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ABSTRACT The rapid development of biomedical monitoring technologies has enabled modern intensive
care units (ICUs) to gather vast amounts of multimodal measurement data about their patients. However,
processing large volumes of complex data in real-time has become a big challenge. Together with ICU
physicians, we have designed and developed an ICU clinical decision support system icuARM based
on associate rule mining (ARM), and a publicly available research database MIMIC-II (Multi-parameter
Intelligent Monitoring in Intensive Care II) that contains more than 40,000 ICU records for 30,000+ patients.
icuARM is constructed with multiple association rules and an easy-to-use graphical user interface (GUI) for
care providers to perform real-time data and information mining in the ICU setting. To validate icuARM,
we have investigated the associations between patients’ conditions such as comorbidities, demographics, and
medications and their ICU outcomes such as ICU length of stay. Coagulopathy surfaced as themost dangerous
co-morbidity that leads to the highest possibility (54.1%) of prolonged ICU stay. In addition, women who
are older than 50 years have the highest possibility (38.8%) of prolonged ICU stay. For clinical conditions
treatable with multiple drugs, icuARM suggests that medication choice can be optimized based on patient-
specific characteristics. Overall, icuARM can provide valuable insights for ICU physicians to tailor a patient’s
treatment based on his or her clinical status in real time.

INDEX TERMS Intensive care units (ICUs), personalized clinical decision support system, association rule
mining, clinical risk prediction models.

I. INTRODUCTION
According to the Society of Critical Care Medicine (SCCM),
there are approximately five million patients admitted annu-
ally to intensive care units (ICUs) in the United States, with
average mortality rates ranging from 10% to 29% [1], which
are the highest rates of all the units in a hospital. In addition,
the ICU has some of the highest rates of medical errors as
compared to most clinical settings due to the complexity
of care [2, 3]. With the extensive hemodynamic monitoring
and use of multiple measurement technologies, the modern
ICU generates large volumes of complex and multimodal
data. Interpreting and utilizing this information is challenging
for the ICU physician. The data is richer, but the ability to
integrate it for effective actions remains difficult.

We have designed and developed an ICU clinical decision
support system (CDSS) to improve outcomes in critically ill
patients by providing real-time decision support, decreasing
medical errors, andminimizing life-threatening events caused
by delayed or uninformed medical decisions. CDSSs are
computer-aided ‘‘active knowledge systems which use two or
more items of patient data to generate case-specific advice’’
[4]. Evidence has strongly suggested that CDSSs can improve
a physician’s decision making performance [4]. For optimal
medical decision making, the CDSS needs to be data-driven,
rapid, and informed.
Evidence-based medicine is the ‘‘conscientious, explicit

and judicious use of current best evidence in making deci-
sions about the care of individual patients’’ [5]. A CDSS is
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evidence-based if its knowledge base is derived from, and
continually reflects, the most up-to-date evidence from the
scientific literature and practice-based sources [6]. A generic
form of evidence in an evidence-based CDSS is the IF-THEN
rule. The rule implies that IF an antecedent (i.e., a set of con-
ditions) presents, THEN an outcome is expected or an action
should be taken. In the literature, evidence-based CDSSs
have provided important risk assessment scores for clini-
cians, such as prediction of ICU survivability (e.g., APACHE
II [7]), length of stay [8], organ failure (e.g., SOFA [9]),
neurologic prognosis (e.g., Glasgow Coma Score [10]), and
outcomes after acute coronary syndrome (e.g., GRACE ACS
model [11]). However, none of the above applications are true
CDSSs because they are not interactive nor flexible, which are
two key features of true decision support systems [12].

These computer-based ICU assistance systems claim to
be CDSSs because they provide the ‘‘statistics’’ of evi-
dence. However, it is difficult for clinicians to make a
correct decision by recalling all corresponding knowledge
based on these statistics in a timely fashion. They have
to search their archives, find the appropriate literature, and
interpret relevant evidence (assuming it is up-to-date). This
decision support process is not feasible in the critical care
setting, when the luxury of time is rare. Thus, a reliable
CDSS in an ICU should provide not only statistically sig-
nificant knowledge, but also an interactive user interface that
enables clinicians to search for evidence effectively and in
real-time.

Besides being interactive, an evidence-based ICU CDSS
need to be flexible. In typical ICU systems that claim to
be CDSSs, researchers define expected IF-THEN rules (i.e.,
with conditions and outcomes or actions) given certain clin-
ical problems, validate the rules (i.e., via human trial, lab
experiment, or computer simulation), and form new evi-
dence if the rule is statistically significant (e.g., p <0.05).
Afterwards, clinicians can refer to the evidence if the clin-
ical conditions are matched. For example, a clinician can
select an appropriate antimicrobial drug for a septic patient
when the pathogenic organism has specific hemodynamic and
biochemical markers. However, some patients lack clear-cut
evidence for the presence of an infection and/or the type of
infecting organism, which makes the decision to treat with
an antimicrobial drug experience-based instead of evidence-
based. The clinician still needs to make the same decision
about antimicrobial drug prescription with incomplete infor-
mation, and then passively assess the prognosis. Such a pro-
cess introduces human bias that deviates from the original
design of the CDSS. Clinicians face this challenge on a
daily basis for every patient in the ICU due to heterogeneous
conditions. Therefore, a flexible ICU CDSS is needed to
allow clinicians to customize conditions to better describe
a patient’s immediate status (i.e., personalized), instead of
referring to fixed evidence formed from different clinical
situations.

In addition to the two key features mentioned above, a pow-
erful CDSS relies on a sufficient and representative database

of patient ICU stays. Although the bedside monitor can gen-
erate large amounts of data from each patient as compared
to other care settings [13], the number of unique patients
in a standard ICU CDSS database is typically small. Thus,
the accuracy of new decision support evidence is limited by
the diversity of phenotypes contained in a small number of
patients. Even though some studies contain large numbers of
patients, the evidence is usually mined from the entire cohort
without clinical categorization. Ideally, before applying data
modeling analysis, a CDSS should first extract a cohort of
patients who have similar medical histories and situations,
and reveal the sample size as a reference when delivering
new evidence back to clinicians. Clinicians can judge when
the evidence is mined from a sufficient and representative
dataset.
To our knowledge, to date, no true CDSSs have been devel-

oped for the ICU. To address the aforementioned challenges,
we designed and developed an ICU CDSS called icuARM.
icuARM has an interactive graphical user interface (GUI)
that allows clinicians to mine decision support evidence in
a flexible way. We constructed association rules to perform
evidence-based data mining from a database with more than
40,000 ICU stays of 30,000+ patients.Wewill report icuARM
as the following structure. First, we provide a short descrip-
tion of data source in Section II.A. Then we describe the
detailed data mining approach and the system user interface
in Sections II.B and II.C respectively. Next we present results,
evaluation and discussion of two case studies in Section III.
Finally we summarize the conclusion and future directions in
Section IV.

II. METHODS AND PROCEDURES
A. DATA SOURCE - THE MIMIC-II DATABASE
The data in the icuARM is imported from theMulti-parameter
Intelligent Monitoring in Intensive Care II (MIMIC-II)
database. MIMIC-II is a publicly accessible ICU data repos-
itory containing records of over 40,000 ICU stays in which
32,000 are adult (>15 yrs) records and 8,000 are neonatal
(<2 yrs) records [14]. The data in MIMIC-II can be cate-
gorized into two major categories: clinical data and physi-
ological data. The clinical data is collected from MIMIC-
II’s ICU information systems and hospital electronic health
record systems. The high-resolution physiological data con-
sists of time series waveforms and time series measurements
from bedside monitors. The data mining process in this
study only includes clinical data. In the near future, we will
utilize temporal data mining on time series physiological
data.
The imported clinical data consists of approximately 232

million entries covering over 13,000 variables. We further
divide the MIMIC-II clinical data into two groups of cate-
gories: basic and event-based. The basic categories include
data that remain unchanged during one ICU stay (e.g.,
patient demographics and pre-existing comorbidities). The
event-based categories contain data collected at multiple
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TABLE 1. Description of MIMIC-II clinical data.

time points within an ICU stay, including laboratory tests
(e.g., blood chemistries, complete blood counts), medica-
tion events (e.g., insulin, heparin), fluid balance (e.g., urine
output), and nurse-verified chart measurements (e.g., blood
pressure, heart rate). Values in event-based categories are pro-
cessed to generate mean, minimum, maximum, and standard
deviation during an ICU stay. Durations of chart measure-
ment, medication, and fluid balance events are also imported.
We tabularized the imported MIMIC-II clinical data in
Table 1.

B. PRINCIPLE OF ASSOCIATION RULE MINING
After importing data from MIMIC-II, a sophisticated mining
process is required to unearth meaningful associations from
such a voluminous dataset. Association rule mining (ARM) is
a method to reveal meaningful relations between variables in
databases. Agrawal et al. first introduced the concept of ARM
to extract regularities between products in large-scale ware-
house databases [15]. In healthcare, ARM has been widely
adopted in applications such as heart disease prediction [16,
17], healthcare auditing [18, 19], and neurological diagnosis
[20, 21]. However, to our understanding, there is no published
CDSS reporting the use of ARM in the ICU.

Rules in ARM are in the form of X ⇒ Y , which means
that X implies Y , where X and Y are called antecedent and
consequent, respectively. In its original marketing analysis
context, the ruleX ⇒ Y carries themeaning that if a customer
buys items in X , he/she is also likely to buy items in Y . In
MIMIC-II, one patient may be associated with one or more
hospital stays; and one hospital stay may be associated with
one or more ICU stays. Therefore, the most basic data piece
in our mining process is the ICU stay. Therefore, in our
ICU data mining process, a rule X ⇒ Y implies that if X
occurs in one ICU stay, Y is also likely to occur during the

stay. Here the ICU stays are analogous to transactions in the
traditional marketing ARM in which a customer may have
multiple market visits, and a market visit may have multiple
transactions.
The antecedent X and consequent Y are itemsets that con-

sist of one or more item(s). An item is composed of a vari-
able with a corresponding value or a range of values. An
item can be numerical or categorical depending on the data
type of the variable. For example, HeartRateMax > 80
is a numerical item that has a variable HeartRateMax and a
range of values ‘‘> 80.’’ As another example, IsFirstDay
= Yes is a categorical item that has a variable IsFirstDay
and a value Yes. Because X and Y can consist of one or
a combination of items, the associations are not necessarily
one-to-one.
Two important metrics— support and confidence—quan-

tify the frequency and level of association of a rule. We
modified these two metrics from their conventional forms
to fit our ICU clinical mining [22]. First, the support of an
association rule is defined as:

Supp(X ⇒ Y ) =
count(X ∪ Y )

count((XV 6= φ) ∪ (YV 6= φ))
(1)

where X ∪ Y indicates the set of all ICU stays in which both
X and Y occur; and XV 6= φ and YV 6= φ indicate the set
of all ICU stays in which all variables in X and Y have no
missing values. For example, if X = ‘‘HeartRateMax > 80,’’
XV 6= φ refers to all ICU stays in which HeartRateMax
has been assigned a value (i.e., no missing data). count(a)
returns the number of ICU stays that contain a, where a can
consist of one or more items. The numerator of (1) counts the
total number of ICU stays that contain all items of X ∪ Y .
The denominator of (1) counts the total number of stays that
have no missing data in all variables of X and Y . This is
critical in ICU data mining because clinical data is usually
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recorded when the patient is presenting a specific condition
or undergoing a specific treatment. Focusing on the ICU stays
that do not have any missing data in any of the variables of
X and Y helps extract stays that are under similar clinical
conditions. Therefore, the support of a rule X ⇒ Y indicates
the fraction of the ICU stays that hold X ∪ Y to those that
have no missing data in all of the variables of X and Y . The
support ranges from 0 to 1. A high support for an association
rule indicates that a high portion of ICU stays are applicable
to the rule.

Another metric of an association rule is its confidence:

Conf (X ⇒ Y ) =
count(X ∪ Y )

count(X ∪ (YV 6= φ))
(2)

In all ICU stays that have no missing value in variables of
X and Y , the confidence calculates the ratio (ranged from
0 to 1) of ICU stays that match all items in both X and Y
to the records that match all item values in X no matter the
value of Y . For example, if the confidence of an association
rule {HeartRateMax > 190} ⇒ {Death = YES} is 90%,
it implies that for ICU stays that have {HeartRateMax >
190}, 90% of these stays have {Death = YES}. In other
words, confidence reveals the level of the association between
X and Y .
In order to discover frequent and confident association

rules, the mining process requires users to specify two mini-
mum values as thresholds to drop infrequent and unconfident
rules, which are minimum support (Suppmin) and minimum
confidence (Confmin). Rules are considered to be frequent
if their supports are at least Suppmin and confident if their
confidences are at least Confmin. The goal of ARM is to find
all frequent and confident rules based on these two user-
specified values.

There are two main steps in revealing association rules.
The first step is to find all frequent itemsets that have sup-
ports above Suppmin. The second step is to use the frequent
itemsets to generate confident rules with confidences above
the Confmin. Because the second step is straightforward, most
of the research focus is on the first step. Since the first
algorithm was introduced in the original report of ARM [15],
new algorithms have been proposed to improve the efficiency
of the generation of frequent itemsets. Among these algo-
rithms, the Apriori algorithm is the most popular in ARM
research.

The Apriori algorithm utilizes an iterative process to gen-
erate frequent itemsets. Let I = {I1, I2, . . . , IN} consist
of N possible items in the database. In the first iteration,
the algorithm starts by counting the occurrence of 1-itemset
candidates that contain only one item. 1-itemset candidates
that have supports lower than Suppmin are pruned out and
the remaining ones are called frequent 1-itemsets. In the
following iterations (i.e., k >1), the candidate k-itemsets are
first generated by joining the frequent (k-1)-itemsets. Then
frequent k-itemsets are generated by pruning out candidate k-
itemsets that have supports lower than Suppmin. The iteration
continues until no more candidates or frequent itemsets can

be found. The pseudo-code of the Apriori algorithm presented
in [22] is given as follows:

The GenCandidate in the Apriori algorithm is the candi-
date itemset generation algorithm that is given as follows:

After generating all frequent itemsets via the Apriori algo-
rithm, the second subproblem is to generate confident rules
that satisfy Confmin. For each frequent itemset f , consider all
non-empty subsets of f . For each subset a, the process forms
a new rule a ⇒ (f − a) if its confidence is above Confmin.
We can then call a and (f − a) the antecedent and conse-
quent, which are the X and Y , respectively, of an association
rule.
As described previously in (2), we can assess if a rule

X ⇒ Y has a high level of association according to its
confidence. However, a high confidence of rule X ⇒ Y still
cannot guarantee a low confidence of its counter case. That
is, during clinical decision making, we want to consider when
the rule X ⇒ Y yields a higher confidence than its counter
case. This means that Y is likely to occur only when X occurs,
and when X does not occur, Y has a low chance of occurrence.
We use the following equation to evaluate the importance of
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a rule X ⇒ Y :

Impo(X ⇒ Y ) =
conf (X ⇒ Y )

conf (X ⇒ Y )
(3)

The importance metric ranges from 0 to∞. A rule of impor-
tance less than 1 means that the antecedent predicts the con-
sequent worse than the counter case of the antecedent. This
type of rule should be ignored. Thus the rules are expected to
have an importance >1. To avoid the rules with importance
close to 1 (i.e., 0.9 and 1.1) due to random chance, a more
strict and higher threshold for importance are used to ensure
statistical significance. In this study, the qualitatively chosen
threshold of importance is selected to be >1.
We can utilize the aforementioned three metrics to deter-

mine if a rule X ⇒ Y is frequent, confident, and important.
However, a given consequent Y may be associatedwith differ-
ent antecedents from different rules. For example, ifX1 andX2
are both possible antecedents that associate with a consequent
Y , we can emphasize X1 if the presence of Y is dominated
by X1. Therefore, we use a new metric to determine the
dominance of an antecedent on a rule’s consequent.

Domi(X ⇒ Y ) =
count(Y ∪ X )

count(Y ∪ (XV 6= φ))
(4)

Similar to (2), the dominance ranges from 0 to 1. The domi-
nance rule of X ⇒ Y is identical to the confidence of Y ⇒ X
because the rule can be viewed as the ratio of ICU stays that
match all items in X and Y to the records that match all items
in Y no matter the value of X .
Because the antecedent of a rule can consist of multiple

items, we may also need to determine how a new item affects
a rule’s confidence when we include the item in the rule’s
original antecedent (i.e., X ∪ INew ⇒ Y ). Evaluating effects
of new clinical items would be helpful, for example, in mak-
ing decisions about medication or treatment combinations.
Additionally, it is not necessary to always pursue positive or
negative effects; rather, it depends on the clinical situation.
For example, when the consequent of a rule is the mortality of
an ICU stay given the antecedent of a medication X , we may
not only be interested in drugs that may decrease mortality,
but also in those that may increase mortality. In this study, we
use the following equation to measure the effect of adding a
new antecedent item on a rule’s confidence:

Effe(INew|X ⇒ Y ) = conf (X ∪ INew ⇒ Y )-conf (X ⇒ Y )

(5)

The range of the effect metric is from –1 to 1. Unlike the
support, confidence, importance, and dominance that are all
rule-wise metrics, effect is an item-wise metric.

C. SYSTEM USE CASES AND INTERFACE
The icuARM features a user interface that allows real-time
association rule mining in the ICU. The interface enables the
user to input real-time patient clinical scenarios, extract confi-
dent association rules from the database, and display the rules.

FIGURE 1. System Use Flow. The system consists of three main windows,
including a Rule Mining window (A), an Effect Browsing window (B), and
a New Item window (C). The Rule Mining window receives user inputs as
Rule Control (dashed box). The system synchronizes with three sources,
including the MIMIC-II database, Item Bank that stores all created items,
and Rule Bank that stores all pre-existing rules.

FIGURE 2. The Rule Mining Window. Users can construct antecedents and
consequents of interest by selecting items in the Antecedent panel and
the Consequent panel, respectively. The association rule results are
displayed in the Association Rules panel. Users can manipulate rules by
giving control inputs in the Rule Control panel. The control inputs include
the type of Suppmin, maximum length of items in antecedents and
consequents, Suppmin, Confmin, and the sorting type. Rules can be
exported from the ‘‘File’’ menu. Users can access the New Item window
and Effect Browsing window via the bottom two buttons.

The icuARM usage flow is shown in Fig. 1. As depicted,
the icuARM system consists of three main windows: (1) a
Rule Mining window, (2) an Effect Browsing window, and
(3) a New Item window. The interface was implemented in
MATLAB (MathWorks, Natick, MA). The user can freely
switch among these threewindows for different purposes. The
detailed features of each window are described below.
The first main window is the Rule Mining window (Fig. 2)

that enables clinicians to extract association rules based
on customized antecedents and consequents. The window
accesses two data sources. The first data source of icuARM
is the Rule Bank which stores rules that were previously
mined. The second data source is the Item Bank that stores all
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FIGURE 3. The Effect Browsing Window. Users can browse the effects of
possible items on the right. The antecedent with selected items is shown
on the left with the current rule measures. Users can keep selecting
possible items from the right until no more potential items are available.
Users can return to the Rule Mining window by clicking the Mining button.

FIGURE 4. The New Item Window. In the Create New Item panel, users
can create new items by selecting a variable under a category and
assigning a value or a range of values. The pending new items are listed
in the New Items panel. By clicking the Submit button, the system stores
the new items and generates all corresponding rules. Users can browse
all existing items in the All Items panel. Users can return to the Rule
Mining window by clicking the Mining button.

pre-existing items. The mining process starts by constructing
all items of interest in antecedents and consequents. Based
on these items, the system retrieves all possible raw rules
from the Rule Bank based on Suppmin = 0% and Confmin =
0%. The user can apply several inputs to prune out infre-
quent and/or unconfident rules by increasing Suppmin and/or
Confmin, respectively. Because antecedents and consequents
of the displayed rules may contain multiple items, the user
can specify the length (i.e., the number of items) of processed
antecedents and/or consequents. In addition, the rules can
be sorted by one of the four rule-wise metrics (i.e., support,
confidence, importance, and dominance). Furthermore, the
user can export all raw rules or processed rules in comma-
separated values (CSV) format, which can be exported into
Microsoft Excel or other statistical analysis tools (e.g., SPSS)
for future analysis.

The second main window is the Effect Browsing win-
dow (Fig. 3) that enables clinicians to browse item-wise
effects after the rules are extracted from the Rule Bank.
When given a target consequent, this interface starts by
displaying all rules that contain only one item in their
antecedents with their corresponding four rule-wise metrics.
Once a first-item has been selected in the antecedent, the
browser lists all possible second-items with their correspond-
ing effects (i.e., the confidence changes). The browsing con-

tinues until no more potential items can be selected in the
antecedent.
The third main window is the New Item window (Fig. 4)

that enables clinicians to create new items. As mentioned
in the Rule Mining window, the user can select items to
construct customized antecedents and consequents. However,
the user may not always find items of interest that have
been created in the system. Therefore, the New Item window
allows the user to construct new items by selecting a category,
choosing a variable (i.e., the first component of the item)
under the category, and assigning a value or a range of values
(i.e., the second component of the item) to the variable. If
the chosen variable is event-based, the user can also assign a
value of mean, minimum, maximum, and standard deviation
(as we mentioned in Section II.A). The user can also select
the event duration if it is available. Once the user submits new
items, the system stores them in the Item Bank, accesses the
MIMIC-II database, and generates new rules. The efficiency
of rule generation depends on the computation power of the
running PC and can be expedited by parallel computing. The
current system can generate from 52 rules per minute on a
single-core processor to 434 rules per minute on a 12-core
processor. Upon creation of new rules, the system stores them
in the Rule Bank. Afterwards, users can retrieve the rules in
the Rule Bank via the Rule Mining window without waiting
for duplicated rule generation. As the number of stored rules
keeps growing, a real-time rule mining system can gradually
be achieved.

III. RESULTS AND DISCUSSION
A. PRE-EXISTING COMORBIDITY VS. PROLONGED ICU
STAY
The length of stay (LOS) is a significant ICU outcome that
is associated with severe organ failure and high resource
consumption [23, 24]. Evidence has shown that patients with
prolonged (i.e., longer than 3 days) ICU stays have a consid-
erably increased ICU, hospital, and long-term mortality [25].
Patient comorbidity is a significant variable affecting the ICU
LOS [26]. However, survival is typically estimated on a long-
term basis (e.g., 1-yr or 2-yrs survival) that is not applicable
to the short-term ICU prediction. Therefore, in this case
study, we employed the icuARM to generate association rules
between pre-existing comorbidities and prolonged ICU stays.
Table 2 lists the four metrics of rules for 12 possible pre-

existing comorbidities. The rule with hypothyroidism (HYP)
as the comorbidity was ignored because its rule had impor-
tance less than 1. Congestive heart failure (CHF) had the high-
est support (8.6%), which means that this rule was applicable
to the highest portion of the ICU stays. Additionally, accord-
ing to the dominance metric, CHF dominated the prolonged
ICU stays by 22.4%, which was also the highest.
In this case study, the possibility of prolonged ICU stay can

be predicted by the confidence of a rule given the comorbidi-
ties in the antecedent. According to the importance rules (i.e.,
importance ≥ 1) shown in Table 2, coagulopathy (COA) is
associated with the highest possibility of prolonged ICU stay
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TABLE 2. Pre-existing comorbidities VS. prolonged ICU stay.

(54.1%), whereas alcohol/drug abuse (ABU) is associated
with the lowest possibility (36.9%).1 The association rules of
the eight age-gender populations (i.e., age <2, 15-30, 30-50,
>50 years, and gender male and female) were also generated.
Fig. 5(a) shows that females aged over 50 had the highest
possibility of prolonged ICU stay (38.8%), and males over
50 years had the second highest (38.2%). Interestingly, the
pediatric population had the third and fourth highest possi-
bility of prolonged ICU stay (female: 37.6%, male: 38.1%).
This may be a reflection of the fact that most of the children
within the MIMIC-II database are neonates in the neonatal
ICU, where premature infants tend to have prolonged stays
(up to months).

The icuARM’s Effect Browsing windowwas used to inves-
tigate the effect of different combinations of pre-existing
comorbidities in different populations on the possibility of
prolonged ICU stay. We focused on females aged over 50
because of their highest possibility of prolonged ICU stay.
Fig. 5(b) shows all rules of the 11 first-item comorbidities
in this population. Coagulopathy (COA) was still associated
with the highest possibility (58.6%) of prolonged ICU stay.
In addition, females over 50 years who had alcohol and/or
drug abuse showed an increased possibility (44.1%) even
though this comorbidity did not have a high risk in the general
population.

We continued to investigate the effects (i.e., changes of
possibility of prolonged ICU stay) of possible second-item
comorbidities in females aged over 50 years who also had
coagulopathy. As shown in Fig. 5(c), there were 10 possible
second-item comorbidities that were important (importance
≥ 1). Among them, six comorbidities increased the possi-
bility, with deficiency anemia (DEA) resulting in the highest
rate of prolonged ICU stay (64.4%). Clinicians can continue
the effect browsing process by adding other comorbidity
combinations based on a patient’s status at admission.

1 Some comorbidities tend to be associated with shorter ICU stays,
especially in younger population. For example, young patients with ABU
usually admit for short (i.e., < 24 hrs) ICU stays because of acute alcohol
intoxication (e.g., seizures/delirium tremens) or drug overdose/intoxication
(e.g., respiratory monitoring after an opiate or benzodiazepine overdose).

FIGURE 5. (a) Possibility of prolonged ICU stays in different age-gender
populations. The three values of each bar are the three measures of the
association rules, including support (top), importance (middle), and
dominance (bottom). (b) The effects (i.e., changes in possibility of
prolonged ICU stay) of the first-item comorbidities on prolonged ICU stay
possibility in females aged over 50 years. (c) The effects of the
second-item comorbidities on prolonged ICU stay possibility in females
aged over 50 years who also have coagulopathy.

After evaluating rules based on their support and confi-
dence values, it is important to interpret the importance value.
Rules have lower importance values for more general cases
with fewer items (in either the antecedent or consequent), and
have higher importance values for more specific cases with
more items. When comparing the importance values among
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Table 2 and Figure 5(a) to 5(c), we can observe that the
importance values increase as more items are added to the
antecedents. We want to emphasize 1-item rules in Table 2.
So even if, theoretically, the value can go to infinity, in reality,
it is more around 1.1-1.4.

In this case study, we have shown the basic usability of
icuARM to assess associations between pre-existing comor-
bidities and prolonged ICU stays, especially in females aged
over 50 years. Clinicians can construct different combinations
of age, gender, and pre-existing comorbidities to determine a
baseline prolonged ICU stay possibility of a patient at the time
of ICU admission, even prior to diagnosis. By estimating the
possibility of prolonged ICU stay, an ICU team can efficiently
plan ahead for the intensive care resource allocation such
as staffing, laboratory, and radiology. This prediction also
provides a risk reference to assess how certain interventions
will affect LOS. For example, a clinician may admit two
female patients of similar age. One has a coagulopathy (e.g.,
disseminated intravascular coagulation) and the other has an
acute coronary syndrome. By using icuARM, the clinician
and ICU team could accurately plan for needed resources for
the former patient, predict outcomes, and improve manage-
ment for this type of high risk ICU patient.

B. MEDICATION USAGE VS. PROLONGED ICU STAY
Mining associations between medication usage and clinical
outcome is another promising application of icuARM. ARM
has been adopted in several pharmacovigilance studies, such
as investigating multi-item adverse drug reactions [27-29].
However, to our knowledge, no CDSSs have adopted ARM
for finding associations between medication usage and ICU
outcomes. Therefore, in our second case study, by using
icuARM, we investigated the associations between prolonged
ICU stays and medication usage in addition to patient demo-
graphics and pre-existing comorbidities.

We first mined the association rules of two commonly
used anti-hypertensive drugs in ICUs: diltiazem (DIL) and
labetalol (LAB). We selected males and females over 50
years because they had the highest prolonged ICU possibility
according to our previous case study. The associations on
the drugs with a pre-existing comorbidity of congestive heart
failure (CHF) were also investigated. As shown in Table 3,
in patients over 50 years without CHF, DIL is associated
with higher possibility compared to LAB in both females
and males. However, these two drugs had different effects
on patients with CHF. For females over 50 years with CHF,
the use of DIL increased the possibility of prolonged ICU
stays to 83.4% compared to females over 50 without CHF
(73.6%), whereas LAB had nearly no change (62.3% vs.
61.7%). In contrast, for the same clinical situation, the use
of LAB actually increased the possibility in males over
50 years with CHF to 87.1% compared to those without
CHF (62.8%), whereas DIL had almost no effect (74.7% vs.
76.0%). Therefore, for patients over 50 years with a comor-
bidity of CHF, we may choose LAB for females and DIL for
males.

TABLE 3. Medication usage Vs. prolonged ICU stay (>50 years old).

In addition to the hypertensive conditions, ICU clinicians
often have a choice between pharmacologic agents in an
acute episode of cardiopulmonary arrest. Epinephrine (EPI)
and vasopressin (VAS) are two common drugs used in the
management of ventricular fibrillation and pulseless elec-
trical activity. We applied icuARM to explore the associa-
tions between these two drugs and prolonged ICU stays. In
addition, Gueugniaud et al. suggested that the combination
of EPI and VAS did not improve outcome (i.e., survival to
hospital discharge, good neurologic recovery, and 1-year sur-
vival) during advanced cardiac life support for out-of-hospital
cardiac arrest [30]. However, evidence was still insufficient
to make prognosis on short-term ICU stays. Therefore, by
utilizing icuARM, the association between ICU LOS and a
combination of EPI and VAS was also evaluated compared to
EPI or VAS alone.
According to the result shown in Table 3, females over 50

years without CHF had slightly lower possibility of prolonged
ICU stay with VAS compared to EPI (64.7% vs. 67.6%); in
contrast, males over 50 without CHF had lower chance of
prolonged ICU stay with EPI compared to VAS (61.8% vs.
71.4%). These associations all increased on patients over 50
who also had CHF, but the EPI increased the possibility most
on females (84.5%) compared to those without CHF (67.6%).
Furthermore, for the combination of EPI and VAS, the change
of the possibility was not considerably different compared to
EPI or VAS alone. This partially supported the finding of [30]
although we focused on the short term ICU outcome.
This case study demonstrated that icuARM could help

guide the clinician to select correct medication for similar
clinical situations but different patient populations in the pre-
planning phase. The entire mining process requires no more
than one minute, promising a nearly real-time and easy-to-
access bedside consulting tool.

IV. CONCLUSION
Evidence-based real-time decision-making for critically ill
patients in the ICU has become more challenging because
the volume and complexity of the data have been increasing
over the years. Thus, to assist clinicians in making optimal
decisions, there is a critical need to apply modern information
technology and advanced data analytics to extract information
from heterogeneous clinical data.
In this study, we researched and developed a real-time

clinical decision support system icuARM to assist clinicians
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in generating quantitative and real-time decision support rules
for the ICU based on a large ICU patient database MIMIC-
II. We adopted the ‘‘support’’ and the ‘‘confidence’’ metrics
suitable for ICU clinical application from conventional asso-
ciation rule mining. In addition, we defined and developed
two new rule-wise metrics ‘‘importance’’ and ‘‘dominance’’
and one item-wise metric ‘‘effect.’’ We developed an inter-
active and easy-to-use graphical user interface that enables
clinicians to perform flexible data mining in real-time for
personalized decision-making.

We tested icuARM on two cases investigating the associa-
tions between prolonged ICU stays and patient demographics,
pre-existing comorbidities, and medication usage. Our results
not only reinforced the current decision-making evidence, but
also revealed new knowledge by predicting characteristics of
a prolonged ICU stay.

Wewill further improve this CDSS in four directions. First,
besides basic patient demographics, pre-existing comorbid-
ity data, and medication usage, we will emulate more cate-
gories such as nurse-verified chart events, laboratory tests,
and fluid balance records etc. to better assist ICU clini-
cians in making critical decisions. Second, as mentioned in
Section II.A, we aim to include continuous physiological
data with corresponding time stamps from the MIMIC-II
database to perform temporal association rule mining [31].
Third, the current mining process with the Apriori algo-
rithm requires clinicians to manually specify variables of
interest and cut-points (for numerical variables) in the items
of antecedents and consequents. We will develop automatic
feature selection, such as the supervised mRMR method [32]
or the unsupervised MCFS method [33], and discretization
for more objective item construction. Finally, in addition to
the five evaluation metrics, we will provide a more compre-
hensive clinical evaluation by including other data centric rule
metrics [34].
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