3% Triton X-100 containing 1.0 mM reduced nicotinamide adenine 

dinucleotide phosphate and 0.2 mMnitro blue tetrazolium, at 37 °C for 90-120 min (Ma, et 

al., 1997; Ma, et al., 2000). Washing the sections with 0.1M PBS stopped the reaction. The 

sections were mounted on poly-L-lysine coated slides, mounted and then photographed and 

examined under a light microscope.

4.7. Data presentation and statistical analysis

The nNOS immunoreactivity and NADPHd reactivity in the brainstem nuclei were 

expressed as the number of positive cells in a microscopic area (200 × 200 μm) as described 

(Kuo, et al., 1994; Ma, et al., 1997; Ma, et al., 2000). The micrographs were quantified using 

a microscope with reticule grid to measure the number of positive cells containing color 

staining in 8-10 non-overlapping tissue sections in each nucleus. An averaged number of 

positive neurons in each nucleus, per ipsilateral and contralateral sides for each animal were 

obtained. The quantitation for all subjects was determined in a blinded fashion before 

comparison of different groups. The orders of measurements between control and 

intervention animals were randomized.

Results were expressed as mean ± SEM. Five to seven rats were used for each defined 

group. Analysis of variances and Student's t-test were used to analyze significant 

differences. P values less than 0.05 were considered significant.
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Highlights

• We report selective impairment of nNOS expression in the gracile nucleus in 

ZDF rats.

• nNOS expression is up-regulated in the gracile nucleus by 2,5-HD intoxication 

in rats.

• 2,5-HD-induced nNOS expression in the gracile nucleus is attenuated in ZDF 

rats.

• We examine functional neuropathic changes in the rats with and without 

intoxication.

• Impaired gracile nNOS levels is involved in neuropathic pathophysiology in 

ZDF rats.
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Fig. 1. 
Foot-mechanical thresholds and withdrawal latencies to heat and cold stimuli in ZDF rats vs. 

Lean control (LC) rats. Mechanical thresholds in the ZDF rat are significantly lower than 

that in the LC rat (top panels). Bottom panels show that ZDF rats have a markedly faster foot 

withdrawal to heat (left) and cold (right) stimuli compared to LC rats. Values are mean ± 

SEM (n = 7/group). *: P < 0.001, compared with LC rats.
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Fig. 2. 
The time intervals of changes in withdrawal latency responses to heat and cold stimuli (top 

and middle panels) and mechanical threshold (bottom panels) on the control and treated 

sides of foot induced by 2,5-hexanedione (2,5-HD) intoxication in ZDF rats compared to 

lean control (LC) rats. Withdrawal latency responses to heat and cold stimuli and mechanical 

threshold showed significant decreases in the control value of ZDF rats compared to LC rats. 

Mechanical tolerance thresholds and withdrawal latencies to heat and cold stimuli were 

significantly decreased on both sides of the foot at 3, 6, and 14 days after 2,5-HD treatments 

in ZDF and LC rats. Values are mean ± SEM (n = 5-6/group). *: P < 0.05, compared with 

before treatment; #: P < 0.05, compared with LC rats.
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Fig. 3. 
The low magnification micrographs from the rostral part of medulla sections show the 

structures and distributions of NADPH diaphorase staining in ZDF rat compared to LC rat 

and their response to 2,5-hexanedione (2,5-HD) treatments. The micrographs (A and C, the 

left side) show the rostral part of medulla sections from non-treated LC (A) and ZDF rat (C) 

vs. the micrographs (B and D, the right side) are the sections from LC (B) and ZDF rat (D) 

with 2,5-HD treatments. NADPH diaphorase staining in the gracile nucleus (Gr) was 

reduced in a control ZDF rat (C) compared to a LC rat (A). Unilateral 2,5-HD intoxication 

over the sciatic nerve caused an increase in NADPH diaphorase staining on the ipsilateral 

gracile nucleus (indicated by arrows) in a LC rat (B) and a ZDF rat (D) compared to non-

treated controls (A and C).
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Fig. 4. 
Quantitation of NADPH diaphorase reactivity (top panels) and nNOS immunoreactivity 

(bottom panels) in the ipsilateral and contralateral sides of gracile nucleus in LC and ZDF 

rats with and without 2,5-HD treatments. Left panels show baseline NADPH diaphorase 

staining cells and nNOS immunostaining cells in the left and right sides of the gracile 

nucleus of ZDF rats compared to LC rats. Right panels show that NADPH diaphorase 

reactivity and nNOS immunostaining neurons in ipsilateral and contralateral sides of gracile 

nucleus were altered by 2,5-HD intoxication in ZDF rats compared to LC rats. Each bar 

represents the mean values and vertical bars represent ± SEM (n=5-6). *: P < 0.05, 

compared to LC rats; #: compared to control without treatment.
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Fig. 5. 
The high magnification micrographs show nNOS immunoreactivity in the gracile nucleus of 

a LC rat (A) and a ZDF rat (C) compared to a LC rat (B) and a ZDF rat (D) with 2,5-HD 

intoxication. nNOS immunostained cells (indicated by arrows) were increased in the 

ipsilateral side of the gracile nucleus in a LC rat and a ZDF rat (B and D) with 2,5-HD 

treatment (B) compared to a LC rat and a ZDF rat without treatment (A and C). nNOS 

immunoreactivity was also reduced in the gracile nucleus of a control ZDF rat (C) compared 

to a LC rat (A).
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