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Abstract

The mammalian heart contains a population of resident macrophages that expands in response to 

myocardial infarction and hemodynamic stress. This expansion occurs likely through both local 

macrophage proliferation and monocyte recruitment. Given the role of macrophages in tissue 

remodeling, their contribution to adaptive processes in the heart is conceivable but currently poorly 

understood. In this review, we discuss monocyte and macrophage heterogeneity associated with 

cardiac stress, the cell’s potential contribution to the pathogenesis of cardiac fibrosis, and describe 

different tools to study and characterize these innate immune cells. Finally, we highlight their 

potential role as therapeutic targets.
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1. Introduction

The heart is composed of a heterogeneous population of cells including cardiomyocytes, 

fibroblasts, smooth muscle cells, endothelial cells, and immune cells. It is now clear that 

intercellular signaling and cross talk between cardiomyocytes and non-cardiomyocytes are 

critical in the initiation, propagation and development of cardiac remodeling. Left 

ventricular remodeling has originally been defined as changes in size, shape, structure and 

physiology of the ventricle [1]. Such remodeling processes follow different types of cardiac 

stress, like myocardial infarction (MI), myocarditis or chronic hypertension, and when 

uncontrolled can lead to heart failure or cardiac arrest resulting from pulseless electrical 
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activity or arrhythmia. Therefore, great interest lies in the discovery of new therapeutic 

strategies, which can modulate adverse cardiac remodeling and prevent heart failure.

The discovery and evaluation of new therapeutic targets relies heavily on the use of small 

animal models. Indeed, rat and mouse heart failure models have been used over the past 40 

years to explore the pathophysiology of heart failure and to develop novel therapies [2]. 

Permanent coronary ligation and transverse aortic constriction are perhaps the most widely 

used models for MI and pressure overload, respectively. Other models for hypertension-

induced heart disease include genetic models, and exogenous administration of angiotensin 

II or mineralocorticoid (deoxycorticosterone acetate [DOCA] or aldosterone). DOCA-

induced cardiac effects include cardiac hypertrophy, fibrosis and diastolic dysfunction in the 

absence of salt deprivation. These pathophysiological changes are accelerated by supra-

normal salt intake and unilateral nephrectomy, and closely mimic the clinical condition of 

human heart failure with preserved ejection fraction [3,4]. Despite recent advantages in 

developing rodent heart failure models, translation of findings obtained in rodents is often 

not straight forward, as pathophysiological processes in humans are complex. Indeed, human 

heart failure frequently develops as a cluster of interrelated comorbidities rather than a single 

pathophysiological event. In the future, mammalian systems other than mouse may be 

needed to model complex neural, immune, endocrine and metabolic interactions during 

hypertension, obesity and dyslipidemia, all contributing to human heart failure. On the other 

hand, lower costs, faster timelines and the availability of a great number of transgenic and 

knockout strains are important benefits of using mice to model heart failure. Moreover, the 

ability to assess cardiovascular physiology using multiple modalities, including 

echocardiography, magnetic resonance imaging and micromanometer conductance catheters 

has removed a significant barrier to their use in heart failure research and makes the mouse a 

relevant model to retrieve significant mechanistic insights into human disease.

In this review, we summarize the current understanding of the contribution of immune cells, 

in particular monocytes and macrophages, to the pathogenesis of cardiac remodeling with a 

focus on the fibrotic response. We highlight the cross talk between these immune cells and 

parenchymal cells in the heart. Furthermore, we describe tools to study monocytes and 

macrophages in the heart and explore their potential role as therapeutic targets.

2. Monocytes and Macrophages

Monocytes and macrophages are part of the vertebrates’ innate immune system, and pursue 

distinct functions in the steady-state and during disease. It is now widely accepted that the 

innate immune system plays an important role both during the initial insult and the chronic 

phase of cardiac injury. In humans, three monocyte subsets have been identified based on the 

expression of CD14 and CD16: classical (CD14++CD16−), intermediate (CD14++CD16+) 

and nonclassical (CD14+CD16++) monocytes [5]. Heart failure in humans has also been 

associated with increased peripheral inflammation, monocytosis and distinct monocyte 

subset profiles [6–11]. On the other hand, mature murine monocytes have been classified 

into two subsets according to their expression of Ly-6C. Ly-6Chigh chemokine (C-C motif) 

receptor-2 (CCR2)high chemokine (C-X3-C motif) receptor-1 (CX3CR1)low monocytes 

preferentially accumulate in inflammatory sites, including acute MI, where they give rise to 
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macrophages, and nonclassical Ly-6ClowCCR2lowCX3CR1high monocytes, which patrol the 

endothelium to maintain homeostasis [12]. Furthermore, the nonclassical Ly-6Clow 

monocytes in mouse blood are homologous to human nonclassical CD14+CD16++ 

monocytes as shown by cell-depletion studies and transcriptional profiling [13,14]. The use 

of CD43 has been proposed to further subdivide murine Ly-6Chigh monocytes into classical 

Ly-6ChighCD43low and intermediate Ly-6ChighCD43high monocytes resembling the 3 subsets 

described for human monocytes [5]. Ly-6Chigh monocytes are produced in the bone marrow 

by hematopoietic progenitors that derive from hematopoietic stem cells (HSCs). The most 

restricted monocyte progenitor is the common monocyte progenitor, which is 

developmentally downstream of monocyte-macrophage dendritic cell progenitors [15]. 

Ly-6Chigh monocytes produced in the bone marrow are released into the blood depending on 

CCR2 signaling, and travel to inflammatory sites where they participate in the host’s initial 

immune response [16]. Ly-6Clow monocytes arise from Ly-6Chigh monocytes through 

conversion, relying on a nuclear receptor subfamily-4-dependent transcriptional program 

[17]. HSCs can also intravasate into the blood and give rise to monocytes outside the bone 

marrow, which is called extracellular monocytopoeiesis [18,19]. This phenomenon is rare in 

the steady-state, but increases during inflammation. Furthermore, monocytes can also reside 

in the spleen, which functions as a reservoir for storage and rapid deployment of monocytes 

during inflammation [20]. The heart itself contains very few, if any, monocytes during 

steady-state conditions.

In contrast, macrophages are the primary immune cells that reside in the heart under 

physiological conditions. They appear as spindle-like cells and are found within the 

interstitial space or in close proximity of endothelial cells [21–23]. For the past half century, 

macrophages were thought to arise solely from circulating blood monocytes. However, 

recent studies using genetic fate mapping, parabiosis and adoptive transfer techniques show 

that tissue-resident macrophages in the brain, liver, lung, and skin do not derive from 

circulating monocytes but are replenished through local proliferation [24–27]. In contrast, 

intestinal or dermal macrophages, which have a high turnover rate, are constantly replaced 

by Ly-6Chigh blood monocytes [28,29]. In the steady-state heart, tissue-resident cardiac 

macrophages comprise discrete subsets, defined by their expression levels of 

histocompatibility-2 and CCR2 [30]. These macrophage subsets arise primarily from 

embryonic yolk-sac progenitors and self-maintain independent of bone marrow-derived 

monocytes through in situ proliferation. On the other hand, when the steady-state is 

perturbed during sterile injury or hemodynamic stress, the majority of cardiac macrophages 

are derived from blood monocytes [23,30]. Interestingly, a recent study by Molawi et al. 
claims declining self-renewal of embryo-derived cardiac macrophages with age, and their 

progressive substitution by monocyte-derived macrophages even in the absence of 

inflammation [31].

3. Monocytes and Macrophages in Cardiac Remodeling

3.1. Expansion of Macrophages

During various cardiac stresses, expansion of macrophage populations occurs through both 

local proliferation and monocyte recruitment (Fig. 1) [22,23,30,32]. Ly-6Chigh monocytes 
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are the primary subset recruited to the heart [27,30,32–34]. In response to signals induced by 

ischemic cardiac injury, sequential recruitment of monocytes regulates the inflammatory and 

reparative response following MI [22]. During the early inflammatory phase of infarct 

healing, Ly-6Chigh monocytes infiltrate the infarcted myocardium in response to the marked 

upregulation of monocyte-chemoattractant protein-1 (MCP-1) [35]. In a second phase, low 

numbers of Ly-6Clow monocytes are recruited via CX3CR1 [22]. Secondary to angiotensin 

II-induced hemodynamic stress, monocyte-derived CCR2+ macrophages require monocyte 

input prior to proliferative expansion in the tissue [30]. The CCR2+ macrophage subset is 

thought to be involved mainly in promoting and regulating inflammation; however, the 

intensity of the chronic inflammatory reaction is orders of magnitude lower after pressure 

overload and hypertensive cardiac stress than what is observed after acute ischemic injury 

[36,37]. This discrepancy is probably related to the difference in local insult stimulus, which 

is drastic in the setting of MI. Indeed, ischemic injury results in acutely dying myocytes 

leading to rapid accumulation of inflammatory cells [38]. The basis for initiation of the 

inflammatory reaction in pressure overloaded myocardium remains poorly understood and 

may involve activation of innate immune signals due to cardiomyocyte death, reactive 

oxygen generation, or angiotensin-mediated pro-inflammatory actions [39]. CCR2+ 

macrophages are capable of producing and secreting large amounts of pro-inflammatory 

cytokines, including those associated with the NLPR3 inflammasome, which is required to 

process and deliver interleukin (IL)-1β to the heart during cardiac stress [30]. Indeed, 

angiotensin II–induced inflammasome activation and IL-1β production are blocked in mice 

with CCR2 deficiency [40–42]. Furthermore, CCR2 knockout in bone marrow cells or 

inhibition of MCP-1 with neutralizing antibodies markedly reduces vascular inflammation 

and myocardial fibrosis without affecting hypertrophy during angiotensin II infusion and 

pressure overload [43,44]. Blocking this chemotactic pathway appears to have a pronounced 

impact on fibrotic remodeling and might have a more direct role in regulating fibroblast 

function. Also, inhibition of intercellular adhesion molecule-1 with neutralizing antibodies 

reduces infiltrating monocytes and suppresses cardiac fibrosis during pressure overload [45]. 

In conclusion, monocyte recruitment, followed by differentiation to macrophages and 

macrophage proliferation, contribute to the expansion of cardiac macrophages following 

ischemic and hemodynamic stress.

3.2. Macrophage Subpopulations

Functional binary categorization of macrophages, such as the M1/M2 classification, is used 

as an easy, but probably too simplistic way to address the macrophage heterogeneity 

associated with cardiac stress. We propose using the terms inflammatory/reparative 

macrophages instead, as we frequently observed that the typical M1/M2 markers used in in 
vitro studies are not necessarily helpful to describe macrophage phenotypes in vivo. During 

cardiac injury, the resolution of neutrophil recruitment by phagocytic macrophages is critical 

for limiting tissue injury and promoting the transition to tissue healing. Macrophages that 

have ingested apoptotic cells are believed to initiate this process by decreasing their 

production of pro-inflammatory cytokines, such as IL-1β and tumor necrosis factor-α 

(TNFα), and increasing their production of anti-inflammatory and pro-fibrotic cytokines, 

such as IL-10 and transforming growth factor-β (TGFβ) [46,47]. Indeed, macrophage 

depletion during the early inflammatory phase after MI results in increased necrotic debris 
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and neutrophil presence [22,30,48]. The transition from inflammatory to reparative 

macrophages occurs after ischemia, resembling in vitro polarization from the so-called 

“M1” to “M2” macrophage phenotype. However, the concept of M1/M2 macrophage 

polarization is derived from in vitro studies and do not reflect the more subtle phenotypes 

observed in vivo. Indeed, macrophages do not form stable subsets but respond to a 

combination of factors present in the tissue resulting in complex, even mixed, phenotypes. 

Recent technological and analytical advances in epigenetic, gene expression, and functional 

studies revealed a spectrum of macrophage activation states extending the current M1 versus 

M2-polarization model [49]. This resource can serve as a framework for future research into 

regulation of macrophage activation in health and disease.

Regulators of macrophage polarization such as interferon regulatory factor-5 (IRF5) and 

myeloid mineralocorticoid receptor (MR) have been shown to be involved in cardiac 

remodeling. In vivo silencing of IRF5 reduces inflammatory macrophages and improves 

infarct healing [50]. MR activation by mineralocorticoids (e.g. aldosterone) enhances the 

polarization to inflammatory macrophages, whereas MR deficiency in macrophages mimics 

the effects of MR antagonists and protects against cardiac hypertrophy and fibrosis [51]. In 

contrast, scavenger receptor class-A on cardiac macrophages, which is a key modulator of 

inflammation, exerts a protective effect against MI by contributing to the reparative 

macrophage phenotype, and anti-inflammatory and anti-fibrotic remodeling [52]. Hypoxia-

inducible factor (HIF) is also a critical regulator of macrophage polarization during cardiac 

remodeling. Myeloid-specific deletion of prolyl hydroxylase domain protein-2, an enzyme 

that induces degradation of HIF, attenuates macrophage recruitment, inflammatory gene 

expression, and cardiac remodeling upon infusion of NG-nitro-L-arginine methyl ester/

angiotensin II [53]. Serum- and glucocorticoid-inducible kinase-1 induces cardiac fibrosis 

after angiotensin II infusion at least in part through signal transducer and activator of 

transcription-3-dependent macrophage proliferation and activation [54]. In contrast, IL-12 

produced by cardiac macrophages activates interferon-γ-producing CD4+ T cells, which 

shifts macrophages towards the inflammatory phenotype and subsequently prevents 

excessive angiotensin II-induced cardiac fibrosis [55]. microRNAs (miRs) have also been 

shown to regulate the myeloid cell phenotype and modulate cardiac remodeling (for in-depth 

review see also [56]). Knockout of miR-155 for example reduces angiotensin II– and 

pressure overload–induced polarization to inflammatory macrophages, hypertrophy and 

cardiac dysfunction [57].

These data suggest that the transition of macrophage phenotypes from inflammatory to 

reparative could be a potential mechanism of cardioprotection after MI, but prolonged 

activation of reparative macrophages may eventually contribute to extensive cardiac fibrosis, 

increased stiffness and diastolic dysfunction. Indeed, a recent study by Kanellakis et al. 
shows that inhibition of IL-4, a potent inducer of reparative macrophages, with neutralizing 

antibodies attenuates cardiac fibrosis and hypertrophy during pressure overload, suggesting 

that IL-4 is pro-fibrotic and may exacerbate adverse cardiac remodeling [58].
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3.3. Macrophages as Fibrogenic Mediators

The activation of cardiac fibroblasts, transdifferentiation into secretory and contractile cells, 

termed myofibroblasts, and subsequent extracellular matrix deposition are key cellular 

events that drive the fibrotic response during cardiac stress (for in-depth review see also [59–

61]). Macrophages are almost always found in close proximity with collagen-producing 

myofibroblasts [62,63]. Due to their functional and phenotypic plasticity, the role of 

monocytes and macrophages in mediating the fibrotic response is complex and context-

dependent (Fig. 2). Macrophages exert a wide range of actions that alter the extracellular 

matrix: through their phagocytic properties, by producing cytokines, chemokines and growth 

factors including TGFβ and platelet-derived growth factor, by disrupting normal cardiac 

structures, and by altering the extracellular matrix turnover through regulating the balance of 

various matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs [44,64–66]. In 

addition, the activation of cardiac fibroblasts, non-adaptive fibrosis and subsequently 

increased myocardial stiffness after angiotensin II infusion requires the induction of MCP-1, 

which suggests the causal contribution of monocytes to the fibrotic response [67]. 

Interestingly, cardiac senescence is associated with phenotypic changes in resident 

macrophages including upregulation of pro-fibrotic genes, which possibly contribute to 

aging-associated cardiac fibrosis [68]. Westermann et al. also showed that TGFβ-producing 

inflammatory cells contribute to diastolic dysfunction in human heart failure with preserved 

ejection fraction by triggering the accumulation of extracellular matrix [69]. Most studies on 

the role of monocytes and macrophages in cardiac fibrosis have focused on their pro-fibrotic 

actions; however, they could also mediate resolution of fibrosis by removing apoptotic 

myofibroblasts, by expressing high levels of MMP13 and by suppressing fibroblast 

activation as has been shown in the setting of hepatic fibrosis [66,70,71].

Monocytes and macrophages also contribute to the pathogenesis of cardiac fibrosis by 

interacting with neurohumoral factors such as angiotensin II and aldosterone. Indeed, 

macrophages in the injured heart are a source of renin and angiotensin-converting enzyme, 

which are necessary for the local production of angiotensin II and subsequent activation of 

cardiac fibroblasts [72]. Angiotensin II also regulates the mobilization of monocytes, i.e. 

macrophage progenitors, in the spleen [73]. In addition, aldosterone directly influences the 

cardiac fibrotic response by driving macrophages towards a fibrogenic phenotype [51,74].

Despite recent discoveries describing a causal role of monocytes and macrophages in the 

fibrotic response after cardiac stress, dissecting the context-depending factors driving 

macrophages towards a pro-fibrotic or an anti-fibrotic phenotype is an ongoing process, and 

many cell-cell interactions still remain to be determined (Fig. 2).

4. Tools to Study Monocytes and Macrophages

Monocytes and tissue macrophages are typically studied at cellular resolution by staining for 

cell surface markers in histology or multicolor flow cytometry. These markers include 

CD11b, CD45, CD68, CD115, F4/80, Ly-6C and MAC-3 in addition to the core macrophage 

signature suggested by the Immunological Genome Project, which include FCGR1 and 

MerTK [75]. The development of transgenic mice such as the Cx3cr1GFP/+ reporter mouse 

also facilitated the detection of cardiac macrophages and improved the sensitivity of ex vivo 
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histology for detecting macrophages and their dendrite-like protrusions in the myocardial 

tissue context [21,23]. Additionally, recently developed real-time in vivo imaging techniques 

make it possible to track migration patterns of monocytes in the heart with microscopic 

resolution [76,77]. Monocytes and macrophages can also be probed with nanoparticles [78] 

to follow them or determine their specific function at the organ level by noninvasive imaging 

modalities such as magnetic resonance imaging [79], positron emission tomography [80], 

fluorescence molecular tomography [81], or hybrid approaches [82].

Furthermore, monocytes and macrophages can be functionally characterized using specific 

depletion methods such as clodronate liposomes. Clodronate is a small hydrophilic molecule 

that binds intracellular ATP and inhibits ATP function resulting in cellular apoptosis. 

Monocytes and, with less efficiency macrophages, can be targeted by encapsulation of 

clodronate into liposomes. Organ restriction of depletion can be attempted by choosing the 

appropriate administration route [83]. Depletion of myeloid cells can also be accomplished 

by using Cd11bDTR transgenic mice. These transgenic mice have a diphtheria toxin 

inducible system under control of the human CD11b promoter that transiently depletes 

myeloid cells in various tissues [84].

To study and assess the contribution of monocytes to the turnover of cardiac macrophages in 

the steady-state and during disease, one could use the parabiosis setup, in addition to fate 

mapping, and adoptive transfer approaches. Parabiosis surgery joins the circulation of two 

mice, whose circulating blood cells then mix. This setup enables the quantification of 

recruited macrophages by determining the percentage of macrophages that derived from 

circulating monocytes made in the donor mouse [23]. Although parabiosis provides a 

convenient tool to study the recruitment of cells, it may also induce artifacts through pro-

inflammatory stimuli. Adoptive transfer of bone marrow HSCs into an irradiated recipient 

mouse can be used to assess the contribution of recruitment to the macrophage population. A 

disadvantage of this approach is that radiation may deplete the cardiac resident 

macrophages, or some relevant fraction thereof. In addition, several inducible fate mapping 

models including the Runx1MercreMer, Csf1rMercreMer, Cx3cr1creER, and KitMercreMer mice 

are currently available and are a convenient tool to study the ontogenesis of tissue-resident 

cardiac macrophages in the steady-state and during disease [24,26,85–87].

5. Clinical Translation and Conclusions

The growing body of evidence implicating immune cells in the initiation and propagation of 

cardiac remodeling lends itself to exploiting this knowledge to explore new therapeutic 

avenues. Indeed, monocytes and macrophages appear to coordinate cardiomyocyte and non-

cardiomyocyte responses during maladaptive remodeling after cardiac stress. Because of 

their functional and phenotypic versatility, regulating specific macrophage phenotypes rather 

than depleting them may spare important immune functions, such as repair and defense 

against infection, while preventing specific deleterious effects contributing to adverse 

cardiac remodeling.

A valid strategy could be to tackle the inappropriate activation of pro-inflammatory CCR2+ 

cardiac macrophages in the setting of sterile inflammation or to prevent the infiltration of 
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Ly-6Chigh monocytes during hypertension-induced cardiac fibrosis [22,44,88,89]. These data 

suggest that recruited Ly-6Chigh monocytes have a pathological role, in contrast to tissue-

resident cardiac macrophages, in the setting of cardiac injury. Furthermore, it is possible to 

phenotypically change inflammatory macrophages by nanoparticle-delivered small 

interfering RNA. The ease of delivering nanomaterials to phagocytic immune cells renders 

macrophages a prime target for in vivo RNAi [90]. Advantages of applying RNAi to target 

immune reactions include the selectivity for specific gene products (thereby avoiding 

unwanted side effects of broad immunosuppression) and the ability to reach intracellular 

decision nodes such as transcription factors involved in macrophage polarization [50]. 

Inflammatory cardiac macrophages during ischemic injury can also be modulated to a 

reparative state by phosphatidylserine-presenting liposomes, mimicking the anti-

inflammatory effects of apoptotic cells [91]. A recent study by de Couto et al. showed that 

cardiac macrophages can be polarized toward a distinctive cardioprotective phenotype in the 

ischemic heart by administering cardiosphere-derived cells, which are a stem-like population 

that is derived ex vivo from cardiac biopsies [92]. Together, these studies suggest that 

manipulation of macrophage phenotypes could be exploited therapeutically to improve 

outcome after sterile injury. Unfortunately, our current knowledge regarding molecular 

pathways involved in driving macrophages toward specific phenotypic profiles is still limited 

and requires further exploration. In addition, it is quite reasonable to assume that cardiac 

macrophages also pursue salient functions that promote myocardial health, thus 

indiscriminate targeting strategies could be harmful. Novel, non-biased methods combining 

experimental data with mathematical modeling may shed light on the complex, 

spatiotemporal plasticity of cardiac macrophages after cardiac stress [49,93,94]. Finally, 

most of our current understanding of macrophage phenotype and function is derived from 

mouse models and still requires clinical translation and validation in human tissue samples.
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Abbreviations

ACE angiotensin-converting enzyme

CCR2 chemokine (C-C motif) receptor-2

CX3CR1 chemokine (C-X3-C motif) receptor-1

DOCA deoxycorticosterone acetate

HIF hypoxia-inducible factor

HSCs hematopoietic stem cells

IL interleukin

IRF5 interferon regulatory factor-5

MCP-1 monocyte-chemoattractant protein-1
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MI myocardial infarction

miR microRNA

MMPs matrix metalloproteinases

PDGF platelet-derived growth factor

TGFβ transforming growth factor-β

TIMPs tissue inhibitors of MMPs

TNFα tumor necrosis factor-α
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Highlights

- Macrophages are an intrinsic part of the heart under physiological conditions

- Cardiac macrophages expand in response to stress

- Macrophage expansion through monocyte recruitment associates with cardiac 

remodeling

- Monocytes and macrophages may exert a wide range of pro- and anti-fibrotic 

actions
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Fig. 1. Expansion of macrophages during cardiac stress
After cardiac stress such as myocardial infarction or hemodynamic stress, there is a marked 

expansion of the cardiac macrophage population through both local proliferation and 

monocyte recruitment. CCR2+ macrophages are capable of producing and secreting large 

amounts of pro-inflammatory cytokines, which contribute to adverse cardiac remodeling. 

However, our current knowledge regarding the cross talk between macrophage 

subpopulations and parenchymal cells in the heart is still limited and requires further 

exploration. Abbreviation: LV, left ventricular.
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Fig. 2. Cardiac macrophages as regulators of the fibrotic response after cardiac stress
Macrophages are found in close proximity with collagen-producing myofibroblasts and 

contribute to the fibrotic response after cardiac stress. Neurohumoral factors such as 

angiotensin II and aldosterone drive macrophages towards a fibrogenic phenotype. 

Macrophages also exert a wide range of anti-fibrotic actions in addition to their pro-fibrotic 

effects, but the context-depending factors driving macrophages towards a pro-fibrotic or an 

anti-fibrotic phenotype are yet-to-be determined. Abbreviation: ACE, angiotensin-converting 

enzyme; IL, interleukin; MCP-1, monocyte-chemoattractant protein-1; MMPs, matrix 

metalloproteinases, PDGF, platelet-derived growth factor; TGFβ, transforming growth 

factor-β; TIMPs, tissue inhibitors of MMPs; TNFα, tumor necrosis factor-α.
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