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Abstract

Drug discovery has produced many successful therapeutic agents; however, most of these drugs 

were developed without a deep understanding of the systems-wide mechanisms of action 

responsible for their indications. Gene-disease associations produced by molecular and genetic 

studies of complex diseases provide great opportunities for a system-level understanding of drug 

activity. In this study, we focused on acute myocardial infarction (MI) and conducted an 

integrative network analysis to illuminate drug actions. We integrated MI drugs, MI drug 

interactors, drug targets, and MI disease genes into the human interactome and showed that MI 

drug targets are significantly proximate to MI disease proteins. We then constructed a bipartite 

network of MI-related drug targets and MI disease proteins and derived 12 drug-target-disease 

(DTD) modules. We assessed the biological relevance of these modules and demonstrated the 

benefits of incorporating disease genes. The results indicate that DTD modules provide insights 

into the mechanisms of action of MI drugs and the cardiovascular (side) effects of non-MI drugs.

Graphical Abstract

Introduction

Although drug discovery and development have produced many effective therapeutic agents 

during the past several decades, most of these drugs were developed without a deep 

knowledge of the systems-wide molecular mechanisms of action responsible for their 

indications. This knowledge gap of drug activity limits our molecular-level understanding of 

†Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. 
See DOI: 10.1039/x0xx00000x
*Corresponding Author: jloscalzo@partners.org. 

HHS Public Access
Author manuscript
Mol Biosyst. Author manuscript; available in PMC 2017 April 26.

Published in final edited form as:
Mol Biosyst. 2016 April 26; 12(5): 1653–1666. doi:10.1039/c6mb00052e.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



their therapeutic effects and adverse side effects. Drugs exert their effects by modulating 

molecular pathways rather than affecting a single specific target in isolation. It is, therefore, 

of great importance to investigate how drugs achieve their therapeutic functions via 

underlying signaling pathways and network modules. Indeed, drug discovery is moving from 

the conventional “one-effect/one-cause/one-target” magic bullet-type paradigm, to a systems 

biology paradigm, which considers the effect(s) of a drug as the result of perturbations of 

molecular network interactions 1.

Many computational approaches have been developed for predicting drug-target interactions 

and drug-disease associations from chemical structure and genome features 2–6, but few 

studies focus on drugs used for specific diseases. One of the rare exceptions is the study 

conducted by Azuaje and colleagues 7, who assembled the myocardial infarction (MI) drug-

target interactome network. An important resource overlooked by this study, however, is the 

compilation of MI disease genes, which could provide rich information about the 

mechanisms underlying the therapeutic effects of MI drugs. Early relevant studies focusing 

on cardiovascular drugs include the work of Ivanov and colleagues 8 who developed a 

computational approach for identifying drug-induced MI-related proteins by predicting 

drug-target interactions, and the work of Li et al. 9 who constructed networks of different 

layered interactions underlying the universes of cardiovascular drugs, targets, genes, and 

disorders to reveal comprehensive insights into cardiovascular pharmacology.

With advances in genotyping and phenotyping, many gene-disease associations have been 

produced over recent decades 10. Increasing evidence indicates that most human diseases 

cannot be attributed to a single gene but are a result of complex interactions among multiple 

genetic variants and environmental factors. Some databases have been developed to store 

gene-disease associations 11–13, which provide great opportunities for a better understanding 

of the molecular mechanisms of drug action responsible for their specific diseases. Our goal 

in this study is to examine the molecular basis for the association between drug targets and 

disease genes and understand how drugs act in the context of complex biological pathways. 

We focus on a highly prevalent disease, acute myocardial infarction (MI). Although a few 

select drugs for MI have been widely used, little is known about the underlying mechanisms 

of action at a systems-level 7. We propose that integrating MI disease genes, MI drugs, and 

drug targets into the comprehensive human interactome, a network of all ascertainable 

protein-protein interactions in a cell, can provide a better understanding of systems-level 

molecular activities of MI drugs. This approach may also be helpful for repositioning some 

non-MI drugs or discovering their cardiovascular adverse effects.

The scheme of this study is shown in Figure 1(A–B). We construct a disease proteins using 

the interactions between them, and derive drug-target-disease (DTD) modules. We assessed 

the biological relevance of these modules from different perspectives and demonstrate the 

benefits of incorporating disease genes in the analysis of a drug-target network. The results 

also indicate that the DTD modules are biologically significant and represent potential 

signaling pathways of drug action. This study shows that network-based integrative analysis 

of MI drugs, targets and MI disease genes can help facilitate an understanding of the 

systems-wide action of MI drugs and identify the molecular basis for the cardiovascular side 

effects of some non-cardiovascular drugs.
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Materials and Methods

Drug and target datasets

We obtained 38 drugs used for MI and 330 non-MI drugs that have interactions with MI 

drugs from a previous study 7. Drug-drug interactions are mediated by common targets, 

transforming enzymes, transporters, or common underlying pharmacokinetics or 

pharmacodynamics according to DrugBank 14. We denoted non-MI drugs that interact with 

MI drugs as MI drug interactors. Only those drugs (300 MI drug interactors and 30 MI 

drugs) that have target information in the database will be considered for future analyses. In 

total, there are 425 drug targets for all of these drugs. For convenience, we denoted the drug 

targets in this study as MI-related drug targets, as the drugs are either MI drugs or MI drug 

interactors. Among all of the drug targets, 67 (denoted MI drug targets) are targeted 

specifically by MI drugs. We further collected MI disease genes or gene products from 

Phenopedia in HuGE navigator 11. To obtain a reliable list of MI genes, we only considered 

those with at least two publications that support the association. 431 MI disease genes 

satisfy this criterion. We then mapped MI-related drug targets and MI disease gene products 

(proteins) onto the human interactome.

Compiling a human protein interactome

Biological processes reflecting drug actions involve different types of molecular interactions. 

We, therefore, used a consolidated human interactome combining physical interactions from 

different databases and sources, including protein-protein interactions, protein complexes, 

protein-DNA interactions, kinase-substrate interactions, metabolic interactions, and 

signaling pathways. This interactome has been used in a previous study 15 and also enhanced 

by incorporating the latest additional data sources (Supplementary File 1); it has 14,174 

proteins with 170,303 interactions, after removing duplicate interactions and self-loops. We 

mapped drug targets and disease genes onto the interactome, and found that 361 MI-related 

drug targets (including 65 MI drug targets) and 398 MI disease proteins overlap with the 

proteins in the interactome. A total of 256 MI drug interactors and 30 MI drugs whose 

targets can be found in the interactome were included in the overall analysis.

Network analysis and implementation

In this study, most of the network analyses were performed using Python, with the assistance 

of a Python package, NetworkX 16. It bipartite network of MI-related drug targets and MI 

contains many built-in network analysis algorithms, such as shortest path algorithms, 

subgraph induction, random graph generators, and module detection, etc. We readily used 

these algorithms for examining the proximity between drug targets and MI disease proteins 

(Supplementary File 1). In addition, we used a null model to assess the significance of 

emerging properties. The null model keeps the human interactome unchanged and randomly 

selects 1,000 pairs of random protein sets of the same size as MI drug targets and MI disease 

proteins respectively (Supplementary File 1). The topological properties of random protein 

sets are then compared with those of real drug targets and disease proteins.

To find modules densely connecting MI-related drug targets and MI disease proteins, we 

constructed a bipartite network using the interactions between them, and used the Louvain 
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method to maximize a modularity function Q 17, 18 and, thereby, identify drug-target-disease 

(DTD) modules (Supplementary File 1):

where m is the total number of edges; the Ai,j are the adjacency matrix elements; ki and kj 

are the degrees of node i and node j, respectively; ci and cj are the module indices of node i 
and node j, respectively; and δ, the delta function, is equal to 1 if ci = cj, and is otherwise 

equal to 0. Modularity function Q is defined as the fraction of the edges that fall within 

modules minus the expected fraction in a random network with the same node degree 

distribution. Since modules in a network are conceptually defined as groups of nodes that are 

more densely connected internally than with the rest of the network, modularity optimization 

is one of the most effective methods for module identification. Maximization of Q is known 

to be an NP-hard problem which means that there are no exact algorithms for finding global 

optimal solutions within acceptable time 19. The Louvain method is a fast greedy heuristic 

algorithm that attempts to optimize the modularity of a partition of the network 

approximately 18. The method first searches for small communities by optimizing 

modularity locally. It then merges nodes belonging to the same community and creates a 

new network whose nodes are the communities. These two steps are repeated iteratively 

until a maximum of modularity is attained 18.

Statistical tests and tools

All network visualization was performed with Cytoscape 20. GO-based functional similarity 

of pairs of MI-related drug targets and MI disease proteins was quantified by GS2 (GO-

based similarity of gene sets) developed in a previous study 21. The daily snapshot of the GO 

tree and human gene annotations was downloaded from the GO web site (http://

www.geneontology.org) 22. Unless otherwise specified, when we assess the significance of 

emergent properties of observations by comparing them with null models, all P-values are 

obtained by fitting the histograms to normal distributions (Supplementary File 1). All error 

bars in the figures are standard errors.

Results

MI drug targets are significantly proximate to MI disease proteins in the interactome

Most drugs exert their therapeutic effects through binding to one or more protein targets. 

Thus, we hypothesize that drug targets should not be very far from proteins associated with 

the indicated diseases in the interactome. For convenience, we refer to the targets of the 

drugs in this study as MI-related drug targets since the drugs are either MI drugs or MI drug 

interactors. In order to assess the proximity between MI-related drug targets and MI disease 

genes, we mapped them onto the consolidated human interactome and identified 361 MI-

related drug targets (including 65 MI drug targets) and 398 MI disease proteins in the 

network. As shown in Figure 1 (C), 66 of MI-related drug targets and 23 of MI drug targets 

are also MI disease proteins. The intersecting sets of proteins are significantly larger than 
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expected by chance (hypergeometric test, P<2.5×10−35 and P<8.4×10−20, respectively). This 

result indicates that MI-related drug targets overlap significantly with MI disease proteins.

In addition to this gene overlap analysis, we also assessed the proximity between MI drug 

targets and MI disease proteins at the network level. We identified 1,029 interactions 

between MI-related drug targets and MI disease proteins, which is significantly greater than 

the number of interactions between two random sets of the same size (P<1.0×10−16), as 

shown in Figure 1 (D). Previous studies have used the number of common interacting 

neighbors of two proteins to predict whether they have functional associations or not 23. 

Similarly, we next checked the number of pairs of MI-related drug targets and MI disease 

proteins that have common neighbors. As shown in Figure 1 (E), there are significantly more 

pairs of MI-related drug targets and MI disease proteins with common neighbors than 

protein pairs from two random sets (P<1.0×10−16). The conclusion holds as well if we focus 

on MI drug targets only (P=2.8×10−12). We also calculated the average shortest path length 

between MI-related drug targets and MI disease proteins in the interactome. As shown in 

Figure 1 (F), the average shortest path length between MI-related drug targets and MI 

disease proteins is 4.19, significantly smaller than that between two random sets of the same 

size (4.33±0.02, P =6.9×10−10). All of these results, therefore, support the conclusion that 

MI-related drug targets are significantly proximate to MI disease proteins in the human 

interactome than random expectation, which, in turn, provides evidence for the utility of 

incorporating MI disease proteins in a network-based analysis to provide insights into the 

mechanisms of action of MI drugs.

To avoid the potential concern that the targets of drugs for use in other diseases may also be 

close to MI disease proteins, we performed a control experiment in which the same number 

of drug targets was randomly selected from the pool of all drug targets 14 while excluding 

MI-related drug targets. We assessed the closeness relationship between control drug targets 

and MI disease proteins, in terms of overlap, the number of interactions, the number of 

protein pairs that have common neighbors, and the average shortest path length. The results, 

shown in Figure 2 (A–D), indicate that MI-related drug targets have significantly greater 

overlap with MI disease proteins and are closer to MI disease proteins than control drug 

targets, confirming that MI-related drug targets are truly proximate to MI disease proteins in 

the interactome. These results, after removing MI drug targets from MI-related drug targets, 

support the same conclusion (Supplementary Figure S1). Similarly, to avoid the potential 

concern that MI-related drug targets may also be close to proteins associated with other 

diseases, we performed another control experiment wherein we randomly selected the same 

number of disease proteins from the pool of all proteins involved in other diseases 15 while 

excluding MI disease proteins. The results, shown in Figure 3 (A–D), indicate that MI 

disease proteins have significantly greater overlap with MI-related drug targets and are 

closer to MI-related drug targets than control disease proteins in the human interactome. The 

comparative closeness analysis of control disease proteins and MI disease proteins with MI 

drug targets yields very similar results (Supplementary Figure S2).
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Bipartite network of drug targets and disease proteins

Based on the analyses performed above, we note that MI-related drug targets are, indeed, 

significantly proximate to MI disease proteins in the human interactome. Previous studies 

have shown that densely connected subgraphs in protein interaction networks indicate 

protein complexes and novel functional modules 24, 25. Therefore, the modules of MI-related 

drug targets and MI disease proteins may represent functional associations between them 

and define the complex biological pathways underlying the mechanisms of drug action. To 

understand the network-based mechanisms of action of MI drugs and the cardiovascular 

adverse effects of non-MI drugs, we constructed a network of MI-related drug targets and 

MI disease proteins by using the molecular interactions between them. The network 

comprises 244 MI-related drug targets, 246 MI disease proteins, and 1,029 interactions. As 

some MI-related drug targets are also MI disease proteins, we can duplicate them to 

represent the two roles (one as drug target and the other as disease protein) so that the 

network is mathematically bipartite.

We used the Louvain method to maximize the modularity function defined for characterizing 

the modular structure of networks 17, 18 and to identify modules of MI-related drug targets 

and disease proteins. A total of 12 modules comprising more than 5 proteins are detected in 

the bipartite network (Supplemental Figure S3). Note that the bipartite network does not 

contain the interactions between drug targets nor the interactions between disease proteins, 

except for those that are both drug targets and disease genes. Therefore, the derived modules 

truly represent the specific, direct associations between MI-related drug targets and MI 

disease proteins. After we derived the modules, we restored the interactions among drug 

targets, the interactions among disease proteins, and the drug-target interactions. These 

modules, called DTD (drugs, drug targets, and disease proteins) modules, reflect the 

mechanisms of drug action and underlying biological pathways of the corresponding drugs 

that target the modules.

Figure 4 shows some of the DTD modules; a full list of modules is provided in 

Supplementary Figure S4. Although each DTD module only contains a few MI drugs and 

targets (owing to the limited number of MI drugs), many drug targets have dense 

connections with MI disease proteins. This finding may offer an explanation for why some 

non-MI drugs have adverse cardiovascular side effects. For example, disulfiram is a drug 

used for alcohol dependence. Previous studies have shown that when disulfiram is used at 

very high doses or in individuals with cardiovascular disease, severe reactions can occur, 

including myocardial infarction, arrhythmias, and congestive heart failure 26. In Module 1, 

the target of disulfiram is ALDH2, which is a drug target for myocardial protection from 

ischemia-reperfusion injury 27, providing a plausible mechanism by which to account for 

disulfiram’s cardiovascular side effects. Minocycline is a tetracycline antibiotic used to treat 

several different bacterial infections; it is located in Module 5 and has been associated with 

some cardiovascular side effects, including vasculitis and myocarditis, according to the Sider 

database 28. Imatinib is a drug used to treat certain types of leukemia and has severe 

cardiovascular side effects, such as congestive heart failure, tachycardia, pulmonary fibrosis, 

and thrombosis 28. In Module 11, the target of imatinib has interactions with many MI 

disease proteins, providing a plausible basis for its cardiovascular side effect profile.
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We next assessed specific features of the bipartite network of MI-related drug targets and MI 

disease proteins. Drug targets and disease proteins in the bipartite network have similar 

degree distributions (Figure 5 (A)): most MI-related drug targets are connected to few MI 

disease proteins, whereas a few MI-related drug targets are connected to many MI disease 

proteins. The robustness of the DTD modules is vital since the modules are used as the basis 

for interpreting mechanisms underlying drug action and drug side effects in this study. We, 

therefore, assessed their robustness from different perspectives. To demonstrate that the 

constructed bipartite network is truly modular, we tested it against a set of shuffled bipartite 

networks (1,000) of the same size by randomly rewiring existing interactions between MI-

related drug targets and MI disease proteins while maintaining the same number of 

interacting partners. The average modularity of the shuffled bipartite networks is 

0.436±0.005 (Figure 5 (B)). None of the randomized networks achieved the same 

modularity observed from the bipartite network we constructed, confirming the significance 

of these modules (P<1.0×10−16). Although the human interactome we used in this study is 

very comprehensive, it may still be prone to false positives. To examine the robustness of our 

DTD modules in the presences of false positives, we randomly removed a certain percentage 

of nodes and edges (from 5% to 20%) from the human interactome to determine if the best 

partitions are similar to those obtained from the original network. The results of this 

analysis, shown in Figure 5 (C), demonstrate that the partitions obtained from the perturbed 

networks are very close to the original best partitions (the Normalized Mutual Information 

(NMI) measure 29 is over 0.7 even when we remove 20% of the nodes and edges). In 

addition, the modularity of the perturbed networks after removing a high percentage of 

nodes and edges remains as high as the original network, as shown in Figure 5 (D). All of 

these results indicate that the DTD modules derived from the best partition of the original 

network are robust and can serve as a reasonable basis upon which to interpret the potential 

mechanisms and signaling pathways of drug action.

Biological significance of the DTD modules

In the DTD modules, MI-related drug targets and MI disease proteins are densely associated 

through the molecular interactions between them. We assessed the biological relevance of 

the DTD modules in several different ways. MI-related drug targets and MI disease proteins 

may participate in similar physiological and pathological processes as they cluster together 

in the interactome. We, therefore, evaluated the functional similarity of interacting pairs of 

MI-related drug targets and MI disease proteins that are located in the same modules. As a 

control for significance, we randomly selected an interaction set with the same number of 

interactions as the module and calculated its functional similarity. Figure 6 (A) shows that 

most of the identified DTD modules have higher functional similarity than randomized 

modules, suggesting that these modules are mechanistically rational and represent potential 

signaling pathways of drug action. The results based on all interacting pairs in modules are 

given in Supplementary Figure S5, which is similar to Figure 6 (A).

Understanding adverse side effects of drugs is equally important as identifying the molecular 

mechanisms of drug action. Adverse side effects have been used to infer whether two drugs 

share a target protein 2. By contrast, the side-effect similarity of drugs could also be caused 

by the closeness of their target proteins in the interactome. Another hypothesis about the 
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biological relevance of the DTD modules is that drugs targeting the same modules may have 

similar side effects. To test this hypothesis, we collected a set of drug pairs that have similar 

side effects from previous studies 30 and examined whether DTD modules are significantly 

enriched with drug pairs that have similar side effects. The results, shown in Figure 6 (B), 

indicate that compared with a random drug set, drugs that target the same modules are 

significantly enriched with drug pairs with similar side effects.

The Anatomical Therapeutic Chemical (ATC) Classification System is used to classify drugs 

into different groups according to the organ or system on which they act and/or their 

therapeutic and chemical characteristics. The DTD modules represent the potential 

underlying signaling pathways of drug action. We, thus, hypothesized that drugs targeting 

the same modules may have similar therapeutic effects. To this end, we retrieved ATC codes 

used to annotate the drugs from the DrugBank database and constructed two sets of drug 

pairs that have similar therapeutic effects based on the first-level and the second-level of 

ATC codes, respectively. The results indicate that compared with a random drug set, drugs in 

the same DTD modules are significantly enriched with drug pairs that have similar 

therapeutic effects (Figure 6 (C)). The similarity of therapeutic effects of drugs may provide 

insights into the mechanism of action of one drug from that of another which acts within the 

same molecular pathway in the interactome. Collectively, the observations in Figure 6 

demonstrate the strong biological relevance of the DTD modules.

Cardiovascular adverse effects of unrelated drugs

Many drugs not used to treat cardiovascular diseases have adverse cardiovascular (side) 

effects 31. Since our DTD modules contain non-MI drugs that have interactions with MI 

drugs, we may obtain some insights into the cardiovascular (side) effects of these non-MI 

drugs. Among 300 non-MI drugs with target information, 224 were assigned to modules; 

these are denoted module drugs. Other non-MI drugs not located in the DTD modules are 

denoted non-module drugs. SIDER 2 (Side Effect Resource) contains information on 

marketed medicines and their recorded adverse reactions extracted from public documents 

and package inserts 28. Based on this database and the literature, 133 module drugs have 

cardiovascular side effects (at least two pieces of supportive evidence), which are provided 

in Supplemental File 2. Table 1 presents some typical examples of non-cardiovascular drugs 

that have cardiovascular side effects. For example, thioridazine is a typical antipsychotic 

drug that can cause an arrhythmia leading to sudden death. Thus, it has an FDA “black-box 

warning.” 31 Rosiglitazone is an antidiabetic drugs used for the treatment of type II diabetes 

that has been reported to increase the risk of cardiovascular complications, including 

myocardial infarction 7, 32. The derived DTD modules provide mechanistic insights into the 

cardiovascular side effects of these drugs.

We also hypothesized that module drugs tend to have cardiovascular side effects compared 

to non-module drugs, as module drugs are functionally associated with MI disease proteins 

through their targets. We, therefore, also checked the side effects of non-module drugs as 

well, and found that only 26 of them have cardiovascular side effects. Table 2 provides the 

contingency table for the enrichment of non-MI drugs with cardiovascular effects. Chi-

squared testing indicates that compared to non-module drugs, module drugs are significantly 
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enriched with drugs that have cardiovascular side effects (P = 2.5×10−4). If we restrict the 

non-module drugs to those that have targets in the interactome, the result is still significant 

(Supplementary Table S1), indicating that incorporating MI disease proteins is helpful for 

understanding the cardiovascular side effects of module drugs.

Similarly, we classified the drug targets into two groups as well. The drug targets assigned to 

DTD modules are module targets, and others are non-module targets. We hypothesized that 

module drug targets tend to be associated with cardiovascular function or cardiovascular 

diseases compared to non-module drug targets, as module drug targets are functionally 

associated with MI disease proteins. We, therefore, examined the overlap of module targets 

and non-module targets with the cardiovascular-associated proteins downloaded from the 

Cardiovascular Gene Annotation Initiative (http://www.ebi.ac.uk/GOA/CVI). Table 3 

provides the contingency table for the enrichment of cardiovascular-associated proteins 

among module drug targets. Chi-squared testing indicates that compared to non-module drug 

targets, module drug targets are significantly enriched with cardiovascular-associated 

proteins (P = 1.7×10−4). Supplementary Table S2 shows similar results after we remove MI 

drug targets. Once again these results confirm the benefits of incorporating MI disease 

proteins for understanding drug action and the functionality of drug targets.

Pharmacological insights derived from network analysis

The DTD modules consist of the connections from MI drugs and MI drug interactors to MI 

disease proteins via drug targets in the human protein-protein interaction network. These 

modules represent the potential signaling pathways of drug action and provide insights into 

the mechanisms of action of MI drugs as well as the cardiovascular side effects and new 

therapeutic indications of non-MI drugs. A detailed review of DTD modules offers insights 

for potential repurposing of some drugs in the treatment of MI (Table 4). For example, 

valproic acid is a fatty acid with anticonvulsant properties used in the treatment of epilepsy. 

It is also a histone deacetylase inhibitor and is under investigation for treatment of HIV and 

various cancers14. The mechanisms of its therapeutic actions are not well understood. We 

predict that valproic acid may be repurposed for treatment of MI. In Module1, ABAT, the 

target of valproic acid, is densely connected to aldehyde dehydrogenase (ALDH) family 

proteins, which have a role in cardioprotection 33. Recent epidemiological studies indicate 

that valproic acid is associated with a reduced risk of myocardial infarction 34, 35, supporting 

the potential repositioning of valproic acid for MI. Minocycline is a tetracycline analog 

effective against several bacterial infections. One of its drug targets is MMP9 whose 

increased level in diabetes causes vascular remodelling, which contributes the cardiovascular 

complications of diabetes. Recent studies suggest that the combination of minocycline and 

aspirin prevents worsening of acute MI in diabetic rats by inhibiting MMP2 and MMP936. In 

addition, encouraging evidence exists for minocycline’s protective role in cardiovascular 

pathology and its activity against myocardial ischemia-reperfusion injury37. Ginseng has 

been used as one of the traditional Chinese medicines for treating a variety of disorders. 

North American ginseng (Panax quinquefolius) has been increasingly attracting interests in 

western societies for its therapeutic potential in cardiovascular diseases 38, 39. Although its 

pharmacological action is not very clear, ginseng has been found to target PTGS2, IL6, and 

AHR 14, 40. PTGS2 (COX-2) contains a polymorphism as an inherited protective factor 
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against myocardial infarction and stroke 41. It is also the drug target of several MI drugs 

including naproxen, ibuprofen, diclofe, and aspirin. Thus, ginseng has potential for treating 

myocardial infarction as well via this common mechanistic target. In addition, in Module 7, 

the drug targets of acetaminophen are PTGS1 and PTGS2 which are also MI disease 

proteins. Several studies have shown that acetaminophen is functionally cardioprotective and 

can attenuate the damaging effects of peroxynitrite and hydrogen peroxide during ischemia-

reperfusion through an underlying antioxidant (free-radical scavenging) mechanism42, 43. 

Collectively, the DTD modules offer pharmacological insights into mechanistic bases for the 

repurposing of select drugs. As we illustrate here, one can identify drugs not previously 

known to treat the disease, ascertain their targets and targeted pathways within the module, 

identify the molecular mechanisms related to the disease that involve the targets and targeted 

pathways, and explore the literature for any prior epidemiological or clinical case-based 

evidence supporting an association between the drug and the disease (MI). This network-

based analysis, therefore, offers a mechanistic rationale for pursuing these drugs as potential 

treatments for MI.

DTD modules can offer insights into the cardiovascular side effects of some drugs as well 

(Table 4). As mentioned earlier, disulfiram is a drug used in the treatment of chronic 

alcoholism. It acts by inhibiting aldehyde dehydrogenase and targets ALDH2 which has a 

role in protecting the heart and brain from ischemia-reperfusion injury 27. Therefore, we 

predict that disulfiram may have adverse cardiac side effects. Although the Sider database 

does not include the cardiovascular side effects of disulfiram, severe reactions including 

myocardial infarction, arrhythmias, and congestive heart failure, can occur when disulfiram 

is used at very high doses 26. Danazol is a drug used for the treatment of endometriosis and 

breast disorders. Danazol inhibits the expression of monocyte chemotactic protein-1 

(MCP-1/CCL2) 44. As MCP-1/CCL2 is important in the development of collateral vessels 

following acute myocardial infarction 45, Danazol may increase the risk of MI and its 

consequences with chronic use 46, 47. Triazolam targets various gamma-aminobutyric acid 

(GABA) A receptors, such as GABRB1, GABRB2, GABRG2, and GABRR1, which are the 

main inhibitory neurotransmitters in the brain. These receptors also mediate cardiovascular 

regulation48, 49. In addition, GABAergic input affects blood vessels and participate in the 

control of vascular tone, blood pressure, and heart rate50, 51. A previous study has shown 

that the overdose of triazolam can cause life-threatening cardiotoxicity 52. Table 4 provides 

more examples of predicted cardiovascular adverse effects of non-cardiovascular drugs. The 

DTD modules provide the potential mechanisms of cardiotoxicity of these drugs based on 

their network links.

In addition, network integration analysis also provides other insights regarding the 

connectivity of MI drug targets. For example, in Module 1, known MI drug targets, 

PPP2CA, PPP2CB, and ANXA2, are all peripheral nodes in the network, while in Module 2, 

PRKCA is a highly connected node (hub). Of note, PPP2CA, PPP2CB, and PRKCA are all 

targeted by vitamin E, suggesting that drugs with multiple targets are connected to the 

network with varying degrees of centrality. Interestingly, highly useful MI drugs, such as the 

angiotensin converting enzyme (ACE) inhibitors, enalapril, captopril, lisinopril, fosinpril, 

and trandolapril, or the purinergic receptor P2Y, G-Protein coupled 12 (P2RY12) inhibitors, 

clopidogrel and prasugrel, target peripheral nodes, i.e., ACE and P2RY12 are weakly 
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connected in Module 3. Yet, these weakly linked nodes have important effects on module 

function, and likely do so via their associations with other nodes of greater centrality, such 

as ACE’s link to the angiotensin receptor 1 (AGTR1) pathway and its downstream signaling 

pathways governing vascular tone and vascular cell proliferation, or the interaction of the 

P2RY12 receptor and the beta1-adrenergic receptor (ADRB1) governing cross-talk in 

signaling pathways modulating platelet function. A clear benefit of this integrated network 

analysis is derived from the inclusion of non-MI drugs that have interactions with MI drugs 

via common targets, transforming enzymes, transporters, or underlying pharmacokinetics or 

pharmacodynamics as indicated in DrugBank 14. This expanded MI drug set coupled with 

the physical protein-protein association links generated from the comprehensive human 

interactome provides a unique and rich network data set for exploratory analysis and 

hypothesis testing regarding drug action and benefit. The summary provided here only 

begins that exploratory process, which can evolve much more comprehensively in future 

studies.

Conclusions

In this study, we assessed the closeness relationships between MI-related drug targets and 

MI disease proteins and sought to decipher the molecular basis of drug action and drug side 

effects through drug-target-disease (DTD) modules. We assessed the biological relevance of 

the DTD modules in different ways. The results demonstrate the benefits of incorporating 

diseases genes for gaining insight into the mechanisms of drug action, the functionality of 

drug targets, and the pathobiology of diseases. There are other published studies examining 

the distance between drug targets and disease genes in the interactome 53, 54 or predicting 

adverse side effects of drugs 55. These earlier studies considered all diseases or major 

disease categories, and did not provide insights into the mechanisms of action of individual 

drugs. We took an additional step by examining whether the interactome-based localization 

of disease genes facilitates an understanding of drug actions and drug side effects through 

DTD modules. Through assessing the biological relevance of the DTD modules, we 

confirmed that the DTD modules identify potential signaling pathways of drug actions.

In this study, we used snapshot static networks to analyze the functional relationships of MI-

related drugs, drug targets, and MI disease proteins. It would be interesting to explore how 

to incorporate drug-induced time-series gene expression data into the analyses once 

available. In addition, drugs may have potential off-target effects and different efficacies, and 

the molecular interactions in the network may have different strengths (weights). 

Considering such detailed information may complicate the topological analyses and require 

the construction of a dynamic model for optimal insights.

Choosing protein interactomes and module-finding techniques may have an impact on this 

study. There are several other protein interaction databases with higher coverage, e.g., 

STRING v1056. However, these databases contain a large number of predicted functional 

associations, rather experimentally ascertained physical interactions. Neverthess, we used 

the interactions from STRING v10 to assess the closeness relationships between MI-related 

drug targets and MI disease proteins to attempt to validate our findings with other 

interactomes. We also used another modularity optimization method57, 58 to detect modules 
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and assess the robustness of DTD modules. As shown in Supplementary File 1, the results 

confirm the reliability of our conclusions and DTD modules.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The closeness relationships between MI(-related) drug targets and MI disease proteins 
in the human interactome
(A) MI-related drugs, drug targets, and MI disease proteins are mapped onto the human 

interactome. (B) A bipartite network of MI-related drug targets and MI disease proteins is 

constructed, and the dense associations between them are identified as drug-target-disease 

(DTD) modules. (C) The overlap of MI-related drug targets and MI disease proteins. (D) 

MI-related drug targets (MI drug target, inset) and MI disease proteins have significantly 

more interactions in the interactome than expected by chance. (E) There are significantly 

more pairs of MI-related drug targets (MI drug target, inset) and MI disease proteins with 

common neighbors than expected by chance. (F) The average shortest path length between 

MI-related drug targets (MI drug target, inset) and MI disease proteins is significantly 

smaller than that between two random gene sets.
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Figure 2. The proximity between control drug targets and MI disease proteins
(A) Compared to control drug targets, MI(-related) drug targets have larger overlap with MI 

disease proteins. (B) Compared to control drug targets, MI(-related) drug targets have more 

interactions with MI disease proteins. (C) Compared to control drug targets, there are more 

pairs of MI(-related) drug targets and MI disease proteins that have common neighbors in 

the interactome. (D) Compared to control drug targets, MI(-related) drug targets have a 

smaller average shortest path length with MI disease proteins.
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Figure 3. The proximity between MI(-related) drug targets and control disease proteins
(A) Compared to control disease proteins, MI disease proteins have significantly greater 

overlap with MI-related drug targets. (B) Compared to control disease proteins, MI disease 

proteins have more interactions with MI-related drug targets. (C) Compared to control 

disease proteins, there are more pairs of MI disease proteins and MI-related drug targets that 

have common neighbors in the interactome. (D) Compared to control disease genes, MI 

disease proteins have a smaller average shortest path length with MI-related drug targets in 

the interactome.
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Figure 4. The DTD modules
The blue nodes represent MI disease proteins, and the yellow nodes denote MI-related drug 

targets. The nodes with both colors are both drug targets and MI disease proteins. The nodes 

with only labels (without node shapes) are drugs. MI drugs and MI drug targets are denoted 

in red.
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Figure 5. The robustness of the DTD modules
(A) The degree distributions of MI-related drug targets and MI disease proteins. (B) The 

constructed bipartite network is significantly modular compared to randomized networks 

with the same degree distributions (P<1.0×10−16). (C) The NMI value between the best 

partitions obtained from the original bipartite network and that obtained from the perturbed 

networks after removing a certain percentage of nodes and edges. (D) The modularity of the 

perturbed networks after removing a certain percentage of nodes and edges.
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Figure 6. Biological relevance of the DTD modules
(A). Functional similarity of MI-related drug targets and MI disease proteins in the DTD 

modules; *P<0.05. (B) Enrichment of drug pairs with similar side effects in each module. 

The red line represents P=0.05. (C) Enrichment of drug pairs with similar ATC codes in each 

module. The red line represents P=0.05.
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Table 1

Cardiovascular adverse effects of some non-cardiovascular drugs based on the Sider database and the 

literature.

Drug name Module ID Cardiovascular side effects with references

Gemcitabine 1 Arrhythmia; atrial fibrillation; cardiac failure; myocardial infarction 28, 31

Clozapine 2, 3 Tachycardia; Metabolic syndrome; myocardial infarction; ventricular fibrillation; venous 
thrombosis 28, 31

Tizanidine 2, 3 Bradycardia; arrhythmia; myocardial infarction; coronary artery disease 31

Escitalopram 2, 3, 9 Tachycardia; arrhythmia; cardiac failure; myocardial infarction; atrial fibrillation 31

Vardenafil 2, 6 Coronary artery disease; myocardial infarction; tachycardia 28, 31

Trazodone 2, 3, 9 Arrhythmia; cardiac arrest; ventricular tachycardia; myocardial infarction 31

Celecoxib 2, 7 Risk of cardiovascular complications; cardiac failure; myocardial infarction; thrombosis 7, 31, 59

Thioridazine 3 Torsades de Pointes; ventricular tachycardia 28, 31

Aminophylline 3, 6 Atrial fibrillation; tachycardia; arrhythmia; cardiac flutter 28, 31

Rosiglitazone 5 Adverse cardiac effects; cardiac failure 31, 32, 60

Methylprednisolone 5 Atrial fibrillation; arrhythmia; cardiac arrest; cardiac failure; myocardial infarction 28, 31, 61

Aprotinin 9 Arrhythmia; cardiac arrest; myocardial infarction; thrombosis 31
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Table 2

Contingency table for the enrichment of non-MI module drugs with cardiovascular side effects, P = 2.5×10−4 

(Chi-squared test).

With cardiovascular side effects No cardiovascular side effects Total

Module drugs 133 91 224

Non-module drugs 26 50 76

Total 159 142 300
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Table 3

Contingency table test for the enrichment of cardiovascular-associated proteins in drug targets, P = 1.7×10−4 

(Chi-squared test).

Cardiovascular proteins Not cardiovascular proteins Total

Module targets 180 52 232

Non-module targets 75 54 129

Total 255 106 361
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