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Secondary lymphoid organs (SLOs) are sites that facilitate cell-cell interactions required for generating adaptive immune responses.
Nonhematopoietic mesenchymal stromal cells have been shown to play a critical role in SLO function, organization, and tissue
homeostasis. The stromal microenvironment undergoes profound remodeling to support immune responses. However, chronic
inflammatory conditions can promote uncontrolled stromal cell activation and aberrant tissue remodeling including fibrosis,
thus leading to tissue damage. Despite recent advancements, the origin and role of mesenchymal stromal cells involved in SLO
development and remodeling remain unclear.

1. Introduction

Secondary lymphoid organs (SLOs) such as spleen and
lymph nodes (LNs) play a critical role in host defense. This
function is ensured by the unique cellular composition of
lymphoid tissues characterized by the presence of stationary
mesenchymal stromal cells and highly motile hematopoietic
cells. Although most of the attention has been concentrated
on hematopoietic cells and their functions, the stromal
counterpart has recently emerged as an important player
in regulating immune responses and tissue homeostasis
[1]. Alterations in stromal cell composition and function
have been associated with different pathological conditions
such as autoimmunity, infections, and cancer. Despite recent
advances in the field, little is known about the origin and
nature of the different mesenchymal stromal cells involved in
tissue remodeling during homeostasis and disease. Indeed, a
better understanding of the cells and signals contributing to
tissue remodeling will provide basic knowledge for designing
strategies aiming to promote tissue repair during pathological
conditions such as chronic inflammation. Here we discuss
the different steps involved in the maturation of lymphoid
tissue mesenchymal stromal cells and how these cells con-
tribute to tissue remodeling during normal and pathological
conditions.

2. Development of Secondary Lymphoid
Tissues and Origin of Stromal Diversity

Development of SLOs is spatiotemporally regulated during
embryogenesis and requires interaction between lymphoid
tissue stromal organizer (LTo) cells of mesenchymal ori-
gin and lymphoid tissue inducer (LTi) cells derived from
the hematopoietic lineage [2–4]. The interaction between
these two-cell types occurs through engagement of several
molecules including the lymphotoxin 𝛽 receptor (LT𝛽R)
expressed on mesenchymal cells by lymphotoxin 𝛼1𝛽2
(LT𝛼𝛽) expressed on hematopoietic cells. LTi cells, which
belong to the family of type 3 innate lymphoid cells, are
also characterized by expression of CD45, CD4, interleukin-
7 receptor 𝛼 (IL-7R𝛼), integrin 𝛼4𝛽7, receptor-activator of
NF-𝜅B (RANK/TRANCE-R), and the chemokine receptor
CXCR5. Conversely, mesenchymal stromal cells express, in
addition to LT𝛽R, platelet-derived grow factor-receptor 𝛼
(PDGFR𝛼) and the chemokine CXCL13 [5]. The latter is a
critical signal for attracting LTi cells expressing the CXCL13-
receptor CXCR5 to the site of organ formation [3]. Although
differences exist in the initial steps of spleen and lymph node
development, lymphomesenchymal interactions are critical
to promote the differentiation of mesenchymal progenitors
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to mature stromal cells and the establishment of distinct
tissue compartments. Studies onmice deficient for molecules
expressed by LTi (e.g., CXCR5) or by LTo cells (e.g., CXCL13,
LT𝛽R) have shown defects ranging from organ agenesis to
disrupted tissue architecture [3]. Although the developmental
relationship between embryonic mesenchymal cells of the
lymphoid tissue anlage and the adult stromal compartment is
not fully elucidated, recent findings demonstrated that spleen
stromal cells arise frommultipotent embryonicmesenchymal
cells of the Nkx2-5+Isl1+ lineage [6]. It was shown that nearly
all mature mesenchymal stromal cells, namely, follicular
dendritic cells (FDCs) of the B-cell follicle, marginal reticular
cells (MRCs) localized underneath themarginal sinus, fibrob-
lastic reticular cells (FRCs) in the T-cell zone, and NG2+
perivascular cells, originate from embryonic mesenchymal
descendants [6]. While this mechanism for generating stro-
mal diversity applies to the spleen, the embryonic lineages
contributing to the different stromal cells of the LN remain
unclear. Furthermore, Nkx2-5+Isl1+ mesodermal precursors
do not contribute to spleen or lymph node endothelial
cells, thus indicating that different mesodermal lineages
are involved in generating SLO stromal diversity including
lymphatic and endothelial cells. Interestingly, endothelial
cells have been shown to undergo endothelial-mesenchymal
transition (EndMT) during cardiac development [7, 8].
Whether thismechanismalso contributes to the generation of
stromal diversity during SLO development remains an open
question.

Stromal cells express several receptors of TNF super-
family of proteins including LT𝛽R, RANK, and Tumor
Necrosis Factor Receptors [9]. By engaging with their lig-
ands, LT𝛼𝛽 and Tumor Necrosis Factor (TNF) expressed by
hematopoietic cells, these receptors trigger the secretion of
homeostatic chemokines such as CCL19/CCL21 and CXCL13
that play a critical role in attracting and positioning T- and
B-cells within SLOs [9]. Indeed, mice deficient for LT𝛽R
or genes encoding chemokines secreted by stromal cells
have profound disorganization of the white pulp area and
defective immune functions, demonstrating the critical role
played by mesenchymal stromal cells as “organizers” of the
lymphoid compartments [10]. Stromal cells also produce the
extracellular matrix (ECM), a tridimensional framework of
reticular fibers composed of basement membrane and inter-
stitialmatrix components that provide structural support [11].
In the T-cell zone, FRCs form the so-called conduit system,
a reticular collagenous network that allows the transport
and distribution of small molecules or particles from the
periphery to T-cell zone [12].

In theB-cell follicle, FDCsplay a crucial role in promoting
B-cell immunity [13]. FDCs promote recruitment of B-
lymphocytes into the follicles through secretion of CXCL13
that bindsCXCR5 expressed onB-cells.This stromal cell-type
presents antigens in the form of immune complexes that are
bound via Fc and complement receptors, thus stimulating B-
cells through the B-cell receptor (BCR) and promoting ger-
minal center formation. Generation of FDC networks relies
on TNFR and LT𝛽R signaling; however, only signals through
LT𝛽R were shown to be required for FDC maintenance [14].
MRCs are stromal cells that localize underneath themarginal

sinus and in the outermost region of the follicle and express
CXCL13 and MAdCAM-1 [15]. Although the exact function
of MRCs remains elusive, recent work showed that MRCs
contribute to the accumulation of FDC during germinal
center formation [16]. In addition, the expression of B-cell
chemokines and the close association of this cell-type with
CD169+ marginal metallophilic macrophages suggest their
possible involvement in supporting local niches.

3. The Extracellular Matrix of Secondary
Lymphoid Organs

The stroma is defined as the connective and functionally
supportive structure of a tissue or organ. It consists of fibrob-
lasts and vascular cells and their associated extracellular
matrix (ECM) proteins such as collagens, fibronectin, gly-
cosaminoglycans, and proteoglycans [17].The ECM has been
viewed only as a tridimensional framework to which cells
adhere. However, work over the past years has demonstrated
that the ECM is not merely an inactive player in tissue
homeostasis, but, instead, a structure with define physical
and biochemical properties able to affect cell behavior [11].
Indeed, the continuous cell-ECM cross talk allows cells to
sense the surrounding environment, resulting in changes in
gene expression. For instance, the ECM affects cell behavior
by different mechanisms: (i) by regulating cell-accessibility to
growth factors; (ii) by providing cells with ligands for cell-
surface receptors; (iii) and by affecting migration and pro-
liferation through ECM-stiffness and composition [18, 19].
Deregulation in ECM structure and composition has been
associated with different pathological conditions including
tissue fibrosis and cancer by promoting apoptotic evasion, cell
survival, proliferation, and invasion [18, 20, 21].

In peripheral lymphoid tissues, two biochemically and
morphologically different ECMs exist: the interstitial matrix
(IM) and the basement membrane (BM). The IM represents
the ECM that connect fibroblastic reticular cells and is
composed of interstitial collagens (types I, III, V, and XI)
that confer high flexibility and tensile strength, as well
as proteoglycans and glycoproteins, such as fibronectin,
tenascin, and vitronectin, able to recognize and bind several
cytokines, chemokine, and growth factors [17, 19]. The BM is
a sheet of ECM that acts primarily to separate the different
functional compartments of the organ. It is mainly com-
posed of four molecules: type IV collagen, noncollagenous
glycoproteins belonging to the family of laminins, heparan
sulphate proteoglycans, and glycoproteins [17, 19, 22]. One
of the peculiar three-dimensional structures of SLOs is the
conduit system, a complex structure of FRCs and reticular
fibers that promotes the rapid transport of small molecules,
such as chemokines, cytokines, and small molecular weight
antigens, from peripheral sites to the lymphoid compart-
ments [23].The conduit also acts as a scaffold for lymphocyte
locomotion within SLOs, thus facilitating cell distribution
and interactions [24]. The reticular fibers of the conduits
show a highly organized core of collagens, mostly type I and
type III, and associated with fibrils ensheathed by the BM.
The latter is composed of laminin isoforms 511, 411, and 332,
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heparan sulphate proteoglycan, perlecan, collagen type IV,
and nidogen to which FRCs adhere [25–28]. Collagen IV
can bind several chemokines and cytokines such as CCL21
and IL7 produced by FRC, thus facilitating the positioning
of T lymphocytes within SLOs. FRCs are interconnected
and ensheathing the conduit system in which dendritic cells
(DCs) fill the free space and pick up antigens directly from
the conduit [29, 30]. This means that lymphocytes are not
in direct contact with the basal membrane and the fluid
present in the conduit, though antigens and small molecules
are accessible through FRCs or DCs present in the gaps
of the conduit. Recently, it has been demonstrated that
the specific expression of perifollicular laminin 𝛼5 in the
marginal zone (MZ) of the spleen drives the localization of a
specialized B-cell population expressing integrin 𝛼6𝛽1 to this
area.Moreover, laminin 𝛼5 was found to regulate not only the
localization but also the fate and long-term survival including
the antibody responses ofMZ B-cells.These findings indicate
that stromal-derived ECM actively influences immune cell
behavior through several mechanisms [18, 19].

4. Remodeling of the Stromal
Microenvironment in Acute Inflammation

Theacute phase of an adaptive immune response is character-
ized by lymph node expansion in order to host the incoming
wave of naı̈ve lymphocytes and the proliferation of antigen-
specific lymphocytes prior to returning to its physiological
size during the resolution phase [31–33]. In this process,
the distribution of stromal cells and their associated ECM
undergoes transient changes to support immune responses.
These include the expansion of fibroblastic reticular and
lymphatic networks and the increase in size and permeability
of high endothelial venues (HEVs) and lymphatic vessels
in order to facilitate the extensive accumulation of näıve
lymphocytes and fluid from the periphery [34–37]. Although
the origin and nature of stromal cells that participate in LN
hypertrophy and remodeling remain elusive, recent studies
have identified FRCs as key players in the process [38].
Stretch of preexisting FRC networks and FRC proliferation
are involved in LN enlargement [33, 36, 39]. Dendritic cells
(DCs) have been shown to regulate the stretch of FRCs,
via CLEC-2 on DC binding to podoplanin (PDPN) on FRC
and resulting in the inhibition of PDPN-mediated FRC
contractility, and relaxation of the stromal networks [31,
32]. Changes in FRC contractility could directly influence
FRC proliferation through mechanotransduction, a process
known to convert mechanical forces into chemical or genetic
changes at cellular level [32, 40]. The nature of inflammatory
stimuli affects the timing at which the proliferation of FRC
occurs. Indeed, whereas LPS stimulates FRC proliferation as
early as 24 hrs after injection, immunization with ovalbumin
(OVA) in complete Freund’s adjuvant (CFA) or Montanide
causes stromal cells to proliferate modestly within 2 days
and more vigorously until day 5 after injection [31, 33, 41].
The initial phase of proliferation is dependent on CD11c+
DC, whereas T- and B-cells contribute to the subsequent
expansion phase [33, 41]. The findings that ablation of

LT𝛽R signaling in stromal cells abrogated FRC proliferation
indicate that LT𝛼𝛽 from lymphocytes plays, at least in part, a
role in remodeling of the FRC network [41, 42]. Interestingly,
inflammation following CFA immunization causes changes
in stromal composition and gene expression within T-cell
zone stromal cells. It was reported that inflamed B-cell
follicles extend towards the T-cell zone and induce the
expression of CXCL13, a chemokine normally produced by
FDCs, in stromal cells. Induction of CXCL13 was shown
to depend on LT𝛼𝛽 from B-cells and the cells induced to
expressCXCL13were called versatile stromal cells (VSC) [43].
Interestingly, during the contraction phase of B-cell follicles,
VSCs downregulate CXCL13 expression, thus indicating a
degree of plasticity of this mesenchymal cell type. From a
developmental perspective, the origin and nature of VSCs
remain unknown as the signaling underlying their plasticity
[43].

Many viral infections induce a generalized immunosup-
pression that could be transient, during the acute phase,
or prolonged, in chronic viral infections. In the case of
lymphocytic choriomeningitis virus (LCMV), it was shown
that infected FRCs are killed by LCMV-specific CD8+ T-
cells during the acute phase of infection. Loss of the
FRCs appears to be mediated by perforin-dependent and
perforin-independent mechanisms and strongly correlates
with the impairment of CCL19 and CCL21 expression, two
chemokines important for positioning T-cells within the FRC
zone [1, 44]. Interestingly, remodeling and restoration of
stromal network integrity occurs approximately four weeks
after LCMV infection and depends, at least in part, on LTi-
stroma interactions via LT𝛽R signaling [44]. The survival
and proliferation of adult LTi cells are induced by IL-7.
Stromal and lymphatic endothelial cells expressing IL-7 are
critical during LN remodeling after LCMV infection, as
demonstrated by the findings that ablation of IL-7 expressing
stromal cells strongly impairs restoration of tissue integrity
[45]. In the spleen, regeneration of the stromal network
was shown to depend on local Nkx2-5+Islet1+ mesenchymal
descendants, possibly possessing stem cell activity. In this
setting, local expansion ofmesenchymal stromal cells and not
migration of peripheral cells appeared to be the underlying
mechanism of tissue regeneration [6]. Nevertheless, the exact
nature of mesenchymal stromal cells involved in tissue repair
after LCMV infection remains unclear. Perivascular cells have
been proposed to act asmesenchymal stem cells during tissue
repair and thus could represent good candidates in SLO
remodeling after loss of tissue integrity.

5. Persistent Stromal Remodeling and Tissue
Fibrosis during Chronic Inflammation

Chronic inflammation is characterized by persistent inflam-
matory stimuli or by deregulation of the mechanisms
involved in the resolution phase [9].This condition stimulates
uncontrolled stromal cell activation and consequent aberrant
tissue remodeling including fibrosis [9, 46]. One example is
the chronic infection caused by human immunodeficiency
virus-1 (HIV-1). Indeed, a large number of patients infected
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with HIV-1 have profound lymphoid tissue disorganization
and show limited or absent immune reconstitution despite
suppression of replicating virus in plasma [47–49].

Immunohistological studies have demonstrated that
acute HIV-1 infection is associated with generalized lymph
node enlargement. Moreover, abnormal LN architecture is
associated with progressive loss of immune responses and
correlates with disease progression, culminating in end-stage
AIDS [50–54]. Furthermore, several observations describe
an inverse correlation between the number of CD4+ T-cells
in the LN paracortical region and tissue fibrosis in HIV-
1 infected patients [55, 56]. In the case of nonhuman pri-
mates (NHP) infected with simian immunodeficiency virus
(SIV), the accumulation of Treg cells expressing transforming
growth factor 𝛽1 (TGF𝛽1) correlates with the pathological
deposition of fibrotic collagen by T-cell zone mesenchymal
stromal cells. Indeed, Treg cells were shown to secrete TGF𝛽1
and stimulate resident fibroblasts to produce procollagen and

chitinase 3-like-1 (CHI3L1), an enzyme involved in the matu-
ration of procollagen and fibrosis [42, 57, 58]. This increased
and uncontrolled deposition of fibrotic ECM strongly affects
the capacity of the T-cells to recognize the prosurvival factor
IL-7 produced by FRCs. This mechanism seems to explain
the high degree of apoptosis and the depletion of both naı̈ve
CD4+ and CD8+ T-cells (the latter are not usually infected by
HIV-1) occurring in infected patients [42, 59]. On the other
hand, the survival of FRCs depends on LT𝛼𝛽 from T-cells
[42], and the increase in T-cell apoptosis causes a reduction
of LT𝛼𝛽 that ultimately results in loss of FRC networks and,
consequently, the prosurvival signal IL-7 [42, 60, 61]. The
reciprocal interactions between the FRCs and T-cells have
been recently demonstrated inmice uponLT𝛽R-Ig treatment,
to deplete the FRC networks, or anti-CD3 administration, to
induce T-cell apoptosis. Indeed, mice with a depleted FRC
network have reduced T-cells, and vice versa mice depleted
of T-cells have lost FRC networks [42, 62]. In addition to
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LT𝛽R, TNF is also involved in the maintenance of FRC, as
demonstrated by reduced lymphoid tissue fibrosis in NHP
treated with anti-TNF antibody [63].

Given the important role of the FRC network in lym-
phocytes locomotion, loss of it has an effect on T-cell
migration within the LNs.Thus, a vicious cycle of progressive
destruction of the LN architecture ultimately limits the
possibility of restoring normal immune responses, despite
suppression of replicating virus in the plasma [47–49]. It
remains unclear whether stromal cell subsets other than FRC
contribute to fibrosis and if this process could be reverted by
pharmacological means. Endothelial cells have been impli-
cated in tissue fibrosis, though it is unknown if this lineage is
involved in remodeling the lymphoid stromal microenviron-
ment through endomesenchymal transition during chronic
inflammation [64].

In addition to FRCs, progressive loss of the FDC net-
works has been also described in HIV-1 infection. As a
consequence, B-cell specific immune responses to HIV-1 and
other pathogens are compromised [65].The finding that FDC
networks are present in HIV-1 infected patients after 2.5 years
of antiretroviral therapy, with a pattern similar to the one
shown in SLO from healthy volunteers, indicates that tissue
remodeling and repair of follicular stromal cell are reversible.
However, it is not clear whether changes in FDCs correlate
with fibrosis or are directly linked to the viral load [66].
Nevertheless, the cellular mechanism involved in restoration
of FDC networks upon treatment remains unclear.

6. Conclusion

Secondary lymphoid organs represent the primary site for
initiating and developing adaptive immune responses, as
well as for maintenance of lymphocyte homeostasis. Dur-
ing inflammation, the stromal microenvironment undergoes
profound remodeling to support immune responses and
mesenchymal stromal cells are emerging as important players
(Figure 1). A better understanding of the nature ofmesenchy-
mal stromal cells involved in lymphoid tissue remodeling
together with knowledge on the signaling networks con-
tributing to stromal cell activation and proliferation will help
to identify novel targets and design new strategies in order to
prevent tissue damage and to restore integrity upon injury.
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cell reconstitution after antiretroviral therapy,” PLoS Pathogens,
vol. 8, no. 1, Article ID e1002437, 2012.

[62] M. Zeng, A. T. Haase, and T. W. Schacker, “Lymphoid tissue
structure and HIV-1 infection: life or death for T cells,” Trends
in Immunology, vol. 33, no. 6, pp. 306–314, 2012.

[63] B. Tabb, D. R. Morcock, C. M. Trubey et al., “Reduced
inflammation and lymphoid tissue immunopathology in rhesus
macaques receiving anti-tumor necrosis factor treatment dur-
ing primary simian immunodeficiency virus infection,” Journal
of Infectious Diseases, vol. 207, no. 6, pp. 880–892, 2013.

[64] E. M. Zeisberg, O. Tarnavski, M. Zeisberg et al., “Endothelial-
to-mesenchymal transition contributes to cardiac fibrosis,”
Nature Medicine, vol. 13, no. 8, pp. 952–961, 2007.

[65] A. S. Fauci, “Multifactorial nature of human immunodeficiency
virus disease: implications for therapy,” Science, vol. 262, no.
5136, pp. 1011–1018, 1993.

[66] Z.-Q. Zhang, T. Schuler, W. Cavert et al., “Reversibility of the
pathological changes in the follicular dendritic cell network
with treatment of HIV-1 infection,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 96, no.
9, pp. 5169–5172, 1999.


