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Abstract: Alzheimer’s disease (AD) is the most common underlying cause of dementia, and novel drugs for its treat-
ment are needed. Of the different theories explaining the development and progression of AD, “amyloid hypothesis” 
is the most supported by experimental data. This hypothesis states that the cleavage of amyloid precursor protein 
(APP) leads to the formation of amyloid beta (Aβ) peptides that congregate with formation and deposition of Aβ 
plaques in the frontal cortex and hippocampus. Risk factors including neurotransmitter modulation, chronic inflam-
mation, metal-induced oxidative stress and elevated cholesterol levels are key contributors to the disease progress. 
Current therapeutic strategies abating AD progression are primarily based on anti-acetylcholinesterase (AChE) in-
hibitors as cognitive enhancers. The AChE inhibitor, donepezil, is proven to strengthen cognitive functions and ap-
pears effective in treating moderate to severe AD patients. N-Methyl-D-aspartate receptor antagonist, memantine, 
is also useful, and its combination with donepezil demonstrated a strong stabilizing effect in clinical studies on AD. 
Nonsteroidal anti-inflammatory drugs delayed the onset and progression of AD and attenuated cognitive dysfunc-
tion. Based upon epidemiological evidence and animal studies, antioxidants emerged as potential AD preventive 
agents; however, clinical trials revealed inconsistencies. Pharmacokinetic and pharmacodynamic profiling demon-
strated pleiotropic functions of the hypolipidemic class of drugs, statins, potentially contributing towards the preven-
tion of AD. In addition, targeting the APP processing pathways, stimulating neuroprotective signaling mechanisms, 
using the amyloid anti-aggregants and Aβ immunotherapy surfaced as well-tested strategies in reducing the AD-like 
pathology. Overall, this review covers mechanism of inducing the Aβ formation, key risk factors and major therapeu-
tics prevalent in the AD treatment nowadays. It also delineates the need for novel screening approaches towards 
identifying drugs that may prevent or at least limit the progression of this devastating disease.
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Introduction

Dementia is a neurodegenerative condition 
marked by diminished cognitive and thinking 
ability, altered personality and loss of reason-
ing [1]. Alzheimer's Disease (AD) is the best 
known and the most prevalent cause of demen-
tia, accounting for about 60-80% of all demen-
tia cases [2]. Owing to the increasing average 
life span, the prevalence of AD is sharply on the 
rise, with the WHO predicting above 20 million 
cases by 2020, and Delphi consensus study 
projecting about 70-80 million AD sufferers by 
2050 [3-5]. Though AD is an aging-associated 
disorder mainly reported in patients aged 65- 

85 years, it can affect younger people too, with 
environmental and genetic factors playing a 
leading contributory role in such cases [6, 7].

Presence of several pathophysiologic mecha-
nisms in the progression of AD hinders develop-
ment of a single potential treatment for the dis-
ease [8]. Although, a few therapeutic agents 
have gained prominence in the recent years 
and have reached the late stages of clinical tri-
als [9], an overall lack of any suitable disease-
modifying therapy prevents its effective man-
agement. This leads to severe damage and 
death of the functioning brain cells, which ulti-
mately proves fatal [10]. In this review, we will 
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briefly discuss the current mechanisms, ratio-
nales and targets for therapeutic interventions 
in AD. We will focus on the drugs that are known 
to suppress AD symptoms, specifically the  
neurotransmitter modulators, anti-inflammato-
ry compounds, antioxidants and cholesterol-
lowering statins. We also highlight the need for 
new drugs that may slow the disease progres-
sion, overcoming the deficiencies of existing 
therapies. Unlike earlier reviews that generally 
focus on either causes of AD or its treatment, 
we concisely provide a comprehensive idea 
about all the essential factors promoting AD 
pathogenesis, as well as potential approaches 
to the disease prevention and therapy.

AD hypotheses and Aβ Generation

Although the molecular mechanisms of AD 
pathogenesis are well-investigated, the key rea-
son that governs the pathology is yet conten-
tious. The most accepted “amyloid hypothesis” 
points to the deposition ofamyloid beta (Aβ)  
in the neurons and parenchyma as major rea-
son for synaptic, axonal and neural dysfunc-

tions and the consecutive cognitive impairment 
in patients [11-13] (Figure 1). Aβ formation is 
largely regulated by a shift in the balance bet- 
ween amyloidogenic and non-amyloidogenic 
amyloid precursor protein (APP) processing 
[14]. The APP, predominant in the brain as 695, 
751 and 770 amino acid isoforms, undergoes 
non-amyloidogenic cleavage at the α-secretase 
site at position17 of the 40-42-Aβ amino acid 
domain. This results in the formation of two 
fragments, sAPPα and a C-terminal fragment 
(CTFα). sAPPα, proved to be neuroprotective, is 
secreted. CTFα undergoes further proteolysis 
by γ-secretase, yielding p3 peptide and a C- 
terminal fragment, CTFγ. A down-regulation of 
this non-amyloidogenic processing or a shift 
towards the amyloidogenic pathway causes 
β-secretase to cleave APP before the Aβ amino 
acid site, releasing CTFβ and sAPPβ. CTFβ is 
further cleaved by γ-secretase, generating Aβ40 
and Aβ42. The Aβ42 isoform is deemed more 
toxic, participating more in the plaque forma-
tion [15, 16]. Intracellular accumulation of hy- 
perphosphorylated and aggregated tau in the 
form of neurofibrillary tangles is also closely 

Figure 1. APP processing pathway stimulating Aβ plaque deposition and AD pathology.
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Figure 2. Major risk factors promoting Aβ plaque deposition in AD.

Table 1. Important publications on Neurotramitter Modulators as AD therapeautics
Neurotransmitters Therapeutics References
Cholinergic Tacrine Nagabukuro et al., 2005; Minarini et al., 2013; Alonso et al., 2005; 

Guzior et al., 2015

Donepezil Cacabelos, 2007

Galanthamine Hopkins et al., 2012; Albuquerque et al., 2001

Rivastigmine Rodrigues Simoes et al., 2014; Toda et al., 2003

Xanthostigmine Belluti et al., 2005

Pyrrolo-isoxazole derivatives Anand and Singh, 2012; Razavi et al., 2013;

Glutametargic Memantine Golde, 2006; Farlow et al., 2008; Cummings, 2007; Danysz and 
Parsons, 2012; Dominguez et al., 2011; Prokselj et al., 2013

GABAergic Etazolate Marcade et al., 2008

Gabapentin Cooney et al., 2013

Serotonergic Lecozotan Schechter et al., 2005

Tandospirone and Buspirone Miller et al., 1992; Sumiyoshi et al., 2007

PRX-3140, PF-04995274 and RQ-00000009 (RQ-9) Ramirez et al., 2014

SB-742457 Maher-Edwards et al., 2010

Lu-AE-58054 (SGS-518) Ramirez, 2013

Dimebon Bezprozvanny, 2010

SSRI Nagy et al., 2004

Histaminergic Carebastine and mepyramine Mizuguchi et al., 2012

R-(alpha)-methylhistamine Motawaj et al., 2010

Pyrilamine Kharmate et al., 2007

Thioperamide and  ondansetron Passani and Blandina, 1998

Chlorpheniramine Baronio et al., 2014

Adrenergic SCH58261 Melani et al., 2003

related to neuronal death in AD [17, 18]. It  
is believed that Aβ deposition precedes tau 

tangle formation, with the latter triggered by 
Aβ-activated calpain and an increased tau pro-
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teolysis [19, 20]. An association of AD with sev-
eral vascular and mitochondrial risk factors, 
e.g. diabetes mellitus, hypertension, athero-
sclerosis, hypercholesterolemia, metabolic syn-
drome and obesity, led to a view that vascular 
pathologies may trigger AD [21]. It is believed 
that apolipoprotein E (Apop E) genotype is 
linked with hypercholesterolaemia [22]. Amy- 
loid and vascular mechanisms are closely relat-
ed and both culminate in Aβ deposition via dis-
ruption and perturbation of Aβ transporters, 
especially in the blood-brain barrier (BBB) [23]. 
Familial AD is governed by the autosomal, dom-
inantly inherited, rare mutations in APP and its 
processing molecules, such as the γ-secretase 
components, presenilin (PSEN)1 and PSEN2, 
and accounts for less than 1% of AD cases 
overall [24]. The present review will focus spe-
cifically on the amyloid-based Aβ concept of  
AD, highlighting the major risk factors and 
therapeutics.

AD therapeutics

Risk factors, such as neurotransmitter modula-
tion, chronic inflammation, metal-induced oxi-
dative stress and elevated cholesterol, primar-

Targeting neurotransmitters (Table 1)

Cholinesterase inhibitors: Cholinergic hypothe-
sis of AD development focuses on the increased 
hydrolysis of acetylcholine by acetylcholinester-
ase (AChE). This leads toa reduction in synaptic 
acetylcholine levels detected in AD brain [33]. 
The resulting modulation in cholinergic neuro-
transmission and functions prompts learning-
memory impairments and altered intellectual, 
behavioral and emotional responses. Clinical 
findings reveal significant cortical and hippo-
campal atrophy associated with the cholinergic 
modulations [33]. This cholinergic damage is 
promoted by butyrylcholinesterase (BuChE) 
that functions as a co-regulator and enhancer 
of AChE. However, since the effect of BuChE is 
more prominent at peripheral tissues, AChE 
gains predominance as the cholinergic neuro-
modulator in AD [34]. Of the known clinically-
used AChE drugs, tacrine, donepezil, rivastig-
mine and galantamine (Figure 3) are the most 
commonly used and considered promising for 
AD treatment. Further, these drugs have been 
derivatized to improve their efficacy and poten-
cy and reduce toxic side effects [35]. Tacrine 
(Figure 3) is the foremost approved of the first-

Figure 3. Prevalently used AD-drugs targeting neurotransmitters.

ily contribute to AD progres-
sion (Figure 2). Altered neuro-
transmission involving cholin-
ergic dysfunction, increased 
glutamate release and N- 
methyl-D-aspartate (NMDA) 
receptor action, and aberrant 
gamma-aminobutyric acid 
(GABA), histamine and sero-
tonin functioning participate 
in the pathogenesis [25-29]. 
Elevated levels of brain-spe-
cific inflammatory cytokines 
and a pronounced increase in 
the metals, iron, copper and 
zinc, in the amyloid plaques of 
the AD brain suggest inflam-
mation and metal-induced 
oxidative stress as key mech-
anisms in AD pathology [30, 
31]. Hypercholesterolemia 
and cholesterol-linked path-
ways play an important role in 
AD [32]. Thus, here we elabo-
rate on these risk factors and 
their mitigation approach in 
reducing the Aβ generation 
and, thereby, AD pathology.
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generation AChE and BuChE inhibitors that  
has cholinomimetic properties [36]. Owing to 
tacrin’s hepatotoxic effects, ring structure-
modified derivatives of tacrine were synthe-
sized [37]. Dual-binding site, homo- and hetero-
dimeric derivatives capable of binding to both 
active and peripheral AChE sites were generat-
ed based on homodimers of two tacrine moi-
eties linked by oligomethylene chains [38]. Of 
these, linkers with a heptamethylene tether 
were found to be significantly more potent  
than tacrine [39]. Incorporation of a protonable 
amino group in the middle of the tether en- 
hanced AChE selectivity and activity, and an 
amide group in place of the central methylene 
group of a heptamethylene linker increased 
BuChE selectivity [40]. Some derivatives with 
chloro and iodo moieties were also designed 
[41]. Heterodimeric derivatives with indanone 
and phthalimide tagged to tacrine also proved 
suitable [42]. Tacrine heterodimers were de- 
signed by connecting the tacrine moiety with 
imidazole, piperidine and ferulic acid. A potent 
tacrine heterodimer, carbacrine, was generat-
ed by combining tacrine with the carbazole  
moiety of carvedilol that had IC50 values of 2.15 
nM and 296 nM for AChE and BuChE respec-
tively [43]. Combination of tacrine with the hep-
atoprotective nitric oxide (NO) donors appeared 
safe [44]. Interestingly, to reduce Ca2+ toxicity, 
Ca2+ channel blockers, such as 1,4-dihydro- 
pyridine (DHP) were inserted forming tacripy-
rines, of which the one with a cycloheximide 
ring in DHP moiety appeared the most potent 
as AcHE inhibitor (IC50 = 0.37 µM) [45]. Tacrine-
phenyl-benzoheterocyclic derivative demon- 
strated AChE inhibitory property. Moreover, this 
benzo derivative functioning was also de- 
pendent on the methylene linker chains [46]. 
Donepezil (IC50 = 5.7 nm) (Figure 3) is con- 
sidered less toxic and physiologically well-
accepted and was the second FDA-approved 
drug for treating AD. The drug enhances cholin- 
ergic transmission and attenuates neuronal 
damage [47]. Interaction of its benzyl piperi-
dine and indanone groups with the indole rings 
at the peripheral anionic site (PAS) proved use-
ful. N-benzylpiperidine derivatives with aroyl-
thiourea, fluoro and a chloro incoroporation at 
indanone system were also designed and dem-
onstrated to have 30-50% of donepezil’s IC50 
value of [48]. A combination of 3-amino-6- 
phenylpiridazine with N-benzylpiperidine units 
yielded a compound that was several times 

more potent than donepezil. Combining piperi-
dine, indanone and methylene groups resulted 
in a compound with the highest potency, with 
an IC50 of 0.0018 μM [49]. Galanthamine (IC50 
= 800 nM) (Figure 3), a tertiary alkaloid drug, 
manifests AChE activity reduction and modu-
lates nicotinic acetylcholine receptors (nAChR) 
towards enhancing acetylcholine generation 
[50]. The drug is a proven allosteric modulator 
of nAChR [51]. Though less toxic, its reduced 
potency for acetylcholine release compared to 
tacrine led to the designing of few derivatives 
using alkyl linkers, especially eight to ten meth-
ylene groups, and a terminal ammonium or 
phthalimido group with several fold increased 
efficacy [52]. N-substituted galanthamine de- 
rivatives with incorporated benzylpiperidines 
and alkyl linkers, specifically with six methylene 
units, appeared to have highest AChE efficacy 
amongst all derivatives [43]. Rivastigmine (IC50 
= 4.15 µM) (Figure 3), with a carbamate moiety, 
emerged as a new generation of AChE inhibi- 
tor which is long-acting and reversible. Ben- 
zopyrano[4,3-b]pyrrole carbamate derivatives 
with further methyl derivatization at carbamoyl 
nitrogen showed a potent inhibitory property 
[53]. A combination of donepezil and rivastig-
mine linked through 5,6-dimethoxy-indan-1-one 
and dialkyl-benzylamine moieties demonstrat-
ed significantly higher AChE rather than BuChE 
inhibition, indicating selectivity towards the for-
mer [54]. For these compounds, variations in 
the meta- and para-substituted derivatives 
were evident [54]. A heterodimer of rivastig-
mine and the serotonin transport inhibitor, 
fluoxetine, appeared as a potent second-gener-
ation dual AChE-SERT inhibitor, emphasizing 
the importance of incorporating dual functions 
in drugs [55]. Xanthostigmine derivatives pos-
sess the amyloid pro-aggregatory property due 
to their binding at the AChE peripheral site. Its 
arylidenebenzocycloalkanone derivative target-
ed both the active and peripheral sites, and a 
further incorporation of three or seven methy-
lene units alkoxy spacer chain and arylidene 
moiety into the arylidene aryl ring moiety 
enhanced contact with PAS [56]. Of the tested 
meta- and para-isoforms, the para-aminoben-
zoic acid derivative possessed a Ki value of 53 
nM (AChE). Further molecular dynamics and 
docking studies confirmed their efficacy as 
AcHE inhibitors. Cis-isomers of pyrrolo-isoxa-
zole derivatives with methoxy substitution, 
especially at the para-position were deemed 
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highly potent, claiming an anti-amnestic and 
AChE inhibitory abilities higher than that of 
donepezil [57]. The polyphenolic compounds, 
coumarinand its derivatives, such as ensaculin 
(KA-672 HCl) containing a benzopyran ring and 
a piperazine substitution [58] and AP2238 hav-
ing benzylamino group linked to coumarin via 
phenyl ring, are rising as AChE/BuChe inhibi-
tors with peripheral and catalytic site-binding 
capacities [59]. Flavonoid derivatives linking 
flavonoid and benzylpiperidine through oxygen 
atom or alkoxyl group (-OCH2) spacers proved 
effective [60]. A replacement of benzyl piperi-
dine moiety with amino alkyl or the conforma-
tionally restrained hydrophobic groups, pyrro-
lidine or piperidine at the meta- or para-posi-
tions was more potent, whith the latter two 
demonstrateinga greater effect [60]. Carba- 
mate-substituted 5,7-dimethoxyflavanone, hav-
ing an IC50 of around 10 nM or several folds 
greater respectively [61].

However, cholinesterase inhibitors are not re- 
commended for patients with advanced AD and 
are prescribed rather for moderate or mild AD 
cases. Other side effects of these drugs include 
unwanted cholinergic stimulation in the intes-
tine, heart, muscle, kidney, and other organs. 
Thus, AChE inhibitors specifically targeting the 
cholinergic system of the brain are desired.

Glutametargic alteration: Modulation in the 
functioning of glutamatergic neurons is gener-
ally viewed as a property of mature AD pathol-
ogy, mediated strongly by the altered levels of 
the synaptic glutamate neurotransmitter [62]. 
NMDA receptor activation inducing excitotoxici-
ty by enhanced synaptic glutamate accumula-
tion damages the glutamatergic neurons and 
adversely impacts the neuronal proliferation 
and differentiation, causing learning, memory 
and cognitive impairments [62]. Further, a 
direct interaction between the NMDA receptors 
and APP is also reported, indicating the impor-
tance of glutamatergic synaptic transmission  
in AD [63]. Memantine (1-amino-3,5-dimethyl-
adamantane) (Figure 3), an adamantane deriv-
ative, is the most used and cost-efective drug 
targeting the NMDA receptor for AD treatment, 
especially in the USA and Europe [64, 65]. It is 
proved through clinical studies that the drug 
has symptomatic effectiveness and is known to 
treat moderate to severe AD [66]. As detected 
through cultured neuronal whole-cell patch 
clamp recordings, memantine has a modest 

affinity of about 1 mM at 70 mV [67]. The pro-
posed mechanism appears uncompetitive, 
fast, voltage-dependent and with reduced ten-
dency for entrapment in the receptor channel 
[67]. Memantine is capable of blocking the 
NMDA receptor channel and in preventing glu-
tamate-mediated excitotoxicity by interacting 
with Mg2+ or binding to NMDA channel close to 
the magnesium-binding site, and thereby reduc-
ing Ca2+ entry in the post-synaptic neurons [68]. 
Other than NMDA receptor-mediated function-
ing, memantine also reduced Aβ-induced neu-
ronal apoptosis, marked by an attenuated DNA 
fragmentation and altered Bcl-2 immunostain-
ing [69]. A non-specific neurotransmitter target-
ing is also detected with memantine, via its 
ability to antagonize human α7nAChR, indicat-
ing a concern for studies involving the co-exis-
tence of NMDA and nACh receptors [70]. How- 
ever, for situations that involve aberrant func-
tioning of both nAcHER and NMDAR in AD, 
memantine appears very effective. A modula-
tion of dopaminergic and serotonergic/hista-
minergic neurotransmission is also reported 
with memantine [71, 72]. Interestingly, it was 
claimed that a combination of memantine and 
cholinesterase inhibitor with different and inter-
connected activities is preferred: the former 
takes care of agitation/aggression and delu-
sions, and the latter reduces depression, anxi-
ety and apathy thus indicating complementary 
activities [73, 74].

GABAergic alteration: It is proven that transgen-
ic mice with early-stage amyloid pathology 
manifest modulations in the cholinergic neu-
rons, followed by glutamatergic and lastly the 
inhibitory GABAergic neurons [75]. By inducing 
GABAA receptor subunit endocytosis, Aβ im- 
pedes synaptic inhibition [76]. GABAA under-
goes a compensatory increase in a few hippo-
campal regions and sub-regions where the 
NMDA and non-NMDA type α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid receptor 
(AMPA)-receptors are reduced at the late AD 
stages, probably in order to maintain hippo-
campal functions [77]. The pyrazolopyridine 
compound etazolate with anxiolytic-like pro 
perties at nanomolar tolow micromolar phar-
macological doses selectively affected the 
GABAA receptor and enhanced the propagation 
of α-secretase pathway towards sAPPα [78]. 
Another anticonvulsant drug, gabapentin, struc- 
turally related to GABA demonstrated promi-
nent positive responses to treatment at low 
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doses in mixed vascular/Alzheimer dementia 
patients [79]. However, the drug caused seda-
tion at a high dose, and appears to affect other 
neurotransmitter systems, including serotonin 
and glutamate [80].

Serotonergic alteration: The hippocampal sero- 
tonin 5-hydroxytryptamine (5-HT) receptor, es- 
pecially 5-HT1A receptor, and the cortical 
5-HT6 serotonergic receptors and their metab-
olites, particularly 5-HIAA, play key role in the 
memory and cognition [81]. Post-mortem AD 
brain demonstrated a decrease in 5-HT, and its 
reduction in the cortex correlated with the neu-
ronal loss at the raphe nuclei [82]. This seroto-
nergic dysfunction is a property of the early-
onset AD, reportedly with the mis-regulation of 
α-secretase processing [83]. Given the location 
of many of these receptors on terminals of 
other neurons, it is possible that these changes 
reflect the loss of cholinergic synapses as well 
[84, 85]. Thus, preclinical studies on 5-HT1A 
receptor antagonists reported pro-cognitive 
effects with the significant abetment of gluta-
matergic and cholinergic transmission [86]. 
The 5-HT1A receptor antagonist lecozotan 
(SRR-333) initially appeared promising, safe 
and well tolerated in clinical pharmacokinetic 
studies at a single drug dose [87]. However, 
adverse side effects prevented its progress 
into phase II clinical trials. Few partial agonists, 
such as tandospirone and buspirone, are being 
considered useful in preventing dementia [88, 
89]. Agonists of the 5-HT4 G-protein-coupled 
receptor, such as PRX-3140, PF-04995274 and 
RQ-00000009 (RQ-9), that act by enhancing 
the acetylcholine release, are in the phase I or 
II clinical studies [90]. Along with the memory 
enhancement, RQ-9 was capable of reducing 
Aβ deposition in the transgenic Tg2576 mice 
[90]. 5-HT6 receptor antagonist, SB-742457, 
completed phase II clinical studies [91]. SB- 
742457 went through four phase II trials for 
mild-to-moderate AD, and was claimed compa-
rable to donepezil [92]. Studies also revealed 
an additive effect of the 5-HT6 receptor antago-
nist, Lu-AE-58054 (SGS-518) with donepezil 
[85]. An antihistamine drug, dimebon, that 
binds to the 5-HT6 receptor, appeared very 
promising in phase II, but failed in phase III 
[93]. However, a dimebon derivative, P7C3, 
seemed to have neuroprotective properties 
and is being taken up for clinical observations 
[94]. In addition to antagonists, the 5-HT6 

receptor agonist E-6801 also proved effective 
in improving cognition synergistically with done-
pezil [95]. Serotonin reuptake inhibitors (SSRIs), 
eg. Fluoxetine, sertraline and citalopram, prov- 
ed useful with AChE inhibitors such as rivastig-
mine, donepezil, etc. in dementia [96]. It is well 
accepted that these SSRIs may attenuate Aβ 
levels and promote neuronal survival and func-
tioning [97]. Overall, serotonergic therapy, via 
targeting 5-HT1A, 5-HT4 and especially 5-HT6 
receptors, is being considered increasingly 
important, although mostly for mild-to-moder-
ate AD patients on the early stages of AD.

Histaminergic modulation: It is reported that 
short-term and long-term memory is regulated 
by histamine, and a degeneration of histamin-
ergic neurons impairs the cognition [98]. 
Studies on null-mutations of the excitatory 
receptors, H1R and H2R, in frontal cortex, 
amygdala and hippocampus revealed histidine 
participation in maintaining the normal synap-
tic plasticity and learning-memory [99]. For the 
histaminergic synaptic functioning, an interac-
tion with aminergic and peptidergic systems 
was also reported [100]. An enhanced activity 
of the inhibitory H3Rs attenuated the choliner-
gic system as well [101]. Histamine is known to 
contribute to dendritic cell (DC) functioning and 
regulates immune responses via increased 
interleukin IL-6 and IL-10, decreased IL-12, and 
enhanced secretion of chemokines and matrix 
metalloproteases-9 and -12, the latter partici-
pating in DC migration via the H2R binding 
[102]. H1R and H4R triggered the T helper 2 
(Th2)-type immune responses and modulated 
Ca2+ influx, involving store-operated calcium 
entry (SOCE) [103]. Aβ-dependent alteration in 
T helper cell memory with altered expression of 
cytokines and chemokines clearly indicated a 
link with histidine. An aberrant postreceptor 
signaling in AD involving phosphoinositide 
hydrolysis and adenylate cyclase pathways that 
are constitutively suppressed by the cortical 
H3R substantiated association between histi-
dine and AD [102]. Inverse agonists of histidine 
receptor, carebastine and mepyramine, sup-
pressed H1R and also histamine generation, 
and prevented an alteration in Ca2+-signaling 
via alteration of protein kinase A (PKA) and 
cyclic adenosine monophosphate (cAMP) re- 
sponse element binding protein (CREB) [104]. 
The H3R agonist, R-(alpha)-methylhistamine, 
was found to distinctly attenuate muscarinic 
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acetylcholine receptor-dependent phospholi-
pase C (PLC) activity and calcium-calmodulin- 
and cAMP-induced protein kinases, thereby 
predicting an attenuation of the presynaptic 
excitatory functions of acetylcholine in AD 
[105]. The H3R antagonists that promote the 
generation of histamine, acetylcholine, dopa-
mine and norepinephrine, and suppress the 
adenyl cyclase-PKA pathways are being pro-
moted as drug targets for AD. The H1R antago-
nist, pyrilamine, inactivated His-dependent 
STAT6 hyperphosphorylation, while H2R antag-
onist, ranitidine, and H3R/H4R antagonist, 
thioperamide, failed to do so [106]. Rather, 
H3R antagonists that stimulate the cognitive 
domains were proposed as new therapeutic 
agents for AD treatment. Chlorpheniramine,  
an H1R antagonist, that functioned as a sero-
tonin-norepinephrine reuptake inhibitor alter- 
ed the cortical and hippocampal cholinergic 
tone and affected learning and memory in AD 
[107]. Furthermore, the H3R antagonist, thiop-
eramide, and 5-HT3 antagonist, ondansetron, 
healed cholinergic deficits, suggesting their pro- 
bable role in inhibiting the AD pathogenesis 
[108].

Adenosine receptor: Activation of adenosine 
receptor of A2A subtype induced the anti-
inflammatory IL-10 and prevented Aβ deposi-
tion [109, 110]. An interaction of Aβ with β2- 
adrenergic receptors induced internalization 
and degradation of the latter, causing adrener-
gic and glutamatergic aberrations and reduc-
tion in β2-adrenergic-stimulated cAMP [111, 
112]. It was found that both caffeine and ade-
nosine receptor antagonists averted Aβ build-
up via increased striatal PKA activity and p- 
CREB levels, and decreased p-JNK and p-ERK 
[113, 114]. The reduction in A2a adenosine re- 
ceptors, therefore, stimulated pro-survival anti-

ing the participation of complement, cytokines, 
chemokines and acute phase proteins [117]. 
Chronic complement activation leading to 
membrane blebbing and endocytosis, and neu-
rite opsonization was observed in the vicinity of 
Aβ [117]. Activated microglia and astrocyte-
generated cytokines, such as the pro-inflam-
matory IL-1 and tumor necrosis factor alpha 
(TNFα), regulate cyclooxygenase (COX) activity 
and extensively participate in APP metabolism 
[118, 119]. Supportively, cytokine and Trans- 
forming Growth factor beta polymorphism is 
observed in the AD brain [120]. In addition, 
these cytokines, alongside chemokine IL-8, 
intracellular adhesion molecule-1, macrophage 
colony stimulating factor and acute phase pro-
teins such as C-reactive protein, serum amy- 
loid A, and transthyretin coordinate the acute 
phase mechanisms [121-125]. The inflamma-
tory mediators evidently activate the AChE 
enzyme activity and thereby aggravate the cho-
linergic dysfunction in AD [126]. Thus, targeting 
inflammation to reduce AD pathology appears 
to be advantageous.

Microglial generation of superoxides and oxida-
tive intermediates is an early feature of AD 
[127]. Thus, therapeutics that target microglia 
and prevent microglial activation are being 
designed. Small molecules directed towards 
the 13-16 site of Aβ (HHQK domain) that binds 
within the microglia [128], and SD-282 that  
targets microglial P38-MAPK mechanism of 
inflammation [129] are also being assessed. 
Drugs aiming at the plaque-linked complement 
C3 and neurotoxic C5b-9 [130] and the brain 
opsonins integrated to the inflammatory cas-
cade are hypothesized to suppress the mem-
brane attack complex that mediate the comple-
ment cascade-mediated neuronal killing [131]. 

Table 2. Important publications on anti-inflammatory agents as AD 
therapeautics
Inflammation 
inhibitor Therapeutics References

NSAID Indomethacin Hoozemans et al., 2001
BF389 Blom et al., 1997
SC-560 Choi et al., 2013
Nitro-flurbiprofen Jantzen et al., 2002; Cole et al., 2004
SD-282 Koistinaho et al., 2002
Targeting Rho-GTPases Kubo et al., 2008
Targeting PPAR Nenov et al., 2014

apoptotic cascades and 
cognitive impa irments in- 
duced by Aβ [115]. A selec-
tive adenosine A(2A) re- 
ceptor antagonist SCH58- 
261 also demonstrated a 
similar effect [116].

Targeting inflammation 
(Table 2)

Neuroinflammation is es- 
tablished as intricately 
associated with AD, involv-
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However, the most well-studied compounds  
are the non-steroidal anti-inflammatory drug 
(NSAID) that had undergone epidemiological 
studies. The studies revealed that consistent 
use of NSAID has positive effect in attenuating 
the AD risk [132]. Indomethacin inhibited astro-
glial IL-1-dependent IL-6 secretion involving a 
reduction in the prostaglandin-2 [133]. A spe-
cific cycloxygenase-2 (COX-2) inhibitor, BF389, 
followed almost a similar IL mechanism [134]; 
however, the COX-2 inhibitors failed to prevent 
cognitive decline. Cognitive restoration and 
reduction in the AD pathological features in tri-
ple transgenic mice by the anti-inflammatoy 
COX-1 inhibitor, SC-560, appeared hopeful 
[135]. Ibuprofen, rather than adopting the COX 
inhibition pathway, suppressed γ-secretase 
activity and reduced Aβ levels, as found in APP-
transgenic mice [136]. A nitro-derivative of ibu-
profen, nitro-f﻿﻿lurbiprofen, released NO that pro-
moted microglial Aβ clearance and also pre-
vented the reduction of plasticity-related genes 
[137, 138]. Very interestingly, the anti-inflam-
matory mode of action of nitro-ibuprofen was 
different from SD-282, that is used for sup-
pressing microglial activation in AD [129]. Thus, 
a suitable NSAID tha balancies the two oppos-
ing properties in terms of microglial activation 
is essential. Via targeting the BACE activity,  
the peroxisome proliferator-activated receptor 
gamma agonists, pioglitazone, prevented cyto-
kine-dependent Aβ production, while the antag-
onists, GW0072, prevented NSAID-mediated 
amyloid formation [139-141]. NSAID regulated 
Rho-GTPases and restrained the reduction in 
axonal functioning and astroglial migration and 

activation in AD [142]. Another very interesting 
aspect is that the targeting of the IL-1 respon-
sive element of 5’-untranslated region (5’UTR) 
of APP proved responsible for driving APP trans-
lation [143]. These drugs are also conjectured 
to target the interaction of AU-rich protein with 
the 3’-UTR of IL-1 and TNFα, or the thalidomides 
that block the cytokine translation [143]. Thus, 
targeting the NSAID-dependent cytokines as 
well as APP translation appears quite promis-
ing. However, long duration treatments with 
COX inhibitors were found to cause damage to 
heart, kidney, intestine and other organs [144-
146]. Moreover, the belief that NSAIDs function 
in the ApoEε4-carrying AD population restricts 
the use of NSAID in other AD patients [147]. 
Thus, these limitations associated with the 
anti-inflammatory targets enlighten the need 
for newer compounds and drugs for AD.

Targeting metals and oxidative stress (Table 3)

Trapping of Fe, Cu and Zn ions within the amy-
loid plaques and their interactions with APP 
and Aβ are prominent mechanisms accelerat-
ing the amyloid pathology [143]. Several ex- 
perimental techniques, such as proton-induced 
X-ray emission, epifluorescence microscopy, 
immersion autometallography [148], synchro-
tron X-ray fluorescence (SXRF), magnetic reso-
nance imaging (MRI), susceptibility weighted 
MR (SWI), and laser capture microdissection 
coupled with X-ray fluorescence microscopy 
confirmed the metal localization in concentra-
tions of ~15 μM for Cu2+ and about 1 mM for 
iron and zink [149-152]. Aluminium is another 

Table 3. Important publications on Antioxidants and Mitochondrial targets as AD therapeautics and 
preventive agents
Anti-Oxidative stress 
agents Therapeutics References

Antioxidants Vitamin C Sano et al., 1997, Zandi et al., 2004

Carotenoids Javed et al., 2012; Vijayapadma et al., 2014

Resveratrol Joseph et al., 2003; Ho et al., 2009

Curcumin Yang et al., 2005, Ringman et al., 2012

Neu-P11 He et al., 2013

Green tea and food additives Kim et al., 2009; Zhao et al., 1989; Goodman et al., 1994; Iuvone et al., 2006

Mitochondrial targeting Coenzyme Q10 (CoQ10) Lee et al., 2009

a-lipoic acid Siedlak et al., 2009

MitoQ and plastoquinone Kapay et al., 2011; McManus et al., 2011

SS31 Calkins et al., 2011

Nrf2/ARE pathway targets Tertbutylhydroquinone Ramsey et al., 2007;  Kanninen et al., 2008; Dumont et al., 2012

Adenovirus-dependent gene delivery Kanninen et al., 2008; Dumont et al., 2012

Metal Chelation Desferrioxamine, EDTA and Clioquinol Mandel et al., 2007; Amit et al., 2008; Hegde et al., 2009
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metal that has emerged as an important par-
ticipant in AD [152]. Catalytic reactions involv-
ing the generation of neurotoxic hydrogen per-
oxide (H2O2) and superoxide ion generation are 
the major metal-mediated mechanism of Aβ 
generation. Thus, superoxide dismutase-1 and 
co-enzyme Q that possess endogenous anti-
oxidant properties are assessed for their use-
fulness in animal models exposed to oxidative 
stress, and are also being tested for efficacy  
in AD [153]. In the current review section, we 
will discuss the specific participation of these 
heavy metals in the AD pathogenesis, followed 
by the therapeutics targeting the metals and 
their induced mechanism.

Fe: Cortical and hippocampal over-expression 
of hemeoxygenase (HO-1) promotes heme con-
version to Fe2+ inducing the mitochondrial in- 
sufficiency, enhancing cytochrome C oxidase 
activity and H2O2 generation [154]. Further- 
more, an involvement of Fenton reaction (Fe2+ + 
H2O2 → Fe3+ + OH- + OH•) in neurons and astro-
glia triggers free radical generation and oxida-
tive stress, which then activates neurotoxic 
mechanisms associated with nuclear factor-κB, 
p53, c-Jun transcription factors, DNA damage 
and apoptosis [155]. These oxidative stress 
mechanisms culminate in BBB disruption [156], 
myelin breakdown and eventually cognitive de- 
cline in AD [157]. An IRE-IRP binding that regu-
lates APP translation is also altered due to 
excess iron accumulation via formation of an 
IRP-1 and [4Fe-4S] cluster that deregulate iron 
uptake and APP translation [143]. A resem-
blance of APP 5’-UTR sequence with the ferritin 
IRE stemloop strongly supportes the intense 
participation of iron in the pathology. More- 
over, an iron binding site was also found in  
the APP 5’-UTR, corroborating the concept of 
Fe-regulated APP and thereby Aβ generation 
[158, 159]. Furthermore, the iron-mediated 
down-regulation of α-secretase activator furin 
was also shown to participate in iron homeo-
stasis [160].

Cu: The fact that copper ions bind to histidine, 
aspartate and tyrosine- residues in Aβ with a 
dissociation constant at the attomolar levels, 
and the Cu-promoted stimulation of Fenton 
reaction strongly support the participation of 
Cu in oxidative stress-mediated AD pathogene-
sis [161]. The released H2O2 interacts with cop-
per tyrosinate that cross-links with Aβ, further 
enhancing Aβ generation [162]. The process of 
Cu-mediated toxicity during AD pathogenesis 

was proven to be stimulated by an interaction 
of copper ions with membrane lipid rafts, alter-
ing endocytosis of APP that bears the features 
of a Cu transporter [163].

Zn: A Micro-PIXE study revealed the Zn(II) levels 
of around 70-90 μg/g, amounting to about 
1020-1060 μM concentration in the plaque 
rim, core and the total plaques [143]. The zink 
level as high as 1 mM was also reported in 
cerebral amyloid plaques, with a pre-synaptic 
vesicle to postsynaptic neuronal discharge 
[164]. The APP was found to have a Zn-binding 
domain located between the amino acids 181 
and 200, leading to its binding to the amino 
acid 6-8 in Aβ [165]. The alteration in Zn release 
involvesan enhanced expression of zinc trans-
porter proteins (ZNTs, ZnT2-8) that further pro-
motes abnormal Zn deposition in the AD brain 
[166]. This change in Zn homeostasis alters its 
normal functions, influencing APP interaction 
with heparin-like molecules or laminin that par-
ticipates in the biological process of neurite 
outgrowth [167]. Zinc deposition in Aβ pro-
motes γ-secretase activity via enhanced prese-
nilin formation, and also activates transcription 
factors nuclear factor kappa-B and Specificity 
protein-1 that bind to APP promoter, thereby 
promoting amyloidogenic APP synthesis [168].

Al: Studies in APP transgenic Tg2576 mice 
revealed an increase in insoluble Aβ deposition 
upon dietary Al supplementation and consump-
tion of Al-treated drinking water [169]. This was 
supported by an increased Al levels within  
Aβ core plaques peptides of aluminium dust-
exposed workers [170]. Apart from inducing  
oxidative stress, aluminium disrupts neuronal 
intracellular Ca2+ release and stimulates DNA 
damage during AD pathology [171]. Because of 
the explicit role of transition metals in AD, metal 
chelation in modifying the AD progression is 
being widely accepted. Desferrioxamine, EDTA 
and clioquinol were found to be effective in 
attenuating AD pathogenesis in transgenic AD 
mice, which also proved successful in clinical 
trials [172-174]. The metals function via an oxi-
dative stress mechanism, and hence antioxi-
dant treatments are deemed as a promising 
preventive approach in mitigating AD.

Oxidative stress attenuation: antioxidant treat-
ment

Animal studies on APP and PS1 transgenic 
models, and Aβ over-expressing animals re- 
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vealed an anti-oxidant-mediated cognitive res-
toration associated with a reduction in hippo-
campal and cortical Aβ deposition. The antioxi-
dants mainly studied include the vitamins 
(carotenoids, vitamins C and E, lipoic acid, 
coenzyme Q10, N-acetylcysteine, polyphenols 
and Ginko biloba extract [175]. An attenuation 
in reactive oxygen species (ROS) generation 
and Aβ-induced neurotoxicity in cultured prima-
ry neuronal cultures and cell lines, such as 
PC12 cells, as well as in Tg 2576 AD transgenic 
mice, was observed using vitamin E [176, 177]. 
The effect of vitamin E was more pronounced 
when combined with anti-inflammatory agents, 
as reported for indomethacin [178]. Patient 
studies revealed tocopherol-mediated attenua-
tion in AD pathology, and its combination with 
vitamin C augmented the preventive effect 
[179, 180]. Combining vitamin E with meman-
tine and donepezil, however, failed to add to the 
protective effect of vitamin E alone [181, 182]. 
Mitochondrial targeting aimed at mitigating  
the ROS generation appeared as a pertinent 
anti-oxidant mechanism, where coenzyme Q10 
(CoQ10, ubiquinone) played a potent role [183]. 
However, the effect of ubiquinone or its water-
soluble cognate, idebenone, though appealing 
in the pre-clinical studies, failed to prove effec-
tive in clinical trials [184, 185]. Treatment with 
the mitochondrial antioxidant, α-lipoic acid, sig-
nificantly improved cognition in Tg2576 trans-
genic AD mice [186]. This was supported by 
patient data, at a level comparable to AChE 
drug therapy [187]. A combination of lipoic  
acid with the anti-oxidant, omega-3-fatty acid, 
appeared potent in slowing down the function- 
al cognitive decline [188]. In vitro effect of  
lipoic acid in inhibiting the Aβ oligomerization 
was also reported [189]. Other mitochondrial 
antioxidants, such as MitoQ and plastoqui- 
none, prevented oxidative stress, the astroglia-
induced neuroinflammation and, ultimately, AD 
pathology [190, 191]. Plastoquinone also pre-
vented hippocampal modulations of Long Time 
Potentiation in rats [191], and SS31 prevented 
alterations in the mitochondrial dynamics of 
transgenic AD mice neurons [192]. MitoVitE 
was found to be an advanced and more effec-
tive form of MitoQ [193]. Mitochondrial perme-
ability transition pore (mPTP), that regulated 
mitochondrial functions, was also targeted. 
Dimebon, which appeared to be promising in 
this context, failed in clinical trials, probably 
because of its complex mechanism of action, 

which involves AChE reduction and 5-HT4  
stimulation on one hand, and 5-HT6 and 5-HT3 
activations that impaires cognition [194]. N- 
acetylcysteine (NAC) is another antioxidant  
that reduced malondialdehyde, increased glu-
tathione and restored the LTP [195, 196]. 
Interestingly, a study revealed that a combina-
tion of NAC and lipoic acid, along with curcumin, 
epigallocatechin gallate and the anti-oxidant 
vitamins is a prominent inducer of normal  
cognitive functioning in Tg2576 mice [197]. 
Flavonoids and carotenoids themselves were 
also widely studied as preventive agents in AD 
[194]. Natural flavonoid and carotenoid, namely 
rutin and lutein, prevented dementia [198, 
199]. Curcumin proved important in reducing 
Aβ and AChE in animal studies; however, the 
human studies were not so promising [200, 
201]. Resveratrol containing blueberry [202] 
and red grape [203] caused attenuation in Aβ 
plaque deposition, with epidemiological sur-
veys proving the red wine-induced reduced 
memory loss in AD [204]. However, all these 
natural antioxidants could be claimed effective 
after completion of clinical trials [194]. Supple- 
mentation with the antioxidant melatonin that 
quenches free radicals reduced fibrillar amyloid 
burdens and prevented neurodegeneration via 
reduction of Aβ-induced neuronal apoptosis, 
with observed protection in human studies 
[205]. A melatonin agonist Neu-P11 was found 
to be effective in rats [206]. Alkaloid and a  
flavonoid derivative, Silibinin, Ginkgo biloba 
and a long-terncaffeine intake proved useful 
against Aβ-induced damage in transgenic ani-
mals [207-210]. Green tea and food additives, 
such as theanine, rosamarinic acid and nordi-
hydroguiaretic acid had both antioxidant prop-
erties and anti-amyloid features as well [211-
214]. An endogenous antioxidant mechanism 
targeting the nuclear receptor factor 2 (Nrf2)/
antioxidant response element (ARE) pathway 
also seems to be a potential alternative 
approach to attenuate the AD pathology [215]. 
Tertbutylhydroquinone or adenovirus-depen-
dent gene delivery along with the triterpenoid 
CDDO-methylamide that stimulated Nrf2 ex- 
pression and translocation protected against 
AD pathology [216, 217]. Overall, the general 
prevailing view is that although oxidative stress 
is a major risk factor for AD, the therapeutic 
effects of antioxidants alone in clinical trials 
appear less promising. Probably, the antioxi-
dants bioavailability, water and lipid solubility, 
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mechanism of action, time and duration of 
treatment, and combined use are to be taken 
into consideration for further preclinical and 
clinical studies.

Targeting hypercholesterolemia (Table 4)

APP is a transmembrane protein, and choles-
terol is an integral component of the lipid mem-
brane. Hence, the changes in cholesterol level 
affect the lipid raft proteins, thereby impacting 
the APP as well [218]. The binding of choles-
terol to CTFβ through the GXXXG motif is  
an important factor that brings APP, γ- and 
β-secretases close together and enhances the 
amyloidogenic cleavage [219]. Since the major 
non-amyloidogenic component, α-secretase, is 
not a part of the lipid raft, cholesterol contrib-
utes greater to the amyloidogenic cleavage 
pathway of APP [219]. Noticeably, APP is also 
closely associated with the cholesterol biosyn-
thesis regulatory enzymes - sterol receptor ele-
ment binding protein (SREBP) and HMG-CoA 
reductase [220]. Participation of cholesterol in 
Aβ aggregation was also reported through its 
interaction with the ganglioside GM1 found in 
lipid rafts of CNS [221]. Furthermore, localiza-
tion of Aβ degrading enzymes, insulin-degrad-
ing enzyme (IDE) and neprisylin (NPE) and plas-
min in the lipid rafts points towards the role of 
cholesterol in influencing the Aβ degradation 
[222]. Aβ clearance is also influenced by ApoE 
polymorphic allelles, ε4, ε3 and ε2, that partici-
pate in the cholesterol transport and impact 
the brain cholesterol homeostasis [223]. ApoE 
participates in neuroinflammation by modulat-
ing the toll like recetor and the nuclear factor 
kappaB pathways [224]. In fact, it is believed 
that the effect of APOE on BBB is inflammation-
mediated, since its integral cell component, 
astrocytes, induce inflammation when activat-
ed [225]. Increased levels of oxysterols interact 
with APP and Aβ, with several hydroxylated cho-
lesterol forms identified in the AD brain [226]. It 
is believed that the oxysterols in the form of 24- 
and 25-hydroxycholesterol (24-OH) that, unlike 

cholesterol, can cross the BBB, actually medi-
ate the effects of cholesterol in the AD patho-
genesis [226]. A significant overlap of choles-
terol and metal-mediated AD pathology was 
also observed. Firstly, the capacity of both met-
als and cholesterol to bind monomeric Aβ and 
induce its oligomerization emerged as a good 
explanation [219]. Cholesterol itself undergoes 
oxidation that may enhance the Aβ generation 
[227]. Secondly, the IDE and NEP require met-
als for their functioning [219]. Generation of 
oxysterol was also conjectured to be metal-oxi-
dative and stress-dependent [228]. Thus, anin-
creased dietary cholesterol and metal expo-
sure, is hypothesized to promote Aβ generation 
and reduce Aβ degradation in a synergistc way, 
thereby enhancing plaque formation.

Cholesterol lowering drugs/statins: Because of 
the well-proven link between cholesterol and 
AD, statins are believed to be therapeutic for 
the disease. Simvastatin, via increased PI3K/
AKT activity and endothelial NO synthase path-
way, contributes towards inhibiting the learning 
and memory impairment in the Tg2576 mice 
[229]. However, simvastatin has no effect on 
the Aβ level in brain. Rather, administration of 
simvastatin to Aβ-immunized mice exacerbat- 
ed the amyloid angiopathy [230]. The suppres-
sion of cholesterol metabolism with the help of 
HMG-CoA reductase inhibitor lovastatin, or its 
active metabolite lovastatin acid at 10-60 mg 
once-daily dose, caused dose-dependent Aβ 
reduction in human subjects [231]. Epide- 
miological studies have demonstrated that 
hypercholesterolemia was a risk factor for AD, 
and lovastatin caused a delayed AD onset  
and attenuated AD development [231, 232]. 
Atorvastatin was reported to prevent the neuro-
nal degeneration following Aβ induction. The 
effects of both atorvastatin and pitavastatin 
were mediated by attenuation of inflammation 
and oxidative stress and increase in the gluta-
matergic transporters [229, 233]. Statins were 
also found to suppress inflammation and 
microglial iNOS synthesis and NO generation in 

Table 4. Important publications on cholesterol-lowering drugs as AD therapeautics
Anti-cholesterol 
agents Therapeutics References

Statin Simvastatin Shinohara et al., 2014
Lovastatin Friedhoff et al., 2001; Buxbaum et al., 2002
Atorvastatin, Cerivastatin, Fluvastatin, Pravastatin, Rosuvastatin Barone et al., 2014
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AD via pleiotropic actions involving isoprenyl 
intermediates [234]. The neuroprotective pleio-
tropic effects of statin included an increase in 
SOD activity, activation of PKC, augmentation 
of endothelial nitric oxide synthase (eNOS) and 
reduction of CoQ10 levels [235, 236]. The 
effects observed in clinical trials were analyzed 
for atorvastatin, cerivastatin, fluvastatin, prava- 
statin, rosuvastatin and simvastatin and were 
found to be independent of apoE genotype 
[237]. There were several controversies in 
regards to the statins’ beneficial role, however. 
It was later deduced that, despite lower report-
ed AD incidence among the statin-treated 
users, there is no direct link between statins 
and the AD risk and development. Moreover, 
contradicting the phase II study, phase III ran-
domized clinical trials showed a less beneficial 
role of statins [237]. Thus, it is suggested that 
clinical trials with a large patient population, 
different duration and different stages of dis-
ease are needed to find out the exact role of 
the cholesterol-reducing agents in AD. An up-
regulation of the heme oxygenase/biliverdin 
reductase system, probably via inhibition of 
BACE1, is a likelypossible pathway for inhibiting 
the AD progression. It is hypothesized that the 
effects of simvastatin, lovastatin, atorvastatin 
and rosuvastatin are based on this mechanism 
[238]. Although still debatable, the use of 
statins may provide a useful strategy for sup-
pressing the AD progression.

Future directions and conclusion

The present review gives an insight into the 
major pathophysiological risk factors promot-
ing AD. Overall, it is observed that despite elab-
orate knowledge of the risk factors and mecha-
nism of AD, only a modest choice of therapeutic 
tools is available for management, prevention, 
mitigation and treatment of the disease. Pre- 
sently, symptomatic treatments are the most 
prevalent, and multiple studies are in progress 
to identify specific drugs targeting AD. With all 
the progress made so far, clinical trials have 

as an alternative (Table 5). A combination of 
cholinesterase inhibitors, with memantine is 
also accepted as a treatment option, where the 
cholinergic drugs appeared more clinically ben-
eficial even at the late stage of the disease 
[239]. Yet, it remains unclear at which stage of 
the disease the drugs should be started and 
which sequence of treatments should be used. 
A lack of knowledge on the AD-specific pharma-
cokinetics and bioavailability has led to a rea-
sonably lowacceptance of the antioxidants, 
statins and anti-inflammatory agents as AD 
therapeutics. An understanding of their usage-
dose, latency period, stage at which efficacy  
is at the peak and the genetic impact may help 
in proceeding with the agents reducing oxida-
tive stress, inflammation and hyperlipidemia. 
Targeting BACE and presenilin, the components 
of the γ-secretase pathway, is envisaged as 
reasonable approach for inhibiting the amy-
loidogenic pathway of APP processing. Alter- 
natively, stimulation of signaling pathways trig-
gering the α-secretase-based non-amyloido-
genic pathway appears as a reasonable strate-
gy. A very optimistic approach is the targeting  
of APP 5’-UTR. Worldwide, the drug libraries are 
being screened for that purpose, with the aim 
of identifying both the inhibitors of amyloido-
genic and the promoters of non-amyloidogenic 
pathways of Aβ. Vaccine-based approaches are 
also designed, bringing the attention to the 
usefulness of Aβ immunotherapy. The use of 
amyloid anti-aggregant strategies is also being 
investigated. Though clinical trials for the immu-
notherapies are in progress, detailed clinical 
studies on patients are yet awaited. However, 
we look forward to further research and clinical 
trials towards understanding and identifying 
novel independent and interdependent strate-
gies that modulate amyloid metabolism in 
attenuating Aβ in AD.
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Table 5. FDA-approved drugs as AD therapeutics
Drugs Mode of action AD symptoms
Donepezil AChE inhibitor Mild to severe AD
Memantine NMDAR antagonist Moderate to severe AD
Rivastigmine AChE and BuChE inhibitor Alzheimer-like pathology
Galantamine Cholinergic inhibitor Alzheimer-like pathology

accepted the AChE inhibitors and  
a single NMDA receptor agonist  
as the probable AD therapeutics. 
AChE inhibitors, donepezil, gantha- 
mine and rivastigmine are used in 
mild to moderate AD. In severe AD or 
in patients not responding to AChE 
inhibitors, memantine can be used 
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